/*===========================================================================*\ * * * OpenVolumeMesh * * Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen * * www.openvolumemesh.org * * * *---------------------------------------------------------------------------* * This file is part of OpenVolumeMesh. * * * * OpenVolumeMesh is free software: you can redistribute it and/or modify * * it under the terms of the GNU Lesser General Public License as * * published by the Free Software Foundation, either version 3 of * * the License, or (at your option) any later version with the * * following exceptions: * * * * If other files instantiate templates or use macros * * or inline functions from this file, or you compile this file and * * link it with other files to produce an executable, this file does * * not by itself cause the resulting executable to be covered by the * * GNU Lesser General Public License. This exception does not however * * invalidate any other reasons why the executable file might be * * covered by the GNU Lesser General Public License. * * * * OpenVolumeMesh is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU Lesser General Public License for more details. * * * * You should have received a copy of the GNU LesserGeneral Public * * License along with OpenVolumeMesh. If not, * * see . * * * \*===========================================================================*/ /*===========================================================================*\ * * * $Revision$ * * $Date$ * * $LastChangedBy$ * * * \*===========================================================================*/ #include #include #include "TopologyKernel.hh" namespace OpenVolumeMesh { // Initialize constants const VertexHandle TopologyKernel::InvalidVertexHandle = VertexHandle(-1); const EdgeHandle TopologyKernel::InvalidEdgeHandle = EdgeHandle(-1); const HalfEdgeHandle TopologyKernel::InvalidHalfEdgeHandle = HalfEdgeHandle(-1); const FaceHandle TopologyKernel::InvalidFaceHandle = FaceHandle(-1); const HalfFaceHandle TopologyKernel::InvalidHalfFaceHandle = HalfFaceHandle(-1); const CellHandle TopologyKernel::InvalidCellHandle = CellHandle(-1); TopologyKernel::TopologyKernel() : n_vertices_(0u), v_bottom_up_(true), e_bottom_up_(true), f_bottom_up_(true) { } TopologyKernel::~TopologyKernel() { } //======================================================================================== VertexHandle TopologyKernel::add_vertex() { ++n_vertices_; // Create item for vertex bottom-up adjacencies if(v_bottom_up_) { outgoing_hes_per_vertex_.resize(n_vertices_); } // Resize vertex props resize_vprops(n_vertices_); // Return 0-indexed handle return VertexHandle((int)(n_vertices_ - 1)); } //======================================================================================== /// Add edge EdgeHandle TopologyKernel::add_edge(const VertexHandle& _fromVertex, const VertexHandle& _toVertex, bool _allowDuplicates) { #ifndef NDEBUG if((unsigned int)_fromVertex.idx() >= n_vertices() || (unsigned int)_toVertex.idx() >= n_vertices()) { std::cerr << "Vertex handle is out of bounds!" << std::endl; return InvalidEdgeHandle; } #endif // Test if edge does not exist, yet if(!_allowDuplicates) { if(v_bottom_up_) { assert(outgoing_hes_per_vertex_.size() > (unsigned int)_fromVertex.idx()); std::vector& ohes = outgoing_hes_per_vertex_[_fromVertex.idx()]; for(std::vector::const_iterator he_it = ohes.begin(), he_end = ohes.end(); he_it != he_end; ++he_it) { if(halfedge(*he_it).to_vertex() == _toVertex) { return edge_handle(*he_it); } } } else { for(unsigned int i = 0; i < edges_.size(); ++i) { if(edge(EdgeHandle(i)).from_vertex() == _fromVertex && edge(EdgeHandle(i)).to_vertex() == _toVertex) { return EdgeHandle(i); } else if(edge(EdgeHandle(i)).from_vertex() == _toVertex && edge(EdgeHandle(i)).to_vertex() == _fromVertex) { return EdgeHandle(i); } } } } // Create edge object OpenVolumeMeshEdge e(_fromVertex, _toVertex); // Store edge locally edges_.push_back(e); // Resize