/*===========================================================================*\
* *
* OpenVolumeMesh *
* Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen *
* www.openvolumemesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenVolumeMesh. *
* *
* OpenVolumeMesh is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of *
* the License, or (at your option) any later version with the *
* following exceptions: *
* *
* If other files instantiate templates or use macros *
* or inline functions from this file, or you compile this file and *
* link it with other files to produce an executable, this file does *
* not by itself cause the resulting executable to be covered by the *
* GNU Lesser General Public License. This exception does not however *
* invalidate any other reasons why the executable file might be *
* covered by the GNU Lesser General Public License. *
* *
* OpenVolumeMesh is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU LesserGeneral Public *
* License along with OpenVolumeMesh. If not, *
* see . *
* *
\*===========================================================================*/
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* $LastChangedBy$ *
* *
\*===========================================================================*/
#include
#include
#include "TopologyKernel.hh"
namespace OpenVolumeMesh {
// Initialize constants
const VertexHandle TopologyKernel::InvalidVertexHandle = VertexHandle(-1);
const EdgeHandle TopologyKernel::InvalidEdgeHandle = EdgeHandle(-1);
const HalfEdgeHandle TopologyKernel::InvalidHalfEdgeHandle = HalfEdgeHandle(-1);
const FaceHandle TopologyKernel::InvalidFaceHandle = FaceHandle(-1);
const HalfFaceHandle TopologyKernel::InvalidHalfFaceHandle = HalfFaceHandle(-1);
const CellHandle TopologyKernel::InvalidCellHandle = CellHandle(-1);
TopologyKernel::TopologyKernel() :
n_vertices_(0u),
v_bottom_up_(true),
e_bottom_up_(true),
f_bottom_up_(true) {
}
TopologyKernel::~TopologyKernel() {
}
//========================================================================================
VertexHandle TopologyKernel::add_vertex() {
++n_vertices_;
// Create item for vertex bottom-up incidences
if(v_bottom_up_) {
outgoing_hes_per_vertex_.resize(n_vertices_);
}
// Resize vertex props
resize_vprops(n_vertices_);
// Return 0-indexed handle
return VertexHandle((int)(n_vertices_ - 1));
}
//========================================================================================
/// Add edge
EdgeHandle TopologyKernel::add_edge(const VertexHandle& _fromVertex,
const VertexHandle& _toVertex,
bool _allowDuplicates) {
#ifndef NDEBUG
if((unsigned int)_fromVertex.idx() >= n_vertices() || (unsigned int)_toVertex.idx() >= n_vertices()) {
std::cerr << "Vertex handle is out of bounds!" << std::endl;
return InvalidEdgeHandle;
}
#endif
// Test if edge does not exist, yet
if(!_allowDuplicates) {
if(v_bottom_up_) {
assert(outgoing_hes_per_vertex_.size() > (unsigned int)_fromVertex.idx());
std::vector& ohes = outgoing_hes_per_vertex_[_fromVertex.idx()];
for(std::vector::const_iterator he_it = ohes.begin(),
he_end = ohes.end(); he_it != he_end; ++he_it) {
if(halfedge(*he_it).to_vertex() == _toVertex) {
return edge_handle(*he_it);
}
}
} else {
for(unsigned int i = 0; i < edges_.size(); ++i) {
if(edge(EdgeHandle(i)).from_vertex() == _fromVertex && edge(EdgeHandle(i)).to_vertex() == _toVertex) {
return EdgeHandle(i);
} else if(edge(EdgeHandle(i)).from_vertex() == _toVertex && edge(EdgeHandle(i)).to_vertex() == _fromVertex) {
return EdgeHandle(i);
}
}
}
}
// Create edge object
OpenVolumeMeshEdge e(_fromVertex, _toVertex);
// Store edge locally
edges_.push_back(e);
// Resize props
resize_eprops(n_edges());
EdgeHandle eh((int)edges_.size()-1);
// Update vertex bottom-up incidences
if(v_bottom_up_) {
assert(outgoing_hes_per_vertex_.size() > (unsigned int)_fromVertex.idx());
assert(outgoing_hes_per_vertex_.size() > (unsigned int)_toVertex.idx());
outgoing_hes_per_vertex_[_fromVertex.idx()].push_back(halfedge_handle(eh, 0));
outgoing_hes_per_vertex_[_toVertex.idx()].push_back(halfedge_handle(eh, 1));
}
// Create item for edge bottom-up incidences
if(e_bottom_up_) {
incident_hfs_per_he_.resize(n_halfedges());
}
// Get handle of recently created edge
return eh;
}
//========================================================================================
/// Add face via incident edges
FaceHandle TopologyKernel::add_face(const std::vector& _halfedges, bool _topologyCheck) {
#ifndef NDEBUG
// Test if all edges are valid
for(std::vector::const_iterator it = _halfedges.begin(),
end = _halfedges.end(); it != end; ++it) {
if((unsigned int)it->idx() >= edges_.size() * 2u) {
std::cerr << "Halfedge handle out of bounds!" << std::endl;
return InvalidFaceHandle;
}
}
#endif
// Perform topology check
if(_topologyCheck) {
/*
* Test if halfedges are connected
*
* The test works as follows:
* For every edge in the parameter vector
* put all incident vertices into a
* set of either "from"-vertices or "to"-vertices,
* respectively.
* If and only if all edges are connected,
* then both sets are identical.
