Developer Documentation
ModifiedButterFlyT.hh
Go to the documentation of this file.
1 /* ========================================================================= *
2  * *
3  * OpenMesh *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openmesh.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenMesh. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40  * ========================================================================= */
41 
51 //=============================================================================
52 //
53 // CLASS ModifiedButterflyT
54 //
55 //=============================================================================
56 
57 
58 #ifndef SP_MODIFIED_BUTTERFLY_H
59 #define SP_MODIFIED_BUTTERFLY_H
60 
62 #include <OpenMesh/Core/Utils/vector_cast.hh>
63 #include <OpenMesh/Core/Utils/Property.hh>
64 // -------------------- STL
65 #include <vector>
66 #if defined(OM_CC_MIPS)
67 # include <math.h>
68 #else
69 # include <cmath>
70 #endif
71 
72 
73 //== NAMESPACE ================================================================
74 
75 namespace OpenMesh { // BEGIN_NS_OPENMESH
76 namespace Subdivider { // BEGIN_NS_DECIMATER
77 namespace Uniform { // BEGIN_NS_UNIFORM
78 
79 
80 //== CLASS DEFINITION =========================================================
81 
82 
91 template <typename MeshType, typename RealType = double>
92 class ModifiedButterflyT : public SubdividerT<MeshType, RealType>
93 {
94 public:
95 
96  typedef RealType real_t;
97  typedef MeshType mesh_t;
99 
100  typedef std::vector< std::vector<real_t> > weights_t;
101  typedef std::vector<real_t> weight_t;
102 
103 public:
104 
105 
106  ModifiedButterflyT() : parent_t()
107  { init_weights(); }
108 
109 
110  ModifiedButterflyT( mesh_t& _m) : parent_t(_m)
111  { init_weights(); }
112 
113 
114  ~ModifiedButterflyT() {}
115 
116 
117 public:
118 
119 
120  const char *name() const { return "Uniform Spectral"; }
121 
122 
124  void init_weights(size_t _max_valence=30)
125  {
126  weights.resize(_max_valence);
127 
128  //special case: K==3, K==4
129  weights[3].resize(4);
130  weights[3][0] = real_t(5.0)/12;
131  weights[3][1] = real_t(-1.0)/12;
132  weights[3][2] = real_t(-1.0)/12;
133  weights[3][3] = real_t(3.0)/4;
134 
135  weights[4].resize(5);
136  weights[4][0] = real_t(3.0)/8;
137  weights[4][1] = 0;
138  weights[4][2] = real_t(-1.0)/8;
139  weights[4][3] = 0;
140  weights[4][4] = real_t(3.0)/4;
141 
142  for(unsigned int K = 5; K<_max_valence; ++K)
143  {
144  weights[K].resize(K+1);
145  // s(j) = ( 1/4 + cos(2*pi*j/K) + 1/2 * cos(4*pi*j/K) )/K
146  double invK = 1.0/static_cast<double>(K);
147  real_t sum = 0;
148  for(unsigned int j=0; j<K; ++j)
149  {
150  weights[K][j] = static_cast<real_t>((0.25 + cos(2.0*M_PI*static_cast<double>(j)*invK) + 0.5*cos(4.0*M_PI*static_cast<double>(j)*invK))*invK);
151  sum += weights[K][j];
152  }
153  weights[K][K] = static_cast<real_t>(1.0) - sum;
154  }
155  }
156 
157 
158 protected:
159 
160 
161  bool prepare( mesh_t& _m )
162  {
163  _m.add_property( vp_pos_ );
164  _m.add_property( ep_pos_ );
165  return true;
166  }
167 
168 
169  bool cleanup( mesh_t& _m )
170  {
171  _m.remove_property( vp_pos_ );
172  _m.remove_property( ep_pos_ );
173  return true;
174  }
175 
176 
177  bool subdivide( MeshType& _m, size_t _n , const bool _update_points = true)
178  {
179 
181 
182  typename mesh_t::FaceIter fit, f_end;
183  typename mesh_t::EdgeIter eit, e_end;
184  typename mesh_t::VertexIter vit;
185 
186  // Do _n subdivisions
187  for (size_t i=0; i < _n; ++i)
188  {
189 
190  // This is an interpolating scheme, old vertices remain the same.
191  typename mesh_t::VertexIter initialVerticesEnd = _m.vertices_end();
192  for ( vit = _m.vertices_begin(); vit != initialVerticesEnd; ++vit)
193  _m.property( vp_pos_, *vit ) = _m.point(*vit);
194 
195  // Compute position for new vertices and store them in the edge property
196  for (eit=_m.edges_begin(); eit != _m.edges_end(); ++eit)
197  compute_midpoint( _m, *eit );
198 
199 
200  // Split each edge at midpoint and store precomputed positions (stored in
201  // edge property ep_pos_) in the vertex property vp_pos_;
202 
203  // Attention! Creating new edges, hence make sure the loop ends correctly.