props resize_eprops(n_edges()); EdgeHandle eh((int)edges_.size()-1); // Update vertex bottom-up adjacencies if(v_bottom_up_) { assert(outgoing_hes_per_vertex_.size() > (unsigned int)_fromVertex.idx()); assert(outgoing_hes_per_vertex_.size() > (unsigned int)_toVertex.idx()); outgoing_hes_per_vertex_[_fromVertex.idx()].push_back(halfedge_handle(eh, 0)); outgoing_hes_per_vertex_[_toVertex.idx()].push_back(halfedge_handle(eh, 1)); } // Create item for edge bottom-up adjacencies if(e_bottom_up_) { incident_hfs_per_he_.resize(n_halfedges()); } // Get handle of recently created edge return eh; } //======================================================================================== /// Add face via incident edges FaceHandle TopologyKernel::add_face(const std::vector& _halfedges, bool _topologyCheck) { #ifndef NDEBUG // Test if all edges are valid for(std::vector::const_iterator it = _halfedges.begin(), end = _halfedges.end(); it != end; ++it) { if((unsigned int)it->idx() >= edges_.size() * 2u) { std::cerr << "Halfedge handle out of bounds!" << std::endl; return InvalidFaceHandle; } } #endif // Perform topology check if(_topologyCheck) { /* * Test if halfedges are connected * * The test works as follows: * For every edge in the parameter vector * put all incident vertices into a * set of either "from"-vertices or "to"-vertices, * respectively. * If and only if all edges are connected, * then both sets are identical. */ std::set fromVertices; std::set toVertices; for(std::vector::const_iterator it = _halfedges.begin(), end = _halfedges.end(); it != end; ++it) { fromVertices.insert(halfedge(*it).from_vertex()); toVertices.insert(halfedge(*it).to_vertex()); } for(std::set::const_iterator v_it = fromVertices.begin(), v_end = fromVertices.end(); v_it != v_end; ++v_it) { if(toVertices.count(*v_it) != 1) { std::cerr << "The specified halfedges are not connected!" << std::endl; return InvalidFaceHandle; } } // The halfedges are now guaranteed to be connected } // Create face OpenVolumeMeshFace face(_halfedges); faces_.push_back(face); // Get added face's handle FaceHandle fh(faces_.size() - 1); // Resize props resize_fprops(n_faces()); // Update edge bottom-up adjacencies if(e_bottom_up_) { for(std::vector::const_iterator it = _halfedges.begin(), end = _halfedges.end(); it != end; ++it) { assert(incident_hfs_per_he_.size() > (unsigned int)it->idx()); assert(incident_hfs_per_he_.size() > (unsigned int)opposite_halfedge_handle(*it).idx()); incident_hfs_per_he_[it->idx()].push_back(halfface_handle(fh, 0)); incident_hfs_per_he_[opposite_halfedge_handle(*it).idx()].push_back(halfface_handle(fh, 1)); } } // Create item for face bottom-up adjacencies if(f_bottom_up_) { incident_cell_per_hf_.resize(n_halffaces(), InvalidCellHandle); } // Return handle of recently created face return fh; } //======================================================================================== /// Add face via incident vertices /// Define the _vertices in counter-clockwise order (from the "outside") FaceHandle TopologyKernel::add_face(const std::vector& _vertices) { #ifndef NDEBUG // Test if all vertices exist for(std::vector::const_iterator it = _vertices.begin(), end = _vertices.end(); it != end; ++it) { if((unsigned int)it->idx() >= n_vertices()) { std::cerr << "Vertex handle out of bounds!" << std::endl; return InvalidFaceHandle; } } #endif // Add edge for each pair of vertices std::vector halfedges; std::vector::const_iterator it = _vertices.begin(); std::vector::const_iterator end = _vertices.end(); for(; (it+1) != end; ++it) { EdgeHandle e_idx = add_edge(*it, *(it+1)); // Swap halfedge if edge already existed and // has been initially defined in reverse orientation int swap = 0; if(edge(e_idx).to_vertex() == *it) swap = 1; halfedges.push_back(halfedge_handle(e_idx, swap)); } EdgeHandle e_idx = add_edge(*it, *_vertices.begin()); int swap = 0; if(edge(e_idx).to_vertex() == *it) swap = 1; halfedges.push_back(halfedge_handle(e_idx, swap)); // Add face #ifndef NDEBUG