*/
std::set fromVertices;
std::set toVertices;
for(std::vector::const_iterator it = _halfedges.begin(),
end = _halfedges.end(); it != end; ++it) {
fromVertices.insert(halfedge(*it).from_vertex());
toVertices.insert(halfedge(*it).to_vertex());
}
for(std::set::const_iterator v_it = fromVertices.begin(),
v_end = fromVertices.end(); v_it != v_end; ++v_it) {
if(toVertices.count(*v_it) != 1) {
std::cerr << "The specified halfedges are not connected!" << std::endl;
return InvalidFaceHandle;
}
}
// The halfedges are now guaranteed to be connected
}
// Create face
OpenVolumeMeshFace face(_halfedges);
faces_.push_back(face);
// Get added face's handle
FaceHandle fh(faces_.size() - 1);
// Resize props
resize_fprops(n_faces());
// Update edge bottom-up incidences
if(e_bottom_up_) {
for(std::vector::const_iterator it = _halfedges.begin(),
end = _halfedges.end(); it != end; ++it) {
assert(incident_hfs_per_he_.size() > (unsigned int)it->idx());
assert(incident_hfs_per_he_.size() > (unsigned int)opposite_halfedge_handle(*it).idx());
incident_hfs_per_he_[it->idx()].push_back(halfface_handle(fh, 0));
incident_hfs_per_he_[opposite_halfedge_handle(*it).idx()].push_back(halfface_handle(fh, 1));
}
}
// Create item for face bottom-up incidences
if(f_bottom_up_) {
incident_cell_per_hf_.resize(n_halffaces(), InvalidCellHandle);
}
// Return handle of recently created face
return fh;
}
//========================================================================================
/// Add face via incident vertices
/// Define the _vertices in counter-clockwise order (from the "outside")
FaceHandle TopologyKernel::add_face(const std::vector& _vertices) {
#ifndef NDEBUG
// Test if all vertices exist
for(std::vector::const_iterator it = _vertices.begin(),
end = _vertices.end(); it != end; ++it) {
if((unsigned int)it->idx() >= n_vertices()) {
std::cerr << "Vertex handle out of bounds!" << std::endl;
return InvalidFaceHandle;
}
}
#endif
// Add edge for each pair of vertices
std::vector halfedges;
std::vector::const_iterator it = _vertices.begin();
std::vector::const_iterator end = _vertices.end();
for(; (it+1) != end; ++it) {
EdgeHandle e_idx = add_edge(*it, *(it+1));
// Swap halfedge if edge already existed and
// has been initially defined in reverse orientation
int swap = 0;
if(edge(e_idx).to_vertex() == *it) swap = 1;
halfedges.push_back(halfedge_handle(e_idx, swap));
}
EdgeHandle e_idx = add_edge(*it, *_vertices.begin());
int swap = 0;
if(edge(e_idx).to_vertex() == *it) swap = 1;
halfedges.push_back(halfedge_handle(e_idx, swap));
// Add face
#ifndef NDEBUG
return add_face(halfedges, true);
#else
return add_face(halfedges, false);
#endif
}
//========================================================================================
void TopologyKernel::reorder_incident_halffaces(const EdgeHandle& _eh) {
/* Put halffaces in clockwise order via the
* same cell property which now exists.
* Note, this only works for manifold configurations though.
* Proceed as follows: Pick one starting halfface. Assuming
* that all halfface normals point into the incident cell,
* we find the adjacent halfface within the incident cell
* along the considered halfedge. We set the found halfface
* to be the one to be processed next. If we reach an outside
* region, we try to go back from the starting halfface in reverse
* order. If the complex is properly connected (the pairwise
* intersection of two adjacent 3-dimensional cells is always
* a 2-dimensional entity, namely a facet), such an ordering
* always exists and will be found. If not, a correct order
* can not be given and, as a result, the related iterators
* will address the related entities in an arbitrary fashion.
*/
for(unsigned char s = 0; s <= 1; s++) {
HalfEdgeHandle cur_he = halfedge_handle(_eh, s);
std::vector new_halffaces;
HalfFaceHandle start_hf = InvalidHalfFaceHandle;
HalfFaceHandle cur_hf = InvalidHalfFaceHandle;
// Start with one incident halfface and go
// into the first direction
assert(incident_hfs_per_he_.size() > (unsigned int)cur_he.idx());
if(incident_hfs_per_he_[cur_he.idx()].size() != 0) {
// Get start halfface
cur_hf = *incident_hfs_per_he_[cur_he.idx()].begin();
start_hf = cur_hf;
while(cur_hf != InvalidHalfFaceHandle) {
// Add halfface
new_halffaces.push_back(cur_hf);
// Go to next halfface
cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he);
if(cur_hf != InvalidHalfFaceHandle)
cur_hf = opposite_halfface_handle(cur_hf);
// End when we're through
if(cur_hf == start_hf) break;
}
// First direction has terminated
// If new_halffaces has the same size as old (unordered)
// vector of incident halffaces, we are done here
// If not, try the other way round
if(new_halffaces.size() != incident_hfs_per_he_[cur_he.idx()].size()) {
// Get opposite of start halfface
cur_hf = start_hf;
while(cur_hf != InvalidHalfFaceHandle) {
cur_hf = opposite_halfface_handle(cur_hf);
cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he);
if(cur_hf == start_hf) break;
if(cur_hf != InvalidHalfFaceHandle)
new_halffaces.insert(new_halffaces.begin(), cur_hf);
else break;
}
}
// Everything worked just fine, set the new ordered vector
if(new_halffaces.size() == incident_hfs_per_he_[cur_he.idx()].size()) {
incident_hfs_per_he_[cur_he.idx()] = new_halffaces;
}
}
}
}
//========================================================================================
/// Add cell via incident halffaces
CellHandle TopologyKernel::add_cell(const std::vector& _halffaces, bool _topologyCheck) {
#ifndef NDEBUG
// Test if halffaces have valid indices
for(std::vector::const_iterator it = _halffaces.begin(),
end = _halffaces.end(); it != end; ++it) {
if((unsigned int)it->idx() >= faces_.size() * 2u) {
std::cerr << "HalfFace handle is out of bounds!" << std::endl;
return InvalidCellHandle;
}
}
#endif
// Perform topology check
if(_topologyCheck) {
/*
* Test if all halffaces are connected and form a two-manifold
* => Cell is closed
*
* This test is simple: The number of involved half-edges has to be
* exactly twice the number of involved edges.
