52#define BSPLINESURFACE_BSPLINESURFACET_C
56#include <OpenMesh/Core/Geometry/VectorT.hh>
61#include "BSplineSurfaceT.hh"
64#include <ACG/Geometry/Algorithms.hh>
65#include <ACG/Math/BSplineBasis.hh>
73template <
class Po
intT>
78 ref_count_cpselections_(0),
79 ref_count_eselections_(0)
86template <
class Po
intT>
97 _prop.
resize(n_control_points_m());
98 for (
unsigned int i = 0; i < _prop.size(); ++i)
99 _prop[i].resize(n_control_points_n());
106template <
class Po
intT>
107template <
class PropT>
109BSplineSurfaceT<PointT>::
110release_prop(
unsigned int& _ref_count, PropT& _prop)
122template <
class Po
intT>
125resize(
unsigned int _m,
unsigned int _n)
127 control_net_.resize(_m);
129 for (
unsigned int i = 0; i < control_net_.size(); ++i)
130 control_net_[i].resize(_n);
136 cpselections_.resize(_m);
137 for (
unsigned int i = 0; i < cpselections_.size(); ++i)
138 cpselections_[i].resize(_n);
141 eselections_.resize(_m);
142 for (
unsigned int i = 0; i < eselections_.size(); ++i)
143 eselections_[i].resize(_n);
148template <
class Po
intT>
153 control_net_.clear();
156 cpselections_.clear();
157 eselections_.clear();
162template <
class Po
intT>
167 knotvector_m_.createKnots(degree_m_, dimm_);
168 knotvector_n_.createKnots(degree_n_, dimn_);
173template <
class Po
intT>
176set_degree(
unsigned int _degm,
unsigned int _degn)
184template <
class Po
intT>
187add_vector_m(
const std::vector< Point> & _control_polygon)
189 insert_vector_m(_control_polygon, dimm_);
194template <
class Po
intT>
197add_vector_n(
const std::vector< Point> & _control_polygon)
199 insert_vector_n(_control_polygon, dimn_);
204template <
class Po
intT>
207insert_vector_m(
const std::vector< Point> & _control_polygon,
unsigned int _m)
209 std::cout <<
"insert_vector_m of size " << _control_polygon.size() <<
" at m = " << _m << std::endl;
213 dimn_ =_control_polygon.size();
215 assert(_control_polygon.size() == dimn_);
217 resize(dimm_ + 1, dimn_);
219 control_net_.insert(control_net_.begin() + _m, _control_polygon);
220 control_net_.pop_back();
221 std::cout <<
"control_net_: " << control_net_.size() <<
" x " << control_net_[control_net_.size()-1].size() << std::endl;
224 std::vector<unsigned char> dummy(_control_polygon.size(), 0);
225 cpselections_.insert(cpselections_.begin() + _m, dummy);
226 cpselections_.pop_back();
227 std::cout <<
"cpselections_: " << cpselections_.size() <<
" x " << cpselections_[cpselections_.size()-1].size() << std::endl;
230 eselections_.insert(eselections_.begin() + _m, dummy);
231 eselections_.pop_back();
232 std::cout <<
"eselections_: " << eselections_.size() <<
" x " << eselections_[eselections_.size()-1].size() << std::endl;
237template <
class Po
intT>
240insert_vector_n(
const std::vector< Point> & _control_polygon,
unsigned int _n)
244 dimm_ = _control_polygon.size();
246 assert(_control_polygon.size() == dimm_);
248 resize(dimm_, dimn_+1);
250 for (
unsigned int i = 0; i < dimm_; ++i)
252 control_net_[i].insert(control_net_[i].begin() + _n, _control_polygon[i]);
253 control_net_[i].pop_back();
257 for (
unsigned int i = 0; i < dimm_; ++i)
259 cpselections_[i].insert(cpselections_[i].begin() + _n, 0);
260 cpselections_[i].pop_back();
263 for (
unsigned int i = 0; i < dimm_; ++i)
265 eselections_[i].insert(eselections_[i].begin() + _n, 0);
266 eselections_[i].pop_back();
272template <
class Po
intT>
281 if(control_net_.begin() + _m < control_net_.end())
282 control_net_.erase(control_net_.begin() + _m);
284 resize(dimm_-1, dimn_);
287 if(cpselections_.begin() + _m < cpselections_.end())
288 cpselections_.erase(cpselections_.begin() + _m);
290 if(eselections_.begin() + _m < eselections_.end())
291 eselections_.erase(eselections_.begin() + _m);
299template <
class Po
intT>
308 for (
unsigned int i = 0; i < control_net_.size(); ++i) {
309 if(control_net_[i].begin() + _n < control_net_[i].end())
