Developer Documentation
adaptive_subdivider.cc
1 /* ========================================================================= *
2  * *
3  * OpenMesh *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openmesh.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenMesh. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40  * ========================================================================= */
41 
42 
43 
44 // -------------------------------------------------------------- includes ----
45 
46 // -------------------- OpenMesh
47 #include <OpenMesh/Core/IO/MeshIO.hh>
48 #include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
50 #include <OpenMesh/Tools/Utils/getopt.h>
51 // -------------------- OpenMesh Adaptive Composite Subdivider
54 // -------------------- STL
55 #include <iostream>
56 #include <fstream>
57 #include <sstream>
58 #include <limits>
59 #if defined(OM_CC_MIPS)
60 # include <math.h>
61 #else
62 # include <cmath>
63  using std::pow;
64 #endif
65 
66 
68 
69 // define mesh, rule interface, and subdivider types
73 
74 // ----------------------------------------------------------------------------
75 
76 using namespace OpenMesh::Subdivider;
77 
78 // factory function to add a RULE to a subdivider
79 #define ADD_FN( RULE ) \
80  bool add_ ## RULE( Subdivider& _sub ) \
81  { return _sub.add< Adaptive:: RULE < MyMesh > >(); }
82 
83 ADD_FN( Tvv3 );
84 ADD_FN( Tvv4 );
85 ADD_FN( VF );
86 ADD_FN( FF );
87 ADD_FN( FFc );
88 ADD_FN( FV );
89 ADD_FN( FVc );
90 ADD_FN( VV );
91 ADD_FN( VVc );
92 ADD_FN( VE );
93 ADD_FN( VdE );
94 ADD_FN( VdEc );
95 ADD_FN( EV );
96 ADD_FN( EVc );
97 ADD_FN( EF );
98 ADD_FN( FE );
99 ADD_FN( EdE );
100 ADD_FN( EdEc );
101 
102 #undef ADD_FN
103 
104 typedef bool (*add_rule_ft)( Subdivider& );
105 
106 // map rule name to factory function
107 struct RuleMap : std::map< std::string, add_rule_ft >
108 {
109  RuleMap()
110  {
111 #define ADD( RULE ) \
112  (*this)[ #RULE ] = add_##RULE;
113 
114  ADD( Tvv3 );
115  ADD( Tvv4 );
116  ADD( VF );
117  ADD( FF );
118  ADD( FFc );
119  ADD( FV );
120  ADD( FVc );
121  ADD( VV );
122  ADD( VVc );
123  ADD( VE );
124  ADD( VdE );
125  ADD( VdEc );
126  ADD( EV );
127  ADD( EVc );
128  ADD( EF );
129  ADD( FE );
130  ADD( EdE );
131  ADD( EdEc );
132 
133 #undef ADD
134  }
135 
136 } available_rules;
137 
138 
139 // ----------------------------------------------------------------------------
140 
141 std::string basename( const std::string& _fname );
142 void usage_and_exit(const std::string& _fname, int xcode);
143 
144 // ----------------------------------------------------------------------------
145 
146 
147 int main(int argc, char **argv)
148 {
149  size_t n_iter = 0; // n iteration
150  size_t max_nv = std::numeric_limits<size_t>::max(); // max. number of vertices in the end
151  std::string ifname; // input mesh
152  std::string ofname; // output mesh
153  std::string rule_sequence = "Tvv3 VF FF FVc"; // sqrt3 default
154  bool uniform = false;
155  int c;
156 
157  // ---------------------------------------- evaluate command line
158  while ( (c=getopt(argc, argv, "hlm:n:r:sU"))!=-1 )
159  {
160  switch(c)
161  {
162  case 's': rule_sequence = "Tvv3 VF FF FVc"; break; // sqrt3
163  case 'l': rule_sequence = "Tvv4 VdE EVc VdE EVc"; break; // loop
164  case 'n': { std::stringstream s; s << optarg; s >> n_iter; } break;
165  case 'm': { std::stringstream s; s << optarg; s >> max_nv; } break;
166  case 'r': rule_sequence = optarg; break;
167  case 'U': uniform = true; break;
168  case 'h': usage_and_exit(argv[0],0); break;
169  case '?':
170  default: usage_and_exit(argv[0],1);
171  }
172  }
173 
174  if ( optind == argc )
175  usage_and_exit(argv[0],2);
176 
177  if ( optind < argc )
178  ifname = argv[optind++];
179 
180  if ( optind < argc )
181  ofname = argv[optind++];
182 
183  // if ( optind < argc ) // too many arguments
184 
185  // ---------------------------------------- mesh and subdivider
186  MyMesh mesh;