*/
std::set incidentHalfedges;
std::set incidentEdges;
for(std::vector::const_iterator it = _halffaces.begin(),
end = _halffaces.end(); it != end; ++it) {
OpenVolumeMeshFace hface = halfface(*it);
for(std::vector::const_iterator he_it = hface.halfedges().begin(),
he_end = hface.halfedges().end(); he_it != he_end; ++he_it) {
incidentHalfedges.insert(*he_it);
incidentEdges.insert(edge_handle(*he_it));
}
}
if(incidentHalfedges.size() != (incidentEdges.size() * 2u)) {
std::cerr << "The specified halffaces are not connected!" << std::endl;
return InvalidCellHandle;
}
// The halffaces are now guaranteed to form a two-manifold
}
// Create new cell
OpenVolumeMeshCell cell(_halffaces);
cells_.push_back(cell);
// Resize props
resize_cprops(n_cells());
CellHandle ch((int)cells_.size()-1);
// Update face bottom-up incidences
if(f_bottom_up_) {
std::set cell_edges;
for(std::vector::const_iterator it = _halffaces.begin(),
end = _halffaces.end(); it != end; ++it) {
assert(incident_cell_per_hf_.size() > (unsigned int)it->idx());
if(_topologyCheck) {
assert(incident_cell_per_hf_[it->idx()] == InvalidCellHandle);
if(incident_cell_per_hf_[it->idx()] != InvalidCellHandle) {
std::cerr << "Warning: One of the specified half-face is already incident to another cell!" << std::endl;
}
}
// Overwrite incident cell for current half-face
incident_cell_per_hf_[it->idx()] = ch;
// Collect all edges of cell
const std::vector hes = halfface(*it).halfedges();
for(std::vector::const_iterator he_it = hes.begin(),
he_end = hes.end(); he_it != he_end; ++he_it) {
cell_edges.insert(edge_handle(*he_it));
}
}
if(e_bottom_up_) {
// Try to reorder all half-faces w.r.t.
// their incident half-edges such that all
// half-faces are in cyclic order around
// a half-edge
for(std::set::const_iterator e_it = cell_edges.begin(),
e_end = cell_edges.end(); e_it != e_end; ++e_it) {
reorder_incident_halffaces(*e_it);
}
}
}
return ch;
}
//========================================================================================
/// Set the vertices of an edge
void TopologyKernel::set_edge(const EdgeHandle& _eh, const VertexHandle& _fromVertex, const VertexHandle& _toVertex) {
Edge& e = edge(_eh);
// Update bottom-up entries
if(has_vertex_bottom_up_incidences()) {
const VertexHandle& fv = e.from_vertex();
const VertexHandle& tv = e.to_vertex();
const HalfEdgeHandle heh0 = halfedge_handle(_eh, 0);
const HalfEdgeHandle heh1 = halfedge_handle(_eh, 1);
std::remove(outgoing_hes_per_vertex_[fv.idx()].begin(), outgoing_hes_per_vertex_[fv.idx()].end(), heh0);
std::remove(outgoing_hes_per_vertex_[tv.idx()].begin(), outgoing_hes_per_vertex_[tv.idx()].end(), heh1);
outgoing_hes_per_vertex_[_fromVertex.idx()].push_back(heh0);
outgoing_hes_per_vertex_[_toVertex.idx()].push_back(heh1);
}
e.set_from_vertex(_fromVertex);
e.set_to_vertex(_toVertex);
}
//========================================================================================
/// Set the half-edges of a face
void TopologyKernel::set_face(const FaceHandle& _fh, const std::vector& _hes) {
Face& f = face(_fh);
if(has_edge_bottom_up_incidences()) {
const HalfFaceHandle hf0 = halfface_handle(_fh, 0);
const HalfFaceHandle hf1 = halfface_handle(_fh, 1);
const std::vector& hes = f.halfedges();
for(std::vector::const_iterator he_it = hes.begin(),
he_end = hes.end(); he_it != he_end; ++he_it) {
std::remove(incident_hfs_per_he_[he_it->idx()].begin(),
incident_hfs_per_he_[he_it->idx()].end(), hf0);
std::remove(incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].begin(),
incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end(), hf1);
}
for(std::vector::const_iterator he_it = _hes.begin(),
he_end = _hes.end(); he_it != he_end; ++he_it) {
incident_hfs_per_he_[he_it->idx()].push_back(hf0);
incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].push_back(hf1);
}
// TODO: Reorder incident half-faces
}
f.set_halfedges(_hes);
}
//========================================================================================
/// Set the half-faces of a cell
void TopologyKernel::set_cell(const CellHandle& _ch, const std::vector& _hfs) {
Cell& c = cell(_ch);
if(has_face_bottom_up_incidences()) {
const std::vector& hfs = c.halffaces();
for(std::vector::const_iterator hf_it = hfs.begin(),
hf_end = hfs.end(); hf_it != hf_end; ++hf_it) {
incident_cell_per_hf_[*hf_it] = InvalidCellHandle;
}
for(std::vector::const_iterator hf_it = _hfs.begin(),
hf_end = _hfs.end(); hf_it != hf_end; ++hf_it) {
incident_cell_per_hf_[*hf_it] = _ch;
}
}
c.set_halffaces(_hfs);
}
//========================================================================================
/**
* \brief Delete vertex from mesh
*
* After performing this operation, all vertices
* following vertex _h in the array will be accessible
* through their old handle decreased by one.