310 control_net_[i].erase(control_net_[i].begin() + _n);
313 resize(dimm_, dimn_-1);
316 for (
unsigned int i = 0; i < cpselections_.size(); ++i)
317 if(cpselections_[i].begin() + _n < cpselections_[i].end())
318 cpselections_[i].erase(cpselections_[i].begin() + _n);
320 for (
unsigned int i = 0; i < eselections_.size(); ++i)
321 if(eselections_[i].begin() + _n < eselections_[i].end())
322 eselections_[i].erase(eselections_[i].begin() + _n);
330template <
class Po
intT>
333get_vector_m(std::vector< Point> & _control_polygon,
unsigned int _m)
336 _control_polygon = control_net_[_m];
341template <
class Po
intT>
344get_vector_n(std::vector< Point> & _control_polygon,
unsigned int _n)
347 _control_polygon.resize(dimm_);
349 for (
unsigned int i = 0; i < dimm_; ++i)
350 _control_polygon[i] = control_net_[i][_n];
355template <
class Po
intT>
361 knotvector_m_.setKnotvector(_knots);
366template <
class Po
intT>
372 knotvector_n_.setKnotvector(_knots);
377template <
class Po
intT>
383 Vec2i span = spanm(_u);
384 Vec2i interval = interval_m(_u);
388 newknotvecu.insertKnot(interval[1], _u);
391 std::vector<double> alpha;
392 for(
int i = span[0]; i < span[1]; ++i)
394 double a(knotvector_m_.getKnot(i+1));
395 double b(knotvector_m_.getKnot(i+degree_m_+1));
396 alpha.push_back((_u-a)/(b-a));
398 knotvector_m_ = newknotvecu;
401 ControlNet oldcpts(control_net_);
403 resize(n_control_points_m()+1, n_control_points_n());
405 for(
int i = 0; i < n_control_points_m(); ++i)
408 control_net_[i] = oldcpts[i];
409 else if( i <= span[1])
410 for(
unsigned int j = 0; j < n_control_points_n(); ++j)
412 control_net_[i][j] = oldcpts[i-1][j]*(1.0-alpha[i-span[0]-1])+oldcpts[i][j]*alpha[i-span[0]-1];
415 control_net_[i] = oldcpts[i-1];
421template <
class Po
intT>
427 Vec2i span = spann(_v);
428 Vec2i interval = interval_n(_v);
432 newknotvecv.insertKnot(interval[1], _v);
435 std::vector<double> alpha;
436 for(
int i = span[0]; i < span[1]; ++i)
438 double a(knotvector_n_.getKnot(i+1));
439 double b(knotvector_n_.getKnot(i+degree_n_+1));
440 alpha.push_back((_v-a)/(b-a));
442 knotvector_n_ = newknotvecv;
445 ControlNet oldcpts(control_net_);
447 resize(n_control_points_m(), n_control_points_n()+1);
449 for(
int i = 0; i < n_control_points_n(); ++i)
452 for(
unsigned int j = 0; j < n_control_points_m(); ++j)
453 control_net_[j][i] = oldcpts[j][i];
454 else if( i <= span[1])
455 for(
unsigned int j = 0; j < n_control_points_m(); ++j)
457 control_net_[j][i] = oldcpts[j][i-1]*(1.0-alpha[i-span[0]-1])+oldcpts[j][i]*alpha[i-span[0]-1];
460 for(
unsigned int j = 0; j < n_control_points_m(); ++j)
461 control_net_[j][i] = oldcpts[j][i-1];
467template <
class Po
intT>
472 double epsilon = 0.0000001;
474 if (_u > upperu() && _u < upperu()+epsilon)
477 if (_v > upperv() && _v < upperv()+epsilon)
480 assert(_u >= loweru() && _u <= upperu());
481 assert(_v >= lowerv() && _v <= upperv());
486 Point point = Point(0.0, 0.0, 0.0);
488 Vec2i span_m(spanm(_u));
489 Vec2i span_n(spann(_v));
492 std::vector<Scalar> basisFuns_m(pm+1);
493 std::vector<Scalar> basisFuns_n(pn+1);
501 for (
int i = span_m[0]; i <= span_m[1]; ++i)
502 for (
int j = span_n[0]; j <= span_n[1]; ++j)
503 point += control_net_[i][j] * basisFuns_m[i-span_m[0]] * basisFuns_n[j - span_n[0]];
510template <
class Po
intT>
515 double epsilon = 0.0000001;
517 if (_u > upperu() && _u < upperu()+epsilon)
520 if (_v > upperv() && _v < upperv()+epsilon)
523 assert(_u >= loweru() && _u <= upperu());
524 assert(_v >= lowerv() && _v <= upperv());
529 _pt = Point(0.0, 0.0, 0.0);
531 Vec2i span_m(spanm(_u));
532 Vec2i span_n(spann(_v));
535 std::vector<Scalar> basisFuns_m(pm+1);
536 std::vector<Scalar> ders_m(pm+1);
537 std::vector<Scalar> basisFuns_n(pn+1);
538 std::vector<Scalar> ders_n(pn+1);
547 Point dpdu = Point(0,0,0);
548 Point dpdv = Point(0,0,0);
550 for (
int i = 0; i <= pm; ++i)
552 for (
int j = 0; j <= pn; ++j)