187  Subdivider subdivider(mesh);
188 
189 
190  // -------------------- read mesh from file
191  std::cout << "Input mesh : " << ifname << std::endl;
192  if (!OpenMesh::IO::read_mesh(mesh, ifname))
193  {
194  std::cerr << " Error reading file!\n";
195  return 1;
196  }
197 
198  // store orignal size of mesh
199  size_t n_vertices = mesh.n_vertices();
200  size_t n_edges = mesh.n_edges();
201  size_t n_faces = mesh.n_faces();
202 
203  if ( n_iter > 0 )
204  std::cout << "Desired #iterations: " << n_iter << std::endl;
205 
206  if ( max_nv < std::numeric_limits<size_t>::max() )
207  {
208  std::cout << "Desired max. #V : " << max_nv << std::endl;
209  if (!n_iter )
210  n_iter = std::numeric_limits<size_t>::max();
211  }
212 
213 
214  // -------------------- Setup rule sequence
215  {
216  std::stringstream s;
217  std::string token;
218 
219  RuleMap::iterator it = available_rules.end();
220 
221  for (s << rule_sequence; s >> token; )
222  {
223  if ( (it=available_rules.find( token )) != available_rules.end() )
224  {
225  it->second( subdivider );
226  }
227  else if ( token[0]=='(' && (subdivider.n_rules() > 0) )
228  {
229  std::string::size_type beg(1);
230  if (token.length()==1)
231  {
232  s >> token;
233  beg = 0;
234  }
235 
236  std::string::size_type
237  end = token.find_last_of(')');
238  std::string::size_type
239  size = end==std::string::npos ? token.size()-beg : end-beg;
240 
241  std::stringstream v;
242  MyMesh::Scalar coeff;
243  std::cout << " " << token << std::endl;
244  std::cout << " " << beg << " " << end << " " << size << std::endl;
245  v << token.substr(beg, size);
246  v >> coeff;
247  std::cout << " coeffecient " << coeff << std::endl;
248  subdivider.rule( subdivider.n_rules()-1 ).set_coeff(coeff);
249 
250  if (end == std::string::npos)
251  {
252  s >> token;
253  if (token[0]!=')')
254  {
255  std::cerr << "Syntax error: Missing ')'\n";
256  return 1;
257  }
258  }
259  }
260  else
261  {
262  std::cerr << "Syntax error: " << token << "?\n";
263  return 1;
264  }
265  }
266  }
267 
268  std::cout << "Rule sequence : "
269  << subdivider.rules_as_string() << std::endl;
270 
271  // -------------------- Initialize subdivider
272  std::cout << "Initialize subdivider\n";
273  if (!subdivider.initialize())
274  {
275  std::cerr << " Error!\n";
276  return 1;
277  }
278 
279  //
280  MyMesh::FaceFaceIter ff_it;
281  double quality(0.0);
282 
283  // ---------------------------------------- subdivide
284  std::cout << "\nSubdividing...\n";
285 
286  OpenMesh::Utils::Timer timer, timer2;
287  size_t i;
288 
289  if ( uniform )
290  { // unifom
292  MyMesh::VertexIter v_it;
293  MyMesh::FaceHandle fh;
294  MyMesh::FaceIter f_it;
295 
296 
297  // raise all vertices to target state
298  timer.start();
299 
300  size_t n = n_iter;
301  size_t n_rules = subdivider.n_rules();
302 
303  i = 0;
304 
305  // calculate target states for faces and vertices
306  size_t target1 = (n - 1) * n_rules + subdivider.subdiv_rule().number() + 1;
307  size_t target2 = n * n_rules;
308 
309  for (f_it = mesh.faces_begin(); f_it != mesh.faces_end(); ++f_it) {
310 
311  if (mesh.data(*f_it).state() < int(target1) ) {
312  ++i;
313  fh = *f_it;
314  timer2.start();
315  subdivider.refine(fh);
316  timer2.stop();
317  }
318  }
319 
320  for (v_it = mesh.vertices_begin(); v_it != mesh.vertices_end(); ++v_it) {
321 
322  if (mesh.data(*v_it).state() < int(target2) ) {
323  vh = *v_it;
324  timer2.cont();
325  subdivider.refine(vh);
326  timer2.stop();
327  }
328  }
329  timer.stop();
330  }
331  else
332  { // adaptive
333 
334  MyMesh::FaceIter f_it;
335  MyMesh::FaceHandle fh;
336 
337  std::vector<double> __acos;
338  size_t buckets(3000);
339  double range(2.0);
340  double range2bucket(buckets/range);
341 
342  for (i = 0; i < buckets; ++i)
343  __acos.push_back( acos(-1.0 + i * range / buckets) );
344 
345  timer.start(); // total time needed
346 
347  // n iterations or until desired number of vertices reached approx.