204  e_end = _m.edges_end();
205  for (eit=_m.edges_begin(); eit != e_end; ++eit)
206  split_edge(_m, *eit );
207 
208 
209  // Commit changes in topology and reconsitute consistency
210 
211  // Attention! Creating new faces, hence make sure the loop ends correctly.
212  f_end = _m.faces_end();
213  for (fit = _m.faces_begin(); fit != f_end; ++fit)
214  split_face(_m, *fit );
215 
216 
217  // Commit changes in geometry
218  for ( vit = /*initialVerticesEnd;*/_m.vertices_begin();
219  vit != _m.vertices_end(); ++vit)
220  _m.set_point(*vit, _m.property( vp_pos_, *vit ) );
221 
222 #if defined(_DEBUG) || defined(DEBUG)
223  // Now we have an consistent mesh!
224  assert( OpenMesh::Utils::MeshCheckerT<mesh_t>(_m).check() );
225 #endif
226  }
227 
228  return true;
229  }
230 
231 private: // topological modifiers
232 
233  void split_face(mesh_t& _m, const typename mesh_t::FaceHandle& _fh)
234  {
235  typename mesh_t::HalfedgeHandle
236  heh1(_m.halfedge_handle(_fh)),
237  heh2(_m.next_halfedge_handle(_m.next_halfedge_handle(heh1))),
238  heh3(_m.next_halfedge_handle(_m.next_halfedge_handle(heh2)));
239 
240  // Cutting off every corner of the 6_gon
241  corner_cutting( _m, heh1 );
242  corner_cutting( _m, heh2 );
243  corner_cutting( _m, heh3 );
244  }
245 
246 
247  void corner_cutting(mesh_t& _m, const typename mesh_t::HalfedgeHandle& _he)
248  {
249  // Define Halfedge Handles
250  typename mesh_t::HalfedgeHandle
251  heh1(_he),
252  heh5(heh1),
253  heh6(_m.next_halfedge_handle(heh1));
254 
255  // Cycle around the polygon to find correct Halfedge
256  for (; _m.next_halfedge_handle(_m.next_halfedge_handle(heh5)) != heh1;
257  heh5 = _m.next_halfedge_handle(heh5))
258  {}
259 
260  typename mesh_t::VertexHandle
261  vh1 = _m.to_vertex_handle(heh1),
262  vh2 = _m.to_vertex_handle(heh5);
263 
264  typename mesh_t::HalfedgeHandle
265  heh2(_m.next_halfedge_handle(heh5)),
266  heh3(_m.new_edge( vh1, vh2)),
267  heh4(_m.opposite_halfedge_handle(heh3));
268 
269  /* Intermediate result
270  *
271  * *
272  * 5 /|\
273  * /_ \
274  * vh2> * *
275  * /|\3 |\
276  * /_ \|4 \
277  * *----\*----\*
278  * 1 ^ 6
279  * vh1 (adjust_outgoing halfedge!)
280  */
281 
282  // Old and new Face
283  typename mesh_t::FaceHandle fh_old(_m.face_handle(heh6));
284  typename mesh_t::FaceHandle fh_new(_m.new_face());
285 
286 
287  // Re-Set Handles around old Face
288  _m.set_next_halfedge_handle(heh4, heh6);
289  _m.set_next_halfedge_handle(heh5, heh4);
290 
291  _m.set_face_handle(heh4, fh_old);
292  _m.set_face_handle(heh5, fh_old);
293  _m.set_face_handle(heh6, fh_old);
294  _m.set_halfedge_handle(fh_old, heh4);
295 
296  // Re-Set Handles around new Face
297  _m.set_next_halfedge_handle(heh1, heh3);
298  _m.set_next_halfedge_handle(heh3, heh2);
299 
300  _m.set_face_handle(heh1, fh_new);
301  _m.set_face_handle(heh2, fh_new);
302  _m.set_face_handle(heh3, fh_new);
303 
304  _m.set_halfedge_handle(fh_new, heh1);
305  }
306 
307 
308  void split_edge(mesh_t& _m, const typename mesh_t::EdgeHandle& _eh)
309  {
310  typename mesh_t::HalfedgeHandle
311  heh = _m.halfedge_handle(_eh, 0),
312  opp_heh = _m.halfedge_handle(_eh, 1);
313 
314  typename mesh_t::HalfedgeHandle new_heh, opp_new_heh, t_heh;
315  typename mesh_t::VertexHandle vh;
316  typename mesh_t::VertexHandle vh1(_m.to_vertex_handle(heh));
317  typename mesh_t::Point zero(0,0,0);
318 
319  // new vertex
320  vh = _m.new_vertex( zero );
321 
322  // memorize position, will be set later
323  _m.property( vp_pos_, vh ) = _m.property( ep_pos_, _eh );
324 
325 
326  // Re-link mesh entities
327  if (_m.is_boundary(_eh))
328  {
329  for (t_heh = heh;
330  _m.next_halfedge_handle(t_heh) != opp_heh;
331  t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh)))
332  {}
333  }
334  else
335  {
336  for (t_heh = _m.next_halfedge_handle(opp_heh);
337  _m.next_halfedge_handle(t_heh) != opp_heh;
338  t_heh = _m.next_halfedge_handle(t_heh) )