554 Point cp = control_net_[i + span_m[0]][j + span_n[0]];
556 _pt += cp * (basisFuns_m[i] * basisFuns_n[j]);
558 dpdu += cp * (ders_m[i] * basisFuns_n[j]);
559 dpdv += cp * (basisFuns_m[i] * ders_n[j]);
563 _normal = (dpdu % dpdv).normalize();
568template <
class Po
intT>
573 double epsilon = 0.0000001;
575 if (_u > upperu() && _u < upperu()+epsilon)
578 if (_v > upperv() && _v < upperv()+epsilon)
581 assert(_u >= loweru() && _u <= upperu());
582 assert(_v >= lowerv() && _v <= upperv());
587 Point point = Point(0.0, 0.0, 0.0);
589 Vec2i span_m(spanm(_u));
590 Vec2i span_n(spann(_v));
592 for (
int i = span_m[0]; i <= span_m[1]; ++i)
593 for (
int j = span_n[0]; j <= span_n[1]; ++j)
594 point += control_net_[i][j] * basisFunction(knotvector_m_, i, pm, _u) * basisFunction(knotvector_n_, j, pn, _v);
601template <
class Po
intT>
602typename BSplineSurfaceT<PointT>::Scalar
606 int m = _knotvector.size() - 1;
609 if ((_i==0 && _t== _knotvector(0)) || (_i==m-_n-1 && _t==_knotvector(m)))
613 if (_t >= _knotvector(_i) && _t < _knotvector(_i+1))
619 double Nin1 = basisFunction(_knotvector, _i, _n-1, _t);
620 double Nin2 = basisFunction(_knotvector, _i+1, _n-1, _t);
624 if ((_knotvector(_i+_n) - _knotvector(_i)) != 0)
625 fac1 = (_t - _knotvector(_i)) / (_knotvector(_i+_n) - _knotvector(_i)) ;
629 if ( (_knotvector(_i+1+_n) - _knotvector(_i+1)) != 0 )
630 fac2 = (_knotvector(_i+1+_n) - _t) / (_knotvector(_i+1+_n) - _knotvector(_i+1));
634 return (fac1*Nin1 + fac2*Nin2);
639template <
class Po
intT>
644 assert(_u >= loweru() && _u <= upperu());
645 assert(_v >= lowerv() && _v <= upperv());
652 Vec2i span_m(spanm(_u));
653 Vec2i span_n(spann(_v));
655 std::vector<Scalar> ders_m(pm+1);
656 std::vector<Scalar> ders_n(pn+1);
658 ACG::bsplineBasisDerivatives<Scalar>(ders_m, span_m, _u, _derm, knotvector_m_.getKnotvector(), 0);
659 ACG::bsplineBasisDerivatives<Scalar>(ders_n, span_n, _v, _dern, knotvector_n_.getKnotvector(), 0);
661 for (
int i = span_m[0]; i <= span_m[1]; i++)
662 for (
int j = span_n[0]; j <= span_n[1]; j++)
663 point += control_net_[i][j] * ders_m[i - span_m[0]] * ders_n[j - span_n[0]];
671template <
class Po
intT>
676 assert(_u >= loweru() && _u <= upperu());
677 assert(_v >= lowerv() && _v <= upperv());
679 Point derivu = derivativeSurfacePoint(_u,_v,1,0);
680 Point derivv = derivativeSurfacePoint(_u,_v,0,1);
682 Point normal( (derivu%derivv).normalize());
689template <
class Po
intT>
690typename BSplineSurfaceT<PointT>::Scalar
698 return basisFunction(_knotvector, _i, _n, _t);
700 Scalar Nin1 = derivativeBasisFunction(_knotvector, _i, _n-1, _t, _der-1);
701 Scalar Nin2 = derivativeBasisFunction(_knotvector, _i+1, _n-1, _t, _der-1);
704 if ( fabs(_knotvector(_i+_n)-_knotvector(_i)) > 1e-6 )
705 fac1 = Scalar(_n) / (_knotvector(_i+_n)-_knotvector(_i));
708 if ( fabs(_knotvector(_i+_n+1)-_knotvector(_i+1)) > 1e-6 )
709 fac2 = Scalar(_n) / (_knotvector(_i+_n+1)-_knotvector(_i+1));
711 return (fac1*Nin1 - fac2*Nin2);
716template <
class Po
intT>
717typename BSplineSurfaceT<PointT>::Scalar
721 return knotvector_m_(degree_m());
726template <
class Po
intT>
727typename BSplineSurfaceT<PointT>::Scalar
730 return knotvector_m_(knotvector_m_.size() - 1 - degree_m());
735template <
class Po
intT>
736typename BSplineSurfaceT<PointT>::Scalar
740 return knotvector_n_(degree_n());
745template <
class Po
intT>
746typename BSplineSurfaceT<PointT>::Scalar
749 return knotvector_n_(knotvector_n_.size() - 1 - degree_n());
754template <
class Po
intT>
764template <
class Po
intT>
774template <
class Po
intT>
785 while (_t >= knotvector_m_(i)) i++;
786 while (_t < knotvector_m_(i)) i--;
789 return Vec2i(i, i+1);
794template <
class Po
intT>
805 while (_t >= knotvector_n_(i)) i++;
806 while (_t < knotvector_n_(i)) i--;
809 return Vec2i(i, i+1);
void get_vector_m(std::vector< Point > &_control_polygon, unsigned int _m)
Returns an n control point vector.