return add_face(halfedges, true); #else return add_face(halfedges, false); #endif } //======================================================================================== void TopologyKernel::reorder_incident_halffaces(const EdgeHandle& _eh) { /* Put halffaces in clockwise order via the * same cell property which now exists. * Note, this only works for manifold configurations though. * Proceed as follows: Pick one starting halfface. Assuming * that all halfface normals point into the incident cell, * we find the adjacent halfface within the incident cell * along the considered halfedge. We set the found halfface * to be the one to be processed next. If we reach an outside * region, we try to go back from the starting halfface in reverse * order. If the complex is properly connected (the pairwise * intersection of two adjacent 3-dimensional cells is always * a 2-dimensional entity, namely a facet), such an ordering * always exists and will be found. If not, a correct order * can not be given and, as a result, the related iterators * will address the related entities in an arbitrary fashion. */ for(unsigned char s = 0; s <= 1; s++) { HalfEdgeHandle cur_he = halfedge_handle(_eh, s); std::vector new_halffaces; HalfFaceHandle start_hf = InvalidHalfFaceHandle; HalfFaceHandle cur_hf = InvalidHalfFaceHandle; // Start with one incident halfface and go // into the first direction assert(incident_hfs_per_he_.size() > (unsigned int)cur_he.idx()); if(incident_hfs_per_he_[cur_he.idx()].size() != 0) { // Get start halfface cur_hf = *incident_hfs_per_he_[cur_he.idx()].begin(); start_hf = cur_hf; while(cur_hf != InvalidHalfFaceHandle) { // Add halfface new_halffaces.push_back(cur_hf); // Go to next halfface cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he); if(cur_hf != InvalidHalfFaceHandle) cur_hf = opposite_halfface_handle(cur_hf); // End when we're through if(cur_hf == start_hf) break; } // First direction has terminated // If new_halffaces has the same size as old (unordered) // vector of incident halffaces, we are done here // If not, try the other way round if(new_halffaces.size() != incident_hfs_per_he_[cur_he.idx()].size()) { // Get opposite of start halfface cur_hf = start_hf; while(cur_hf != InvalidHalfFaceHandle) { cur_hf = opposite_halfface_handle(cur_hf); cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he); if(cur_hf == start_hf) break; if(cur_hf != InvalidHalfFaceHandle) new_halffaces.insert(new_halffaces.begin(), cur_hf); else break; } } // Everything worked just fine, set the new ordered vector if(new_halffaces.size() == incident_hfs_per_he_[cur_he.idx()].size()) { incident_hfs_per_he_[cur_he.idx()] = new_halffaces; } } } } //======================================================================================== /// Add cell via incident halffaces CellHandle TopologyKernel::add_cell(const std::vector& _halffaces, bool _topologyCheck) { #ifndef NDEBUG // Test if halffaces have valid indices for(std::vector::const_iterator it = _halffaces.begin(), end = _halffaces.end(); it != end; ++it) { if((unsigned int)it->idx() >= faces_.size() * 2u) { std::cerr << "HalfFace handle is out of bounds!" << std::endl; return InvalidCellHandle; } } #endif // Perform topology check if(_topologyCheck) { /* * Test if all halffaces are connected and form a two-manifold * => Cell is closed * * This test is simple: The number of involved half-edges has to be * exactly twice the number of involved edges. */ std::set incidentHalfedges; std::set incidentEdges; for(std::vector::const_iterator it = _halffaces.begin(), end = _halffaces.end(); it != end; ++it) { OpenVolumeMeshFace hface = halfface(*it); for(std::vector::const_iterator he_it = hface.halfedges().begin(), he_end = hface.halfedges().end(); he_it != he_end; ++he_it) { incidentHalfedges.insert(*he_it); incidentEdges.insert(edge_handle(*he_it)); } } if(incidentHalfedges.size() != (incidentEdges.size() * 2u)) { std::cerr << "The specified halffaces are not connected!" << std::endl; return