348  for (i = 0; i < n_iter && mesh.n_vertices() < max_nv; ++i)
349  {
350  mesh.update_face_normals();
351 
352  // calculate quality
353  quality = 0.0;
354 
355  fh = *(mesh.faces_begin());
356 
357  // check every face
358  for (f_it = mesh.faces_begin(); f_it != mesh.faces_end(); ++f_it) {
359 
360  double face_quality = 0.0;
361  int valence = 0;
362 
363  for (ff_it = mesh.ff_iter(*f_it); ff_it.is_valid(); ++ff_it) {
364 
365  double temp_quality = OpenMesh::dot( mesh.normal(*f_it), mesh.normal(*ff_it) );
366 
367  if (temp_quality >= 1.0)
368  temp_quality = .99;
369  else if (temp_quality <= -1.0)
370  temp_quality = -.99;
371  temp_quality = (1.0+temp_quality) * range2bucket;
372  face_quality += __acos[int(temp_quality+.5)];
373 
374  ++valence;
375  }
376 
377  face_quality /= valence;
378 
379  // calaculate face area
380  MyMesh::Point p1, p2, p3;
381  MyMesh::Scalar area;
382 
383 #define heh halfedge_handle
384 #define nheh next_halfedge_handle
385 #define tvh to_vertex_handle
386 #define fvh from_vertex_handle
387  p1 = mesh.point(mesh.tvh(mesh.heh(*f_it)));
388  p2 = mesh.point(mesh.fvh(mesh.heh(*f_it)));
389  p3 = mesh.point(mesh.tvh(mesh.nheh(mesh.heh(*f_it))));
390 #undef heh
391 #undef nheh
392 #undef tvh
393 #undef fvh
394 
395  area = ((p2 - p1) % (p3 - p1)).norm();
396 
397  // weight face_quality
398  face_quality *= pow(double(area), double(.1));
399  //face_quality *= area;
400 
401  if (face_quality >= quality && !mesh.is_boundary(*f_it))
402  {
403  quality = face_quality;
404  fh = *f_it;
405  }
406  }
407 
408  // Subdivide Face
409  timer2.cont();
410  subdivider.refine(fh);
411  timer2.stop();
412  }
413 
414  // calculate time
415  timer.stop();
416 
417  } // uniform/adaptive?