339  {}
340  }
341 
342  new_heh = _m.new_edge(vh, vh1);
343  opp_new_heh = _m.opposite_halfedge_handle(new_heh);
344  _m.set_vertex_handle( heh, vh );
345 
346  _m.set_next_halfedge_handle(t_heh, opp_new_heh);
347  _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh));
348  _m.set_next_halfedge_handle(heh, new_heh);
349  _m.set_next_halfedge_handle(opp_new_heh, opp_heh);
350 
351  if (_m.face_handle(opp_heh).is_valid())
352  {
353  _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh));
354  _m.set_halfedge_handle(_m.face_handle(opp_new_heh), opp_new_heh);
355  }
356 
357  _m.set_face_handle( new_heh, _m.face_handle(heh) );
358  _m.set_halfedge_handle( vh, new_heh);
359  _m.set_halfedge_handle( _m.face_handle(heh), heh );
360  _m.set_halfedge_handle( vh1, opp_new_heh );
361 
362  // Never forget this, when playing with the topology
363  _m.adjust_outgoing_halfedge( vh );
364  _m.adjust_outgoing_halfedge( vh1 );
365  }
366 
367 private: // geometry helper
368 
369  void compute_midpoint(mesh_t& _m, const typename mesh_t::EdgeHandle& _eh)
370  {
371  typename mesh_t::HalfedgeHandle heh, opp_heh;
372 
373  heh = _m.halfedge_handle( _eh, 0);
374  opp_heh = _m.halfedge_handle( _eh, 1);
375 
376  typename mesh_t::Point pos(0,0,0);
377 
378  typename mesh_t::VertexHandle a_0(_m.to_vertex_handle(heh));
379  typename mesh_t::VertexHandle a_1(_m.to_vertex_handle(opp_heh));
380 
381  // boundary edge: 4-point scheme
382  if (_m.is_boundary(_eh) )
383  {
384  pos = _m.point(a_0);
385  pos += _m.point(a_1);
386  pos *= static_cast<typename mesh_t::Point::value_type>(9.0/16.0);
387  typename mesh_t::Point tpos;
388  if(_m.is_boundary(heh))
389  {
390  tpos = _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
391  tpos += _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh))));
392  }
393  else
394  {
395  assert(_m.is_boundary(opp_heh));
396  tpos = _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(opp_heh)));
397  tpos += _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(opp_heh))));
398  }
399  tpos *= static_cast<typename mesh_t::Point::value_type>(-1.0/16.0);
400  pos += tpos;
401  }
402  else
403  {
404  int valence_a_0 = _m.valence(a_0);
405  int valence_a_1 = _m.valence(a_1);
406  assert(valence_a_0>2);
407  assert(valence_a_1>2);
408 
409  if( (valence_a_0==6 && valence_a_1==6) || (_m.is_boundary(a_0) && valence_a_1==6) || (_m.is_boundary(a_1) && valence_a_0==6) || (_m.is_boundary(a_0) && _m.is_boundary(a_1)) )// use 8-point scheme
410  {
411  real_t alpha = real_t(1.0/2);
412  real_t beta = real_t(1.0/8);
413  real_t gamma = real_t(-1.0/16);
414 
415  //get points
416  typename mesh_t::VertexHandle b_0, b_1, c_0, c_1, c_2, c_3;
417  typename mesh_t::HalfedgeHandle t_he;
418 
419  t_he = _m.next_halfedge_handle(_m.opposite_halfedge_handle(heh));
420  b_0 = _m.to_vertex_handle(t_he);
421  if(!_m.is_boundary(_m.opposite_halfedge_handle(t_he)))
422  {
423  t_he = _m.next_halfedge_handle(_m.opposite_halfedge_handle(t_he));
424  c_0 = _m.to_vertex_handle(t_he);
425  }
426 
427  t_he = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
428  b_1 = _m.to_vertex_handle(t_he);
429  if(!_m.is_boundary(t_he))
430  {
431  t_he = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(t_he));
432  c_1 = _m.to_vertex_handle(t_he);
433  }
434 
435  t_he = _m.next_halfedge_handle(_m.opposite_halfedge_handle(opp_heh));
436  assert(b_1.idx()==_m.to_vertex_handle(t_he).idx());
437  if(!_m.is_boundary(_m.opposite_halfedge_handle(t_he)))
438  {
439  t_he = _m.next_halfedge_handle(_m.opposite_halfedge_handle(t_he));
440  c_2 = _m.to_vertex_handle(t_he);
441  }
442 
443  t_he = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(opp_heh));
444  assert(b_0==_m.to_vertex_handle(t_he));
445  if(!_m.is_boundary(t_he))
446  {
447  t_he = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(t_he));
448  c_3 = _m.to_vertex_handle(t_he);
449  }
450 
451  //compute position.