InvalidCellHandle; } // The halffaces are now guaranteed to form a two-manifold } // Create new cell OpenVolumeMeshCell cell(_halffaces); cells_.push_back(cell); // Resize props resize_cprops(n_cells()); CellHandle ch((int)cells_.size()-1); // Update face bottom-up adjacencies if(f_bottom_up_) { std::set cell_edges; for(std::vector::const_iterator it = _halffaces.begin(), end = _halffaces.end(); it != end; ++it) { assert(incident_cell_per_hf_.size() > (unsigned int)it->idx()); if(_topologyCheck) { assert(incident_cell_per_hf_[it->idx()] == InvalidCellHandle); if(incident_cell_per_hf_[it->idx()] != InvalidCellHandle) { std::cerr << "Warning: One of the specified half-face is already incident to another cell!" << std::endl; } } // Overwrite incident cell for current half-face incident_cell_per_hf_[it->idx()] = ch; // Collect all edges of cell const std::vector hes = halfface(*it).halfedges(); for(std::vector::const_iterator he_it = hes.begin(), he_end = hes.end(); he_it != he_end; ++he_it) { cell_edges.insert(edge_handle(*he_it)); } } if(e_bottom_up_) { // Try to reorder all half-faces w.r.t. // their incident half-edges such that all // half-faces are in cyclic order around // a half-edge for(std::set::const_iterator e_it = cell_edges.begin(), e_end = cell_edges.end(); e_it != e_end; ++e_it) { reorder_incident_halffaces(*e_it); } } } return ch; } //======================================================================================== /** * \brief Delete vertex from mesh * * After performing this operation, all vertices * following vertex _h in the array will be accessible * through their old handle decreased by one. * This function directly fixes the vertex links * in all edges. These steps are performed: * * 1) Search all incident half-edges HE_v + * Decrease all vertex handles in incident edges * with index > v by 1 * 2) Delete entry in BU: V -> HF * 3) Delete vertex itself (not necessary here since * a vertex is only represented by a number) * 4) Delete property entry * 5) Delete incident edges * * @param _h A vertex handle */ VertexIter TopologyKernel::delete_vertex(const VertexHandle& _h) { assert(_h.idx() < (int)n_vertices()); // 1) std::priority_queue incident_edges; if(v_bottom_up_) { // Speed-up, because we know the incident edges // Get incident edges assert(outgoing_hes_per_vertex_.size() > (unsigned int)_h.idx()); const std::vector& inc_hes = outgoing_hes_per_vertex_[_h.idx()]; for(std::vector::const_iterator he_it = inc_hes.begin(), he_end = inc_hes.end(); he_it != he_end; ++he_it) { incident_edges.push(edge_handle(*he_it)); } // Decrease all vertex handles that are greater than _h in all edge definitions for(std::vector >::iterator he_it = (outgoing_hes_per_vertex_.begin() + _h.idx() + 1), he_end = outgoing_hes_per_vertex_.end(); he_it != he_end; ++he_it) { for(std::vector::const_iterator it = he_it->begin(), end = he_it->end(); it != end; ++it) { if(it->idx() % 2 == 0) { VertexHandle vh = edge(edge_handle(*it)).from_vertex(); if(vh.is_valid()) edge(edge_handle(*it)).set_from_vertex(VertexHandle(vh.idx() - 1)); } else { VertexHandle vh = edge(edge_handle(*it)).to_vertex(); if(vh.is_valid()) edge(edge_handle(*it)).set_to_vertex(VertexHandle(vh.idx() - 1)); } } } } else { // Iterate over all edges for(EdgeIter e_it = edges_begin(), e_end = edges_end(); e_it != e_end; ++e_it) { // Get incident edges if(edge(*e_it).from_vertex() == _h || edge(*e_it).to_vertex() == _h) { incident_edges.push(*e_it); continue; } // Decrease all vertex handles in edge definitions that are greater than _h if(edge(*e_it).from_vertex() > _h) { edge(*e_it).set_from_vertex(VertexHandle(edge(*e_it).from_vertex().idx() - 1)); } if(edge(*e_it).to_vertex() > _h) { edge(*e_it).set_to_vertex(VertexHandle(edge(*e_it).to_vertex().idx() - 1)); } } } // 2) if(v_bottom_up_) { assert(outgoing_hes_per_vertex_.size() > (unsigned int)_h.idx()); outgoing_hes_per_vertex_.erase(outgoing_hes_per_vertex_.begin() + _h.idx()); } // 3) --n_vertices_; // 