418 
419  // calculate maximum refinement level
420  Adaptive::state_t max_level(0);
421 
422  for (MyMesh::VertexIter v_it = mesh.vertices_begin();
423  v_it != mesh.vertices_end(); ++v_it)
424  {
425  if (mesh.data(*v_it).state() > max_level)
426  max_level = mesh.data(*v_it).state();
427  }
428 
429 
430  // output results
431  std::cout << "\nDid " << i << (uniform ? " uniform " : "" )
432  << " subdivision steps in "
433  << timer.as_string()
434  << ", " << i/timer.seconds() << " steps/s\n";
435  std::cout << " only refinement: " << timer2.as_string()
436  << ", " << i/timer2.seconds() << " steps/s\n\n";
437 
438  std::cout << "Before: ";
439  std::cout << n_vertices << " Vertices, ";
440  std::cout << n_edges << " Edges, ";
441  std::cout << n_faces << " Faces. \n";
442 
443  std::cout << "Now : ";
444  std::cout << mesh.n_vertices() << " Vertices, ";
445  std::cout << mesh.n_edges() << " Edges, ";
446  std::cout << mesh.n_faces() << " Faces. \n\n";
447 
448  std::cout << "Maximum quality : " << quality << std::endl;
449  std::cout << "Maximum Subdivision Level: " << max_level/subdivider.n_rules()
450  << std::endl << std::endl;
451 
452  // ---------------------------------------- write mesh to file
453  {
454  if ( ofname.empty() )
455  {
456  std::stringstream s;
457 
458  s << "result." << subdivider.rules_as_string("_")
459  << "-" << i << "x.off";
460  s >> ofname;
461  }
462 
463  std::cout << "Output file: '" << ofname << "'.\n";
465  {
466  std::cerr << " Error writing file!\n";
467  return 1;
468  }
469  }
470  return 0;
471 }
472 
473 // ----------------------------------------------------------------------------
474 // helper
475 
476 void usage_and_exit(const std::string& _fname, int xcode)
477 {
478  using namespace std;
479 
480  cout << endl
481  << "Usage: " << basename(_fname)
482  << " [Options] input-mesh [output-mesh]\n\n";
483  cout << "\tAdaptively refine an input-mesh. The refined mesh is stored in\n"
484  << "\ta file named \"result.XXX.off\" (binary .off), if not specified\n"
485  << "\texplicitely (optional 2nd parameter of command line).\n\n";
486  cout << "Options:\n\n";
487  cout << "-m <int>\n\tAdaptively refine up to approx. <int> vertices.\n\n"
488  << "-n <int>\n\tAdaptively refine <int> times.\n\n"
489  << "-r <rule sequence>\n\tDefine a custom rule sequence.\n\n"
490  << "-l\n\tUse rule sequence for adaptive Loop.\n\n"
491  << "-s\n\tUse rule sequence for adaptive sqrt(3).\n\n"
492  << "-U\n\tRefine mesh uniformly (simulates uniform subdivision).\n\n";
493 
494  exit(xcode);
495 }
496 
497 std::string basename(const std::string& _f)
498 {
499  std::string::size_type dot = _f.rfind("/");
500  if (dot == std::string::npos)
501  return _f;
502  return _f.substr(dot+1, _f.length()-(dot+1));
503 }
504 
505 // ----------------------------------------------------------------------------
506 // end of file
507 // ============================================================================
CompositeTraits::state_t state_t
double seconds(void) const
Returns measured time in seconds, if the timer is in state &#39;Stopped&#39;.
Kernel::Point Point
Coordinate type.
Definition: PolyMeshT.hh:112
Kernel::Scalar Scalar
Scalar type.
Definition: PolyMeshT.hh:110
bool write_mesh(const Mesh &_mesh, const std::string &_filename, Options _opt=Options::Default, std::streamsize _precision=6)
Write a mesh to the file _filename.
Definition: MeshIO.hh:207
std::string as_string(Format format=Automatic)
osg::Vec3f::ValueType dot(const osg::Vec3f &_v1, const osg::Vec3f &_v2)
Adapter for osg vector member computing a scalar product.
Kernel::VertexHandle VertexHandle
Handle for referencing the corresponding item.
Definition: PolyMeshT.hh:136
Kernel::FaceFaceIter FaceFaceIter
Circulator.
Definition: PolyMeshT.hh:170
STL namespace.
Set binary mode for r/w.
Definition: Options.hh:100
void update_face_normals()
Update normal vectors for all faces.
void start(void)
Start measurement.
bool read_mesh(Mesh &_mesh, const std::string &_filename)
Read a mesh from file _filename.
Definition: MeshIO.hh:112
void cont(void)
Continue measurement.
void stop(void)
Stop measurement.