Developer Documentation
PCAT_impl.hh
1 /*===========================================================================*\
2 * *
3 * OpenFlipper *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openflipper.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenFlipper. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39 * *
40 \*===========================================================================*/
41 
42 
43 
44 
45 
46 
47 //=============================================================================
48 //
49 // CLASS PCA - IMPLEMENTATION
50 //
51 //=============================================================================
52 
53 #define PCA_C
54 
55 //== INCLUDES =================================================================
56 
57 #include "PCA.hh"
58 
59 extern "C" {
60 
61  typedef void (*U_fp)(...);
62 
63  int dsyev_( char *jobz, char *uplo, long int *n, double *a,
64  long int *lda, double *w, double *work, long int *lwork,
65  long int *info);
66 
67 }
68 
69 // typedef gmm::dense_matrix< double > Matrix;
70 // typedef std::vector< double > Vector;
71 
73 static double * p_work_double = 0;
74 
76 static int m_workSize_double = 0;
77 
78 //== NAMESPACES ===============================================================
79 
80 namespace Pca {
81 
82 //== IMPLEMENTATION ==========================================================
83 
84 template < typename VectorT >
85 PCA< VectorT >::PCA( std::vector< VectorT >& _points , VectorT& _first , VectorT& _second , VectorT& _third)
86 {
87  pca(_points,_first,_second,_third);
88 }
89 
90 template < typename VectorT >
92 {
93  if ( p_work_double != 0){
94  delete [] p_work_double;
95  p_work_double = 0;
96  m_workSize_double = 0;
97  }
98 }
99 
100 template < typename VectorT >
101 inline
102 VectorT
104 center_of_gravity(const std::vector< VectorT >& _points ) {
105  // compute cog of Points
106  VectorT cog(0.0, 0.0, 0.0);
107 
108  for (uint i = 0 ; i < _points.size() ; ++i ) {
109  cog = cog + _points[i];
110  }
111 
112  cog = cog / ( typename VectorT::value_type )_points.size();
113 
114  return cog;
115 }
116 
117 template < typename VectorT >
118 bool
119 PCA< VectorT >::SymRightEigenproblem( Matrix &_mat_A, Matrix & _mat_VR,
120  std::vector< double > & _vec_EV )
121 {
122  char jobz, uplo;
123  long int n, lda;
124  long int lwork, info;
125  double size;
126 
127  jobz = 'V';
128  uplo = 'U';
129  n = gmm::mat_nrows( _mat_A );
130  lda = n;
131 
132  info = 0;
133  // compute optimal size of working array
134  lwork = -1;
135  dsyev_( &jobz, &uplo, &n, &_mat_A( 0, 0 ), &lda, &_vec_EV[ 0 ],
136  &size, &lwork, &info );
137 
138  if( info != 0 )
139  return false;
140 
141 
142  if( (long int) size > m_workSize_double )
143  {
144  if( p_work_double)
145  delete [] p_work_double;
146 
147  m_workSize_double = (long int) size;
148 
149  p_work_double= new double[ m_workSize_double ];
150  }
151  lwork = m_workSize_double;
152 
153  // compute eigenvalues / eigenvectors
154  dsyev_( &jobz, &uplo, &n, &_mat_A( 0, 0 ), &lda, &_vec_EV[ 0 ],
155  p_work_double, &lwork, &info );
156 
157  if( info != 0 )
158  return false;
159 
160  // copy eigenvectors to matrix
161  gmm::copy( _mat_A, _mat_VR );
162 
163  return true;
164 }
165 
166 
167 template < typename VectorT >
168 void
169 PCA< VectorT >::pca(std::vector< VectorT >& _points , VectorT& _first , VectorT& _second , VectorT& _third)
170 {
171  // compute Mean of Points
172  const VectorT cog = center_of_gravity(_points);
173 
174  //build covariance Matrix
175  Matrix points(3 , _points.size() );
176 
177  for ( uint i = 0 ; i < _points.size() ; ++i)
178  {
179  points(0 , i ) = ( _points[i] - cog) [0];
180  points(1 , i ) = ( _points[i] - cog) [1];
181  points(2 , i ) = ( _points[i] - cog) [2];
182  }
183 
184  Matrix cov(3,3);
185  gmm::mult(points,gmm::transposed(points),cov );
186 
187  Matrix EV(3,3);
188  std::vector< double > ew(3);
189 
190 
191  if ( !SymRightEigenproblem( cov, EV ,ew ) )
192  std::cerr << "Error: Could not compute Eigenvectors for PCA" << std::endl;
193 
194  int maximum,middle,minimum;
195 
196  if ( (ew[0] > ew[1]) && (ew[0] > ew[2]) ) {
197  maximum = 0;
198  } else {
199  if ( (ew[1] > ew[0]) && (ew[1] > ew[2]) )
200  maximum = 1;
201  else
202  maximum = 2;
203  }
204 
205  if ( (ew[0] < ew[1]) && (ew[0] < ew[2]) )
206  minimum = 0;
207  else if ( (ew[1] < ew[0]) && (ew[1] < ew[2]) )
208  minimum = 1;
209  else
210  minimum = 2;
211 
212  if ( (minimum != 0 ) && ( maximum != 0 ) )
213  middle = 0;
214  else
215  if ( (minimum != 1 ) && ( maximum != 1 ) )
216  middle = 1;
217  else
218  middle = 2;
219 
220  _first = VectorT( EV(0,maximum) , EV(1,maximum) , EV(2,maximum) );
221  _second = VectorT( EV(0,middle) , EV(1,middle) , EV(2,middle ) );
222 
223  _first = _first.normalize();
224  _second = _second.normalize();
225  _third = _first % _second;
226 
227  //remember the eigenvalues
228  lastEigenValues_.clear();
229  lastEigenValues_.push_back( ew[maximum] );
230  lastEigenValues_.push_back( ew[middle] );
231  lastEigenValues_.push_back( ew[minimum] );
232 }
233 //-----------------------------------------------------------------------------
234 
235 template < typename VectorT >
236 inline
237 std::vector<double>&
239 {
240  return lastEigenValues_;
241 }
242 
243 
244 //=============================================================================
245 
246 } //namespace Pca
247 
248 //=============================================================================
Class for principal component Analysis.
Definition: PCA.hh:83
PCA()
Constructor.
Definition: PCA.hh:91
~PCA()
Destructor.
Definition: PCAT_impl.hh:91
VectorT center_of_gravity(const std::vector< VectorT > &_points)
Definition: PCAT_impl.hh:104
Namespace for principal Component Analysis.
Definition: PCA.hh:72
void pca(std::vector< VectorT > &_points, VectorT &_first, VectorT &_second, VectorT &_third)
Definition: PCAT_impl.hh:169
Classes for doing Principal component analysis.