4) vertex_deleted(_h); // 5) while(!incident_edges.empty()) { delete_edge(incident_edges.top()); incident_edges.pop(); } // Iterator to next element in vertex list return (vertices_begin() + _h.idx()); } //======================================================================================== /** * \brief Delete edge from mesh * * After performing this operation, all edges * following edge _h in the array will be accessible * through their old handle decreased by one. * This function directly fixes the edge links * in all faces. These steps are performed: * * 1) Delete links in BU: V -> HE * 2) Search all incident faces + * decrease all half-edge handles > he * in all incident faces * 3) Delete item in BU: HE -> HF * 4) Decrease all entries > he in BU: V -> HE * 5) Delete edge from storage array * 6) Delete property item * 7) Delete incident faces * * @param _h An edge handle */ EdgeIter TopologyKernel::delete_edge(const EdgeHandle& _h) { assert(_h.idx() < (int)edges_.size()); // 1) if(v_bottom_up_) { VertexHandle v0 = edge(_h).from_vertex(); VertexHandle v1 = edge(_h).to_vertex(); assert(outgoing_hes_per_vertex_.size() > (unsigned int)std::max(v0.idx(), v1.idx())); outgoing_hes_per_vertex_[v0.idx()].erase( std::remove(outgoing_hes_per_vertex_[v0.idx()].begin(), outgoing_hes_per_vertex_[v0.idx()].end(), halfedge_handle(_h, 0)), outgoing_hes_per_vertex_[v0.idx()].end()); outgoing_hes_per_vertex_[v1.idx()].erase( std::remove(outgoing_hes_per_vertex_[v1.idx()].begin(), outgoing_hes_per_vertex_[v1.idx()].end(), halfedge_handle(_h, 1)), outgoing_hes_per_vertex_[v1.idx()].end()); } // 2) std::priority_queue incident_faces; if(e_bottom_up_) { // Speed-up, because we already know all incident faces // Get incident faces assert(incident_hfs_per_he_.size() > (unsigned int)halfedge_handle(_h, 0).idx()); const std::vector& inc_hfs = incident_hfs_per_he_[halfedge_handle(_h, 0).idx()]; for(std::vector::const_iterator hf_it = inc_hfs.begin(), hf_end = inc_hfs.end(); hf_it != hf_end; ++hf_it) { incident_faces.push(face_handle(*hf_it)); } // Decrease all half-edge handles > he in face definitions // Get all faces that need updates std::set update_faces; for(std::vector >::const_iterator iit = (incident_hfs_per_he_.begin() + halfedge_handle(_h, 1).idx() + 1), iit_end = incident_hfs_per_he_.end(); iit != iit_end; ++iit) { for(std::vector::const_iterator it = iit->begin(), end = iit->end(); it != end; ++it) { update_faces.insert(face_handle(*it)); } } // Update respective handles HEHandleCorrection cor(halfedge_handle(_h, 1)); for(std::set::iterator f_it = update_faces.begin(), f_end = update_faces.end(); f_it != f_end; ++f_it) { std::vector hes = face(*f_it).halfedges(); // Delete current half-edge from face's half-edge list hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 0)), hes.end()); hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 1)), hes.end()); std::for_each(hes.begin(), hes.end(), fun::bind(&HEHandleCorrection::correctValue, &cor, fun::placeholders::_1)); face(*f_it).set_halfedges(hes); } } else { // Iterate over all faces for(FaceIter f_it = faces_begin(), f_end = faces_end(); f_it != f_end; ++f_it) { std::vector hes = face(*f_it).halfedges(); if(std::find(hes.begin(), hes.end(), halfedge_handle(_h, 0)) != hes.end() || std::find(hes.begin(), hes.end(), halfedge_handle(_h, 1)) != hes.end()) { // Face is incident to current edge incident_faces.push(*f_it); continue; } // Delete current half-edge from face's half-edge list hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 0)), hes.end()); hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 1)), hes.end()); // Decrease all half-edge handles greater than _h in face HEHandleCorrection cor(halfedge_handle(_h, 1)); std::for_each(hes.begin(), hes.end(), fun::bind(&HEHandleCorrection::correctValue, &cor, fun::placeholders::_1)); face(*f_it).set_halfedges(hes); } } // 3) if(e_bottom_up_) { assert(incident_hfs_per_he_.size() > (unsigned int)halfedge_handle(_h, 