* This function directly fixes the vertex links
* in all edges. These steps are performed:
*
* 1) Search all incident half-edges HE_v +
* Decrease all vertex handles in incident edges
* with index > v by 1
* 2) Delete entry in BU: V -> HF
* 3) Delete vertex itself (not necessary here since
* a vertex is only represented by a number)
* 4) Delete property entry
* 5) Delete incident edges
*
* @param _h A vertex handle
*/
VertexIter TopologyKernel::delete_vertex(const VertexHandle& _h) {
assert(_h.idx() < (int)n_vertices());
// 1)
std::priority_queue incident_edges;
if(v_bottom_up_) {
// Speed-up, because we know the incident edges
// Get incident edges
assert(outgoing_hes_per_vertex_.size() > (unsigned int)_h.idx());
const std::vector& inc_hes = outgoing_hes_per_vertex_[_h.idx()];
for(std::vector::const_iterator he_it = inc_hes.begin(),
he_end = inc_hes.end(); he_it != he_end; ++he_it) {
incident_edges.push(edge_handle(*he_it));
}
// Decrease all vertex handles >= _h in all edge definitions
for(int i = _h.idx(), end = n_vertices(); i < end; ++i) {
const std::vector& hes = outgoing_hes_per_vertex_[i];
for(std::vector::const_iterator he_it = hes.begin(),
he_end = hes.end(); he_it != he_end; ++he_it) {
Edge& e = edge(edge_handle(*he_it));
if(e.from_vertex().idx() == i) {
e.set_from_vertex(VertexHandle(i-1));
}
if(e.to_vertex().idx() == i) {
e.set_to_vertex(VertexHandle(i-1));
}
}
}
} else {
// Iterate over all edges
for(EdgeIter e_it = edges_begin(), e_end = edges_end();
e_it != e_end; ++e_it) {
// Get incident edges
if(edge(*e_it).from_vertex() == _h ||
edge(*e_it).to_vertex() == _h) {
incident_edges.push(*e_it);
continue;
}
// Decrease all vertex handles in edge definitions that are greater than _h
if(edge(*e_it).from_vertex() > _h) {
edge(*e_it).set_from_vertex(VertexHandle(edge(*e_it).from_vertex().idx() - 1));
}
if(edge(*e_it).to_vertex() > _h) {
edge(*e_it).set_to_vertex(VertexHandle(edge(*e_it).to_vertex().idx() - 1));
}
}
}
// 2)
if(v_bottom_up_) {
assert(outgoing_hes_per_vertex_.size() > (unsigned int)_h.idx());
outgoing_hes_per_vertex_.erase(outgoing_hes_per_vertex_.begin() + _h.idx());
}
// 3)
--n_vertices_;
// 4)
vertex_deleted(_h);
// 5)
while(!incident_edges.empty()) {
delete_edge(incident_edges.top());
incident_edges.pop();
}
// Iterator to next element in vertex list
return (vertices_begin() + _h.idx());
}
//========================================================================================
/**
* \brief Delete edge from mesh
*
* After performing this operation, all edges
* following edge _h in the array will be accessible
* through their old handle decreased by one.
* This function directly fixes the edge links
* in all faces. These steps are performed:
*
* 1) Delete links in BU: V -> HE
* 2) Search all incident faces +
* decrease all half-edge handles > he
* in all incident faces
* 3) Delete item in BU: HE -> HF
* 4) Decrease all entries > he in BU: V -> HE
* 5) Delete edge from storage array
* 6) Delete property item
* 7) Delete incident faces
*
* @param _h An edge handle
*/
EdgeIter TopologyKernel::delete_edge(const EdgeHandle& _h) {
assert(_h.idx() < (int)edges_.size());
// 1)
if(v_bottom_up_) {
VertexHandle v0 = edge(_h).from_vertex();
VertexHandle v1 = edge(_h).to_vertex();
assert(outgoing_hes_per_vertex_.size() > (unsigned int)std::max(v0.idx(), v1.idx()));
outgoing_hes_per_vertex_[v0.idx()].erase(
std::remove(outgoing_hes_per_vertex_[v0.idx()].begin(),
outgoing_hes_per_vertex_[v0.idx()].end(),
halfedge_handle(_h, 0)),
outgoing_hes_per_vertex_[v0.idx()].end());
outgoing_hes_per_vertex_[v1.idx()].erase(
std::remove(outgoing_hes_per_vertex_[v1.idx()].begin(),
outgoing_hes_per_vertex_[v1.idx()].end(),
halfedge_handle(_h, 1)),
outgoing_hes_per_vertex_[v1.idx()].end());
}
// 2)
std::priority_queue incident_faces;
if(e_bottom_up_) {
// Speed-up, because we already know all incident faces
// Get incident faces
assert(incident_hfs_per_he_.size() > (unsigned int)halfedge_handle(_h, 0).idx());
const std::vector& inc_hfs = incident_hfs_per_he_[halfedge_handle(_h, 0).idx()];
for(std::vector::const_iterator hf_it = inc_hfs.begin(),
hf_end = inc_hfs.end(); hf_it != hf_end; ++hf_it) {
incident_faces.push(face_handle(*hf_it));
}
// Decrease all half-edge handles > he and
// delete all half-edge handles == he in face definitions
// Get all faces that need updates
std::set update_faces;
for(std::vector >::const_iterator iit =
(incident_hfs_per_he_.begin() + halfedge_handle(_h, 0).idx()),
iit_end = incident_hfs_per_he_.end(); iit != iit_end; ++iit) {
for(std::vector::const_iterator it = iit->begin(),
end = iit->end(); it != end; ++it) {
update_faces.insert(face_handle(*it));
}
}
// Update respective handles
HEHandleCorrection cor(halfedge_handle(_h, 1));
for(std::set::iterator f_it = update_faces.begin(),
f_end = update_faces.end(); f_it != f_end; ++f_it) {
std::vector hes = face(*f_it).halfedges();
// Delete current half-edge from face's half-edge list
hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 0)), hes.end());
hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 1)), hes.end());
std::for_each(hes.begin(), hes.end(),
fun::bind(&HEHandleCorrection::correctValue, &cor, fun::placeholders::_1));
face(*f_it).set_halfedges(hes);
}
} else {
// Iterate over all faces
for(FaceIter f_it = faces_begin(), f_end = faces_end();
f_it != f_end; ++f_it) {
std::vector hes = face(*f_it).halfedges();
if(std::find(hes.begin(), hes.end(), halfedge_handle(_h, 0)) != hes.end() ||
std::find(hes.begin(), hes.end(), halfedge_handle(_h, 1)) != hes.end()) {
// Face is incident to current edge
incident_faces.push(*f_it);
continue;
}
// Delete current half-edge from face's half-edge list
hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 0)), hes.end());
hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 1)), hes.end());
// Decrease all half-edge handles greater than _h in face
HEHandleCorrection cor(halfedge_handle(_h, 1));
std::for_each(hes.begin(), hes.end(),
fun::bind(&HEHandleCorrection::correctValue, &cor, fun::placeholders::_1));
face(*f_it).set_halfedges(hes);
}
}
// 3)
if(e_bottom_up_) {
assert(incident_hfs_per_he_.size() > (unsigned int)halfedge_handle(_h, 1).idx());
incident_hfs_per_he_.erase(incident_hfs_per_he_.begin() + halfedge_handle(_h, 1).idx());
incident_hfs_per_he_.erase(incident_hfs_per_he_.begin() + halfedge_handle(_h, 0).idx());
}
// 4)
if(v_bottom_up_) {
HEHandleCorrection cor(halfedge_handle(_h, 1));
std::for_each(outgoing_hes_per_vertex_.begin(),
outgoing_hes_per_vertex_.end(),
fun::bind(&HEHandleCorrection::correctVecValue, &cor, fun::placeholders::_1));
}
// 5)
edges_.erase(edges_.begin() + _h.idx());
// 6)
edge_deleted(_h);
// 7)
while(!incident_faces.empty()) {
delete_face(incident_faces.top());
incident_faces.pop();
}
// Return iterator to next element in list
return (edges_begin() + _h.idx());
}
//========================================================================================
/**
* \brief Delete face from mesh
*
* After performing this operation, all faces
* following face _h in the array will be accessible
* through their old handle decreased by one.