452  //a0,a1,b0,b1 must exist.
453  assert(a_0.is_valid());
454  assert(a_1.is_valid());
455  assert(b_0.is_valid());
456  assert(b_1.is_valid());
457  //The other vertices may be created from symmetry is they are on the other side of the boundary.
458 
459  pos = _m.point(a_0);
460  pos += _m.point(a_1);
461  pos *= alpha;
462 
463  typename mesh_t::Point tpos ( _m.point(b_0) );
464  tpos += _m.point(b_1);
465  tpos *= beta;
466  pos += tpos;
467 
468  typename mesh_t::Point pc_0, pc_1, pc_2, pc_3;
469  if(c_0.is_valid())
470  pc_0 = _m.point(c_0);
471  else //create the point by symmetry
472  {
473  pc_0 = _m.point(a_1) + _m.point(b_0) - _m.point(a_0);
474  }
475  if(c_1.is_valid())
476  pc_1 = _m.point(c_1);
477  else //create the point by symmetry
478  {
479  pc_1 = _m.point(a_1) + _m.point(b_1) - _m.point(a_0);
480  }
481  if(c_2.is_valid())
482  pc_2 = _m.point(c_2);
483  else //create the point by symmetry
484  {
485  pc_2 = _m.point(a_0) + _m.point(b_1) - _m.point(a_1);
486  }
487  if(c_3.is_valid())
488  pc_3 = _m.point(c_3);
489  else //create the point by symmetry
490  {
491  pc_3 = _m.point(a_0) + _m.point(b_0) - _m.point(a_1);
492  }
493  tpos = pc_0;
494  tpos += pc_1;
495  tpos += pc_2;
496  tpos += pc_3;
497  tpos *= gamma;
498  pos += tpos;
499  }
500  else //at least one endpoint is [irregular and not in boundary]
501  {
502  typename mesh_t::Point::value_type normFactor = static_cast<typename mesh_t::Point::value_type>(0.0);
503 
504  if(valence_a_0!=6 && !_m.is_boundary(a_0))
505  {
506  assert((int)weights[valence_a_0].size()==valence_a_0+1);
507  typename mesh_t::HalfedgeHandle t_he = opp_heh;
508  for(int i = 0; i < valence_a_0 ; t_he=_m.next_halfedge_handle(_m.opposite_halfedge_handle(t_he)), ++i)
509  {
510  pos += weights[valence_a_0][i] * _m.point(_m.to_vertex_handle(t_he));
511  }
512  assert(t_he==opp_heh);
513 
514  //add irregular vertex:
515  pos += weights[valence_a_0][valence_a_0] * _m.point(a_0);
516  ++normFactor;
517  }
518 
519  if(valence_a_1!=6 && !_m.is_boundary(a_1))
520  {
521  assert((int)weights[valence_a_1].size()==valence_a_1+1);
522  typename mesh_t::HalfedgeHandle t_he = heh;
523  for(int i = 0; i < valence_a_1 ; t_he=_m.next_halfedge_handle(_m.opposite_halfedge_handle(t_he)), ++i)
524  {
525  pos += weights[valence_a_1][i] * _m.point(_m.to_vertex_handle(t_he));
526  }
527  assert(t_he==heh);
528  //add irregular vertex:
529  pos += weights[valence_a_1][valence_a_1] * _m.point(a_1);
530  ++normFactor;
531  }
532 
533  assert(normFactor>0.1); //normFactor should be 1 or 2
534 
535  //if both vertices are irregular, average positions:
536  pos /= normFactor;
537  }
538  }
539  _m.property( ep_pos_, _eh ) = pos;
540  }
541 
542 private: // data
543 
546 
547  weights_t weights;
548 
549 };
550 
551 } // END_NS_UNIFORM
552 } // END_NS_SUBDIVIDER
553 } // END_NS_OPENMESH
554 #endif
555 
bool prepare(mesh_t &_m)
Prepare mesh, e.g. add properties.
const char * name() const
Return name of subdivision algorithm.
bool cleanup(mesh_t &_m)
Cleanup mesh after usage, e.g. remove added properties.
void init_weights(size_t _max_valence=30)
Pre-compute weights.
bool subdivide(MeshType &_m, size_t _n, const bool _update_points=true)
Subdivide mesh _m _n times.