1).idx()); incident_hfs_per_he_.erase(incident_hfs_per_he_.begin() + halfedge_handle(_h, 1).idx()); incident_hfs_per_he_.erase(incident_hfs_per_he_.begin() + halfedge_handle(_h, 0).idx()); } // 4) if(v_bottom_up_) { HEHandleCorrection cor(halfedge_handle(_h, 1)); std::for_each(outgoing_hes_per_vertex_.begin(), outgoing_hes_per_vertex_.end(), fun::bind(&HEHandleCorrection::correctVecValue, &cor, fun::placeholders::_1)); } // 5) edges_.erase(edges_.begin() + _h.idx()); // 6) edge_deleted(_h); // 7) while(!incident_faces.empty()) { delete_face(incident_faces.top()); incident_faces.pop(); } // Return iterator to next element in list return (edges_begin() + _h.idx()); } //======================================================================================== /** * \brief Delete face from mesh * * After performing this operation, all faces * following face _h in the array will be accessible * through their old handle decreased by one. * This function directly fixes the face links * in all cells. These steps are performed: * * 1) Delete links in BU: HE -> HF * 2) Search all incident cells + * decrease all half-face handles > hf * in all incident cells * 3) Delete item in BU: HF -> C * 4) Decrease all entries > hf in BU: HE -> HF * 5) Delete face from storage array * 6) Delete property item * 7) Delete incident cells * * @param _h A face handle */ FaceIter TopologyKernel::delete_face(const FaceHandle& _h) { assert(_h.idx() < (int)faces_.size()); // 1) if(e_bottom_up_) { const std::vector& hes = face(_h).halfedges(); for(std::vector::const_iterator he_it = hes.begin(), he_end = hes.end(); he_it != he_end; ++he_it) { assert(incident_hfs_per_he_.size() > (unsigned int)std::max(he_it->idx(), opposite_halfedge_handle(*he_it).idx())); incident_hfs_per_he_[he_it->idx()].erase( std::remove(incident_hfs_per_he_[he_it->idx()].begin(), incident_hfs_per_he_[he_it->idx()].end(), halfface_handle(_h, 0)), incident_hfs_per_he_[he_it->idx()].end()); incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].erase( std::remove(incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].begin(), incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end(), halfface_handle(_h, 1)), incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end()); } } // 2) std::priority_queue incident_cells; if(f_bottom_up_) { // Speed-up, since we already know all incident cells // Get incident cells for deletion assert(incident_cell_per_hf_.size() > (unsigned int)halfface_handle(_h, 1).idx()); if(incident_cell_per_hf_[halfface_handle(_h, 0).idx()].is_valid()) { incident_cells.push(incident_cell_per_hf_[halfface_handle(_h, 0).idx()]); } if(incident_cell_per_hf_[halfface_handle(_h, 1).idx()].is_valid()) { incident_cells.push(incident_cell_per_hf_[halfface_handle(_h, 1).idx()]); } // Decrease all half-face handles > _h in all cells std::set update_cells; for(std::vector::const_iterator c_it = (incident_cell_per_hf_.begin() + halfface_handle(_h, 1).idx() + 1), c_end = incident_cell_per_hf_.end(); c_it != c_end; ++c_it) { if(!c_it->is_valid()) continue; update_cells.insert(*c_it); } for(std::set::const_iterator c_it = update_cells.begin(), c_end = update_cells.end(); c_it != c_end; ++c_it) { std::vector hfs = cell(*c_it).halffaces(); // Delete current half-faces from cell's half-face list hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 0)), hfs.end()); hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 1)), hfs.end()); HFHandleCorrection cor(halfface_handle(_h, 1)); std::for_each(hfs.begin(), hfs.end(), fun::bind(&HFHandleCorrection::correctValue, &cor, fun::placeholders::_1)); cell(*c_it).set_halffaces(hfs); } } else { // Iterate over all cells for(CellIter c_it = cells_begin(), c_end = cells_end(); c_it != c_end; ++c_it) { std::vector hfs = cell(*c_it).halffaces(); if(std::find(hfs.begin(), hfs.end(), halfface_handle(_h, 0)) != hfs.end() || std::find(hfs.begin(), hfs.end(), halfface_handle(_h, 1)) != hfs.end()) { // Delete cell incident_cells.push(*c_it); continue; } // Delete current half-faces