* This function directly fixes the face links
* in all cells. These steps are performed:
*
* 1) Delete links in BU: HE -> HF
* 2) Search all incident cells +
* decrease all half-face handles > hf
* in all incident cells
* 3) Delete item in BU: HF -> C
* 4) Decrease all entries > hf in BU: HE -> HF
* 5) Delete face from storage array
* 6) Delete property item
* 7) Delete incident cells
*
* @param _h A face handle
*/
FaceIter TopologyKernel::delete_face(const FaceHandle& _h) {
assert(_h.idx() < (int)faces_.size());
// 1)
if(e_bottom_up_) {
const std::vector& hes = face(_h).halfedges();
for(std::vector::const_iterator he_it = hes.begin(),
he_end = hes.end(); he_it != he_end; ++he_it) {
assert(incident_hfs_per_he_.size() > (unsigned int)std::max(he_it->idx(), opposite_halfedge_handle(*he_it).idx()));
incident_hfs_per_he_[he_it->idx()].erase(
std::remove(incident_hfs_per_he_[he_it->idx()].begin(),
incident_hfs_per_he_[he_it->idx()].end(),
halfface_handle(_h, 0)), incident_hfs_per_he_[he_it->idx()].end());
incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].erase(
std::remove(incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].begin(),
incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end(),
halfface_handle(_h, 1)), incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end());
}
}
// 2)
std::priority_queue incident_cells;
if(f_bottom_up_) {
// Speed-up, since we already know all incident cells
// Get incident cells for deletion
assert(incident_cell_per_hf_.size() > (unsigned int)halfface_handle(_h, 1).idx());
if(incident_cell_per_hf_[halfface_handle(_h, 0).idx()].is_valid()) {
incident_cells.push(incident_cell_per_hf_[halfface_handle(_h, 0).idx()]);
}
if(incident_cell_per_hf_[halfface_handle(_h, 1).idx()].is_valid()) {
incident_cells.push(incident_cell_per_hf_[halfface_handle(_h, 1).idx()]);
}
// Decrease all half-face handles > _h in all cells
// and delete all half-face handles == _h
std::set update_cells;
for(std::vector::const_iterator c_it = (incident_cell_per_hf_.begin() + halfface_handle(_h, 0).idx()),
c_end = incident_cell_per_hf_.end(); c_it != c_end; ++c_it) {
if(!c_it->is_valid()) continue;
update_cells.insert(*c_it);
}
for(std::set::const_iterator c_it = update_cells.begin(),
c_end = update_cells.end(); c_it != c_end; ++c_it) {
std::vector hfs = cell(*c_it).halffaces();
// Delete current half-faces from cell's half-face list
hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 0)), hfs.end());
hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 1)), hfs.end());
HFHandleCorrection cor(halfface_handle(_h, 1));
std::for_each(hfs.begin(), hfs.end(),
fun::bind(&HFHandleCorrection::correctValue, &cor, fun::placeholders::_1));
cell(*c_it).set_halffaces(hfs);
}
} else {
// Iterate over all cells
for(CellIter c_it = cells_begin(), c_end = cells_end(); c_it != c_end; ++c_it) {
std::vector hfs = cell(*c_it).halffaces();
if(std::find(hfs.begin(), hfs.end(), halfface_handle(_h, 0)) != hfs.end() ||
std::find(hfs.begin(), hfs.end(), halfface_handle(_h, 1)) != hfs.end()) {
// Delete cell
incident_cells.push(*c_it);
continue;
}
// Delete current half-faces from cell's half-face list
hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 0)), hfs.end());
hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 1)), hfs.end());
HFHandleCorrection cor(halfface_handle(_h, 1));
std::for_each(hfs.begin(), hfs.end(),
fun::bind(&HFHandleCorrection::correctValue, &cor, fun::placeholders::_1));
cell(*c_it).set_halffaces(hfs);
}
}
// 3)
if(f_bottom_up_) {
assert(incident_cell_per_hf_.size() > (unsigned int)halfface_handle(_h, 1).idx());
incident_cell_per_hf_.erase(incident_cell_per_hf_.begin() + halfface_handle(_h, 1).idx());
incident_cell_per_hf_.erase(incident_cell_per_hf_.begin() + halfface_handle(_h, 0).idx());
}
// 4)
if(e_bottom_up_) {
HFHandleCorrection cor(halfface_handle(_h, 1));
std::for_each(incident_hfs_per_he_.begin(),
incident_hfs_per_he_.end(),
fun::bind(&HFHandleCorrection::correctVecValue, &cor, fun::placeholders::_1));
}
// 5)
faces_.erase(faces_.begin() + _h.idx());
// 6)
face_deleted(_h);
// 7)
while(!incident_cells.empty()) {
delete_cell(incident_cells.top());
incident_cells.pop();
}
// Return iterator to next element in list
return (faces_begin() + _h.idx());
}
//========================================================================================
/**
* \brief Delete cell from mesh
*
* After performing this operation, all cells
* following cell _h in the array will be accessible
* through their old handle decreased by one.