void set_knots_m(std::vector< Scalar > _knots)
Set the knotvector of the bspline surface in m direction.
void insert_vector_m(const std::vector< Point > &_control_polygon, unsigned int _m)
Inserts an n control point vector.
void insert_knot_n(double _t)
Insert a knot i in n direction without changing the surface.
Point derivativeSurfacePoint(double _u, double _v, int _derm, int _dern)
Returns the _derm'th derivative of a spline surface.
void get_vector_n(std::vector< Point > &_control_polygon, unsigned int _n)
Returns an m ctrPointVector.
void delete_vector_n(unsigned int _n)
Deletes an m control point vector.
ACG::Vec2i interval_m(double _t)
Returns the index of the knots u and u+1 such that t in [u, u+1)
void add_vector_n(const std::vector< Point > &_control_polygon)
Adds a control point m-vector.
Scalar lowerv()
Returns the lower v parameter.
Scalar upperv()
Returns the upper v parameter.
Scalar upperu()
Returns the upper u parameter.
void insert_vector_n(const std::vector< Point > &_control_polygon, unsigned int _n)
Inserts an m control point vector.
void set_knots_n(std::vector< Scalar > _knots)
Set the knotvector of the bspline surface in n direction.
void add_vector_m(const std::vector< Point > &_control_polygon)
Adds a control point n-vector.
void resize(unsigned int _m, unsigned int _n)
Resizes the spline struct.
Point normalSurfacePoint(double _u, double _v)
Returns the normal of a spline surface.
ACG::Vec2i spanm(double _t)
Returns the basis functions which are unequal to zero at parameter u.
ACG::Vec2i interval_n(double _t)
Returns the index of the knots v and v+1 such that t in [v, v+1)
void set_degree(unsigned int _degm, unsigned int _degn)
Sets the degree of the spline surface.
void surfacePointNormal(Point &_pt, Point &_normal, double _u, double _v)
Evaluates a spline surface at parameters _u and _v.
Point surfacePoint_rec(double _u, double _v)
Evaluates a spline surface at parameters _u and _v.
Scalar loweru()
Returns the lower u parameter.
Scalar derivativeBasisFunction(Knotvector &_knotvector, int _i, int _n, double _t, int _der)
Derivative of a Spline Basis Function.
void insert_knot_m(double _t)
Insert a knot i in m direction without changing the surface.
void createKnots()
Creates interpolating knotvectors 0...0, 1, 2, ..., n...n.
ACG::Vec2i spann(double _t)
Returns the basis functions which are unequal to zero at parameter v.
void delete_vector_m(unsigned int _m)
Deletes an n control point vector.
void reset_control_net()
Clears the control net.
Point surfacePoint(double _u, double _v)
Evaluates a spline surface at parameters _u and _v.
Scalar basisFunction(Knotvector &_knotvector, int _i, int _n, double _t)
A Spline Basis Function.
BSplineSurfaceT(unsigned int _degm=3, unsigned int _degn=3)
Constructor.
Namespace providing different geometric functions concerning angles.
void bsplineBasisDerivatives(std::vector< Scalar > &_ders, const Vec2i &_span, Scalar _t, int _der, const std::vector< Scalar > &_knots, std::vector< Scalar > *_functionVals)
Compute derivatives of basis functions in a span.
void bsplineBasisFunctions(std::vector< Scalar > &_N, const Vec2i &_span, Scalar _t, const std::vector< Scalar > &_knots)
Evaluate basis functions in a span.
Vec2i bsplineSpan(Scalar _t, int _degree, const std::vector< Scalar > &_knots)
Find the span of a parameter value.
VectorT< signed int, 2 > Vec2i