from cell's half-face list hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 0)), hfs.end()); hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 1)), hfs.end()); HFHandleCorrection cor(halfface_handle(_h, 1)); std::for_each(hfs.begin(), hfs.end(), fun::bind(&HFHandleCorrection::correctValue, &cor, fun::placeholders::_1)); cell(*c_it).set_halffaces(hfs); } } // 3) if(f_bottom_up_) { assert(incident_cell_per_hf_.size() > (unsigned int)halfface_handle(_h, 1).idx()); incident_cell_per_hf_.erase(incident_cell_per_hf_.begin() + halfface_handle(_h, 1).idx()); incident_cell_per_hf_.erase(incident_cell_per_hf_.begin() + halfface_handle(_h, 0).idx()); } // 4) if(e_bottom_up_) { HFHandleCorrection cor(halfface_handle(_h, 1)); std::for_each(incident_hfs_per_he_.begin(), incident_hfs_per_he_.end(), fun::bind(&HFHandleCorrection::correctVecValue, &cor, fun::placeholders::_1)); } // 5) faces_.erase(faces_.begin() + _h.idx()); // 6) face_deleted(_h); // 7) while(!incident_cells.empty()) { delete_cell(incident_cells.top()); incident_cells.pop(); } // Return iterator to next element in list return (faces_begin() + _h.idx()); } //======================================================================================== /** * \brief Delete cell from mesh * * After performing this operation, all cells * following cell _h in the array will be accessible * through their old handle decreased by one. * These steps are performed: * * 1) Delete links in BU: HF -> C * 2) Decrease all entries > c in BU: HF -> C * 3) Delete cell from storage array * 4) Delete property item * * @param _h A cell handle */ CellIter TopologyKernel::delete_cell(const CellHandle& _h) { assert(_h.idx() < (int)cells_.size()); // 1) if(f_bottom_up_) { const std::vector& hfs = cell(_h).halffaces(); for(std::vector::const_iterator hf_it = hfs.begin(), hf_end = hfs.end(); hf_it != hf_end; ++hf_it) { assert(incident_cell_per_hf_.size() > (unsigned int)hf_it->idx()); incident_cell_per_hf_[hf_it->idx()] = InvalidCellHandle; } } // 2) if(f_bottom_up_) { CHandleCorrection cor(_h); std::for_each(incident_cell_per_hf_.begin(), incident_cell_per_hf_.end(), fun::bind(&CHandleCorrection::correctValue, &cor, fun::placeholders::_1)); } // 3) cells_.erase(cells_.begin() + _h.idx()); // 4) cell_deleted(_h); return (cells_begin() + _h.idx()); } //======================================================================================== CellIter TopologyKernel::delete_cell_range(const CellIter& _first, const CellIter& _last) { assert(_first >= cells_begin()); assert(_last < cells_end()); std::vector::iterator it = cells_.erase(cells_.begin() + _first->idx(), cells_.begin() + _last->idx()); // Re-compute face bottom-up adjacencies if necessary if(f_bottom_up_) { f_bottom_up_ = false; enable_face_bottom_up_adjacencies(true); } return CellIter(this, CellHandle(it - cells_.begin())); } //======================================================================================== /// Get edge with handle _edgeHandle const OpenVolumeMeshEdge& TopologyKernel::edge(const EdgeHandle& _edgeHandle) const { // Test if edge is valid assert((unsigned int)_edgeHandle.idx() < edges_.size()); assert(_edgeHandle.idx() >= 0); return edges_[_edgeHandle.idx()]; } //======================================================================================== /// Get face with handle _faceHandle const OpenVolumeMeshFace& TopologyKernel::face(const FaceHandle& _faceHandle) const { // Test if face is valid assert((unsigned int)_faceHandle.idx() < faces_.size()); assert(_faceHandle.idx() >= 0); return faces_[_faceHandle.idx()]; } //======================================================================================== /// Get cell with handle _cellHandle const OpenVolumeMeshCell& TopologyKernel::cell(const CellHandle& _cellHandle) const { // Test if cell is valid assert((unsigned int)_cellHandle.idx() < cells_.size()); assert(_cellHandle.idx() >= 0); return cells_[_cellHandle.idx()]; } //======================================================================================== /// Get