* These steps are performed:
*
* 1) Delete links in BU: HF -> C
* 2) Decrease all entries > c in BU: HF -> C
* 3) Delete cell from storage array
* 4) Delete property item
*
* @param _h A cell handle
*/
CellIter TopologyKernel::delete_cell(const CellHandle& _h) {
assert(_h.idx() < (int)cells_.size());
// 1)
if(f_bottom_up_) {
const std::vector& hfs = cell(_h).halffaces();
for(std::vector::const_iterator hf_it = hfs.begin(),
hf_end = hfs.end(); hf_it != hf_end; ++hf_it) {
assert(incident_cell_per_hf_.size() > (unsigned int)hf_it->idx());
incident_cell_per_hf_[hf_it->idx()] = InvalidCellHandle;
}
}
// 2)
if(f_bottom_up_) {
CHandleCorrection cor(_h);
std::for_each(incident_cell_per_hf_.begin(),
incident_cell_per_hf_.end(),
fun::bind(&CHandleCorrection::correctValue, &cor, fun::placeholders::_1));
}
// 3)
cells_.erase(cells_.begin() + _h.idx());
// 4)
cell_deleted(_h);
return (cells_begin() + _h.idx());
}
//========================================================================================
void TopologyKernel::delete_multiple_vertices(const std::vector& _tag) {
assert(_tag.size() == n_vertices_);
std::vector newIndices(n_vertices(), -1);
int curIdx = 0;
std::vector::iterator idx_it = newIndices.begin();
for(std::vector::const_iterator t_it = _tag.begin(),
t_end = _tag.end(); t_it != t_end; ++t_it, ++idx_it) {
if(!(*t_it)) {
// Not marked as deleted
*idx_it = curIdx;
++curIdx;
} else {
--n_vertices_;
}
}
// Delete properties accordingly
delete_multiple_vertex_props(_tag);
EdgeCorrector corrector(newIndices);
std::for_each(edges_.begin(), edges_.end(), corrector);
}
//========================================================================================
void TopologyKernel::delete_multiple_edges(const std::vector& _tag) {
assert(_tag.size() == n_edges());
std::vector newIndices(n_edges(), -1);
int curIdx = 0;
std::vector newEdges;
std::vector::iterator idx_it = newIndices.begin();
std::vector::const_iterator e_it = edges_.begin();
for(std::vector::const_iterator t_it = _tag.begin(),
t_end = _tag.end(); t_it != t_end; ++t_it, ++idx_it, ++e_it) {
if(!(*t_it)) {
// Not marked as deleted
newEdges.push_back(*e_it);
*idx_it = curIdx;
++curIdx;
}
}
// Swap edges
edges_.swap(newEdges);
// Delete properties accordingly
delete_multiple_edge_props(_tag);
FaceCorrector corrector(newIndices);
std::for_each(faces_.begin(), faces_.end(), corrector);
}
//========================================================================================
void TopologyKernel::delete_multiple_faces(const std::vector& _tag) {
assert(_tag.size() == n_faces());
std::vector newIndices(n_faces(), -1);
int curIdx = 0;
std::vector newFaces;
std::vector::iterator idx_it = newIndices.begin();
std::vector::const_iterator f_it = faces_.begin();
for(std::vector::const_iterator t_it = _tag.begin(),
t_end = _tag.end(); t_it != t_end; ++t_it, ++idx_it, ++f_it) {
if(!(*t_it)) {
// Not marked as deleted
newFaces.push_back(*f_it);
*idx_it = curIdx;
++curIdx;
}
}
// Swap faces
faces_.swap(newFaces);
// Delete properties accordingly
delete_multiple_face_props(_tag);
CellCorrector corrector(newIndices);
std::for_each(cells_.begin(), cells_.end(), corrector);
}
//========================================================================================
void TopologyKernel::delete_multiple_cells(const std::vector& _tag) {
assert(_tag.size() == n_cells());
std::vector newCells;
std::vector::const_iterator c_it = cells_.begin();
for(std::vector::const_iterator t_it = _tag.begin(),
t_end = _tag.end(); t_it != t_end; ++t_it, ++c_it) {
if(!(*t_it)) {
// Not marked as deleted
newCells.push_back(*c_it);
}
}
// Swap cells
cells_.swap(newCells);
// Delete properties accordingly
delete_multiple_cell_props(_tag);
}
//========================================================================================
CellIter TopologyKernel::delete_cell_range(const CellIter& _first, const CellIter& _last) {
assert(_first >= cells_begin());
assert(_last < cells_end());
std::vector::iterator it = cells_.erase(cells_.begin() + _first->idx(), cells_.begin() + _last->idx());
// Re-compute face bottom-up incidences if necessary
if(f_bottom_up_) {
f_bottom_up_ = false;
enable_face_bottom_up_incidences(true);
}
return CellIter(this, CellHandle(it - cells_.begin()));
}
//========================================================================================
/// Get edge with handle _edgeHandle
const OpenVolumeMeshEdge& TopologyKernel::edge(const EdgeHandle& _edgeHandle) const {
// Test if edge is valid
assert((unsigned int)_edgeHandle.idx() < edges_.size());
assert(_edgeHandle.idx() >= 0);
return edges_[_edgeHandle.idx()];
}
//========================================================================================
/// Get face with handle _faceHandle
const OpenVolumeMeshFace& TopologyKernel::face(const FaceHandle& _faceHandle) const {
// Test if face is valid
assert((unsigned int)_faceHandle.idx() < faces_.size());
assert(_faceHandle.idx() >= 0);
return faces_[_faceHandle.idx()];
}
//========================================================================================
/// Get cell with handle _cellHandle
const OpenVolumeMeshCell& TopologyKernel::cell(const CellHandle& _cellHandle) const {
// Test if cell is valid
assert((unsigned int)_cellHandle.idx() < cells_.size());
assert(_cellHandle.idx() >= 0);
return cells_[_cellHandle.idx()];
}
//========================================================================================
/// Get edge with handle _edgeHandle
OpenVolumeMeshEdge& TopologyKernel::edge(const EdgeHandle& _edgeHandle) {
// Test if edge is valid
assert((unsigned int)_edgeHandle.idx() < edges_.size());
assert(_edgeHandle.idx() >= 0);
return edges_[_edgeHandle.idx()];
}
//========================================================================================
/// Get face with handle _faceHandle
OpenVolumeMeshFace& TopologyKernel::face(const FaceHandle& _faceHandle) {
// Test if face is valid
assert((unsigned int)_faceHandle.idx() < faces_.size());
assert(_faceHandle.idx() >= 0);
return faces_[_faceHandle.idx()];
}
//========================================================================================
/// Get cell with handle _cellHandle
OpenVolumeMeshCell& TopologyKernel::cell(const CellHandle& _cellHandle) {
// Test if cell is valid
assert((unsigned int)_cellHandle.idx() < cells_.size());
assert(_cellHandle.idx() >= 0);
return cells_[_cellHandle.idx()];
}
//========================================================================================
/// Get edge that corresponds to halfedge with handle _halfEdgeHandle
const OpenVolumeMeshEdge TopologyKernel::halfedge(const HalfEdgeHandle& _halfEdgeHandle) const {
// Is handle in range?
