Developer Documentation
BezierCurveT_impl.hh
1 /*===========================================================================*\
2  * *
3  * OpenFlipper *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openflipper.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenFlipper. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40 \*===========================================================================*/
41 
42 
43 
44 
45 
46 //=============================================================================
47 //
48 // CLASS BezierCurve - IMPLEMENTATION
49 //
50 //=============================================================================
51 
52 #define ACG_BEZIERCURVE_C
53 
54 //== INCLUDES =================================================================
55 
56 
57 #include "BezierCurveT.hh"
58 
59 
60 //== IMPLEMENTATION ==========================================================
61 
62 
63 namespace ACG {
64 
65 
66 //-----------------------------------------------------------------------------
67 
68 
69 template <class Point>
70 Point
72 operator()(Scalar _t) const
73 {
74  // copy controll points
75  std::vector<Point> b(*this);
76 
77  unsigned int n = b.size()-1, k;
78  Scalar t0(1.0-_t), t1(_t);
79 
80 
81  // de Casteljau
82  unsigned int i, j;
83  for (i=0; i<n; ++i)
84  for (j=0, k=n-i; j<k; ++j)
85  b[j] = t0*b[j] + t1*b[j+1];
86 
87 
88  return b[0];
89 }
90 
91 
92 //-----------------------------------------------------------------------------
93 
94 
95 template <class Point>
96 void
98 subdivide(Scalar _t, Self& _curve0, Self& _curve1) const
99 {
100  // copy controll points
101  std::vector<Point> b(*this);
102 
103  int n = degree();
104  Scalar t0(1.0-_t), t1(_t);
105 
106 
107  _curve0.clear();
108  _curve0.reserve(n+1);
109  _curve1.clear();
110  _curve1.reserve(n+1);
111 
112  std::vector<Point> tmp;
113  tmp.reserve(n+1);
114 
115 
116  // de Casteljau
117  int i, j, k;
118  for (i=0; i<n; ++i)
119  {
120  _curve0.push_back(b[0]);
121  tmp.push_back(b[n-i]);
122 
123  for (j=0, k=n-i; j<k; ++j)
124  b[j] = t0*b[j] + t1*b[j+1];
125  }
126 
127  _curve0.push_back(b[0]);
128  tmp.push_back(b[0]);
129 
130 
131  for (i=n; i>=0; --i)
132  _curve1.push_back(tmp[i]);
133 
134 
135  assert(_curve0.degree() == n);
136  assert(_curve1.degree() == n);
137 }
138 
139 
140 //=============================================================================
141 } // namespace ACG
142 //=============================================================================
Namespace providing different geometric functions concerning angles.
unsigned int degree() const
return degree (= size()-1)
Definition: BezierCurveT.hh:94
void subdivide(Scalar _t, Self &_curve0, Self &_curve1) const
Point operator()(Scalar _t) const
evaluate curve at parameter _t using deCasteljau