assert((unsigned int)_halfEdgeHandle.idx() < (edges_.size() * 2));
assert(_halfEdgeHandle.idx() >= 0);
// In case the handle is even, just return the corresponding edge
/// Otherwise return the opposite halfedge via opposite()
if(_halfEdgeHandle.idx() % 2 == 0)
return edges_[(int)(_halfEdgeHandle.idx() / 2)];
else
return opposite_halfedge(edges_[(int)(_halfEdgeHandle.idx() / 2)]);
}
//========================================================================================
/// Get face that corresponds to halfface with handle _halfFaceHandle
const OpenVolumeMeshFace TopologyKernel::halfface(const HalfFaceHandle& _halfFaceHandle) const {
// Is handle in range?
assert((unsigned int)_halfFaceHandle.idx() < (faces_.size() * 2));
assert(_halfFaceHandle.idx() >= 0);
// In case the handle is not even, just return the corresponding face
// Otherwise return the opposite halfface via opposite()
if(_halfFaceHandle.idx() % 2 == 0)
return faces_[(int)(_halfFaceHandle.idx() / 2)];
else
return opposite_halfface(faces_[(int)(_halfFaceHandle.idx() / 2)]);
}
//========================================================================================
/// Get opposite halfedge that corresponds to halfedge with handle _halfEdgeHandle
const OpenVolumeMeshEdge TopologyKernel::opposite_halfedge(const HalfEdgeHandle& _halfEdgeHandle) const {
// Is handle in range?
assert(_halfEdgeHandle.idx() >= 0);
assert((unsigned int)_halfEdgeHandle.idx() < (edges_.size() * 2));
// In case the handle is not even, just return the corresponding edge
// Otherwise return the opposite halfedge via opposite()
if(_halfEdgeHandle.idx() % 2 != 0)
return edges_[(int)(_halfEdgeHandle.idx() / 2)];
else
return opposite_halfedge(edges_[(int)(_halfEdgeHandle.idx() / 2)]);
}
//========================================================================================
/// Get opposite halfface that corresponds to halfface with handle _halfFaceHandle
const OpenVolumeMeshFace TopologyKernel::opposite_halfface(const HalfFaceHandle& _halfFaceHandle) const {
// Is handle in range?
assert(_halfFaceHandle.idx() >= 0);
assert((unsigned int)_halfFaceHandle.idx() < (faces_.size() * 2));
// In case the handle is not even, just return the corresponding face
// Otherwise return the opposite via the first face's opposite() function
if(_halfFaceHandle.idx() % 2 != 0)
return faces_[(int)(_halfFaceHandle.idx() / 2)];
else
return opposite_halfface(faces_[(int)(_halfFaceHandle.idx() / 2)]);
}
//========================================================================================
const HalfEdgeHandle TopologyKernel::halfedge(const VertexHandle& _vh1, const VertexHandle& _vh2) const {
assert(_vh1.idx() < (int)n_vertices());
assert(_vh2.idx() < (int)n_vertices());
for(VertexOHalfEdgeIter voh_it = voh_iter(_vh1); voh_it.valid(); ++voh_it) {
if(halfedge(*voh_it).to_vertex() == _vh2) {
return *voh_it;
}
}
return InvalidHalfEdgeHandle;
}
//========================================================================================
const HalfFaceHandle TopologyKernel::halfface(const std::vector& _vs) const {
assert(_vs.size() > 2);
VertexHandle v0 = _vs[0], v1 = _vs[1], v2 = _vs[2];
assert(v0.is_valid() && v1.is_valid() && v2.is_valid());
HalfEdgeHandle he0 = halfedge(v0, v1);
if(!he0.is_valid()) return InvalidHalfFaceHandle;
HalfEdgeHandle he1 = halfedge(v1, v2);
if(!he1.is_valid()) return InvalidHalfFaceHandle;
std::vector hes;
hes.push_back(he0);
hes.push_back(he1);
return halfface(hes);
}
//========================================================================================
const HalfFaceHandle TopologyKernel::halfface(const std::vector& _hes) const {
assert(_hes.size() >= 2);
HalfEdgeHandle he0 = _hes[0], he1 = _hes[1];
assert(he0.is_valid() && he1.is_valid());
for(HalfEdgeHalfFaceIter hehf_it = hehf_iter(he0); hehf_it.valid(); ++hehf_it) {
std::vector hes = halfface(*hehf_it).halfedges();
if(std::find(hes.begin(), hes.end(), he1) != hes.end()) {
return *hehf_it;
}
}
return InvalidHalfFaceHandle;
}
//========================================================================================
const HalfEdgeHandle TopologyKernel::next_halfedge_in_halfface(const HalfEdgeHandle& _heh, const HalfFaceHandle& _hfh) const {
assert((unsigned int)_hfh.idx() < faces_.size() * 2u);
assert((unsigned int)_heh.idx() < edges_.size() * 2u);
std::vector hes = halfface(_hfh).halfedges();
for(std::vector::const_iterator it = hes.begin();
it != hes.end(); ++it) {
if(*it == _heh) {
if((it + 1) != hes.end()) return *(it + 1);
else return *hes.begin();
}
}
return InvalidHalfEdgeHandle;
}
//========================================================================================
const HalfEdgeHandle TopologyKernel::prev_halfedge_in_halfface(const HalfEdgeHandle& _heh, const HalfFaceHandle& _hfh) const {
assert((unsigned int)_hfh.idx() < faces_.size() * 2u);
assert((unsigned int)_heh.idx() < edges_.size() * 2u);
std::vector hes = halfface(_hfh).halfedges();
for(std::vector::const_iterator it = hes.begin();
it != hes.end(); ++it) {
if(*it == _heh) {
if(it != hes.begin()) return *(it - 1);
else return *(hes.end() - 1);
}
}
return InvalidHalfEdgeHandle;
}
//========================================================================================
HalfFaceHandle
TopologyKernel::adjacent_halfface_in_cell(const HalfFaceHandle& _halfFaceHandle, const HalfEdgeHandle& _halfEdgeHandle) const {
#ifndef NDEBUG
if((unsigned int)_halfFaceHandle.idx() >= incident_cell_per_hf_.size() || _halfFaceHandle.idx() < 0) {
return InvalidHalfFaceHandle;
}
#endif
if(!has_face_bottom_up_incidences()) {
std::cerr << "Error: Function adjacent_halfface_in_cell() needs face bottom-up incidences!" << std::endl;
return InvalidHalfFaceHandle;
}
if(incident_cell_per_hf_[_halfFaceHandle.idx()] == InvalidCellHandle) {
// Specified halfface is on the outside of the complex
return InvalidHalfFaceHandle;
}
OpenVolumeMeshCell c = cell(incident_cell_per_hf_[_halfFaceHandle.idx()]);
// Make sure that _halfFaceHandle is incident to _halfEdgeHandle
bool skipped = false;
bool found = false;
HalfFaceHandle idx = InvalidHalfFaceHandle;
for(std::vector::const_iterator hf_it = c.halffaces().begin();
hf_it != c.halffaces().end(); ++hf_it) {
if(*hf_it == _halfFaceHandle) {
skipped = true;
continue;
}
OpenVolumeMeshFace hf = halfface(*hf_it);
for(std::vector::const_iterator he_it = hf.halfedges().begin();
he_it != hf.halfedges().end(); ++he_it) {
if(edge_handle(*he_it) == edge_handle(_halfEdgeHandle)) {
found = true;
idx = *hf_it;
}
if(skipped && found) break;
}
if(skipped && found) break;
}
return ((skipped && found) ? idx : InvalidHalfFaceHandle);
}
//========================================================================================
CellHandle TopologyKernel::incident_cell(const HalfFaceHandle& _halfFaceHandle) const {
if(!has_face_bottom_up_incidences()) {
return InvalidCellHandle;
}
if((unsigned int)_halfFaceHandle.idx() >= incident_cell_per_hf_.size() || _halfFaceHandle.idx() < 0) {
return InvalidCellHandle;
}
return incident_cell_per_hf_[_halfFaceHandle.idx()];
}
//========================================================================================
void TopologyKernel::compute_vertex_bottom_up_incidences() {
// Clear incidences
outgoing_hes_per_vertex_.clear();
outgoing_hes_per_vertex_.resize(n_vertices());
// Store outgoing halfedges per vertex
unsigned int n_edges = edges_.size();
for(unsigned int i = 0; i < n_edges; ++i) {
VertexHandle from = edges_[i].from_vertex();
if((unsigned int)from.idx() >= outgoing_hes_per_vertex_.size()) {
std::cerr << "update_incidences(): Vertex handle is out of bounds!" << std::endl;
return;
}
outgoing_hes_per_vertex_[from.idx()].push_back(halfedge_handle(EdgeHandle(i), 0));
VertexHandle to = edges_[i].to_vertex();
if((unsigned int)to.idx() >= outgoing_hes_per_vertex_.size()) {
std::cerr << "update_incidences(): Vertex handle is out of bounds!" << std::endl;
return;
}
// Store opposite halfedge handle
outgoing_hes_per_vertex_[to.idx()].push_back(halfedge_handle(EdgeHandle(i), 1));
}
}
//========================================================================================
void TopologyKernel::compute_edge_bottom_up_incidences() {
// Clear
incident_hfs_per_he_.clear();
incident_hfs_per_he_.resize(edges_.size() * 2u);
// Store incident halffaces per halfedge
unsigned int n_faces = faces_.size();
for(unsigned int i = 0; i < n_faces; ++i) {
std::vector halfedges = faces_[i].halfedges();
// Go over all halfedges
for(std::vector::const_iterator he_it = halfedges.begin();
he_it != halfedges.end(); ++he_it) {
incident_hfs_per_he_[he_it->idx()].push_back(halfface_handle(FaceHandle(i), 0));
incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].push_back(
halfface_handle(FaceHandle(i), 1));
}
}
}
//========================================================================================
void TopologyKernel::compute_face_bottom_up_incidences() {
// Clear
incident_cell_per_hf_.clear();
incident_cell_per_hf_.resize(faces_.size() * 2u, InvalidCellHandle);
unsigned int n_cells = cells_.size();
for(unsigned int i = 0; i < n_cells; ++i) {
std::vector halffaces = cells_[i].halffaces();
// Go over all halffaces
for(std::vector::const_iterator hf_it = halffaces.begin();
hf_it != halffaces.end(); ++hf_it) {
if(incident_cell_per_hf_[hf_it->idx()] == InvalidCellHandle) {
incident_cell_per_hf_[hf_it->idx()] = CellHandle(i);
} else {
std::cerr << "Detected non-three-manifold configuration!" << std::endl;
std::cerr << "Connectivity probably won't work." << std::endl;
continue;
}
}
}
}
} // Namespace OpenVolumeMesh
| | |