edge with handle _edgeHandle OpenVolumeMeshEdge& TopologyKernel::edge(const EdgeHandle& _edgeHandle) { // Test if edge is valid assert((unsigned int)_edgeHandle.idx() < edges_.size()); assert(_edgeHandle.idx() >= 0); return edges_[_edgeHandle.idx()]; } //======================================================================================== /// Get face with handle _faceHandle OpenVolumeMeshFace& TopologyKernel::face(const FaceHandle& _faceHandle) { // Test if face is valid assert((unsigned int)_faceHandle.idx() < faces_.size()); assert(_faceHandle.idx() >= 0); return faces_[_faceHandle.idx()]; } //======================================================================================== /// Get cell with handle _cellHandle OpenVolumeMeshCell& TopologyKernel::cell(const CellHandle& _cellHandle) { // Test if cell is valid assert((unsigned int)_cellHandle.idx() < cells_.size()); assert(_cellHandle.idx() >= 0); return cells_[_cellHandle.idx()]; } //======================================================================================== /// Get edge that corresponds to halfedge with handle _halfEdgeHandle const OpenVolumeMeshEdge TopologyKernel::halfedge(const HalfEdgeHandle& _halfEdgeHandle) const { // Is handle in range? assert((unsigned int)_halfEdgeHandle.idx() < (edges_.size() * 2)); assert(_halfEdgeHandle.idx() >= 0); // In case the handle is even, just return the corresponding edge /// Otherwise return the opposite halfedge via opposite() if(_halfEdgeHandle.idx() % 2 == 0) return edges_[(int)(_halfEdgeHandle.idx() / 2)]; else return opposite_halfedge(edges_[(int)(_halfEdgeHandle.idx() / 2)]); } //======================================================================================== /// Get face that corresponds to halfface with handle _halfFaceHandle const OpenVolumeMeshFace TopologyKernel::halfface(const HalfFaceHandle& _halfFaceHandle) const { // Is handle in range? assert((unsigned int)_halfFaceHandle.idx() < (faces_.size() * 2)); assert(_halfFaceHandle.idx() >= 0); // In case the handle is not even, just return the corresponding face // Otherwise return the opposite halfface via opposite() if(_halfFaceHandle.idx() % 2 == 0) return faces_[(int)(_halfFaceHandle.idx() / 2)]; else return opposite_halfface(faces_[(int)(_halfFaceHandle.idx() / 2)]); } //======================================================================================== /// Get opposite halfedge that corresponds to halfedge with handle _halfEdgeHandle const OpenVolumeMeshEdge TopologyKernel::opposite_halfedge(const HalfEdgeHandle& _halfEdgeHandle) const { // Is handle in range? assert(_halfEdgeHandle.idx() >= 0); assert((unsigned int)_halfEdgeHandle.idx() < (edges_.size() * 2)); // In case the handle is not even, just return the corresponding edge // Otherwise return the opposite halfedge via opposite() if(_halfEdgeHandle.idx() % 2 != 0) return edges_[(int)(_halfEdgeHandle.idx() / 2)]; else return opposite_halfedge(edges_[(int)(_halfEdgeHandle.idx() / 2)]); } //======================================================================================== /// Get opposite halfface that corresponds to halfface with handle _halfFaceHandle const OpenVolumeMeshFace TopologyKernel::opposite_halfface(const HalfFaceHandle& _halfFaceHandle) const { // Is handle in range? assert(_halfFaceHandle.idx() >= 0); assert((unsigned int)_halfFaceHandle.idx() < (faces_.size() * 2)); // In case the handle is not even, just return the corresponding face // Otherwise return the opposite via the first face's opposite() function if(_halfFaceHandle.idx() % 2 != 0) return faces_[(int)(_halfFaceHandle.idx() / 2)]; else return opposite_halfface(faces_[(int)(_halfFaceHandle.idx() / 2)]); } //======================================================================================== const HalfEdgeHandle TopologyKernel::halfedge(const VertexHandle& _vh1, const VertexHandle& _vh2) const { assert(_vh1.idx() < (int)n_vertices()); assert(_vh2.idx() < (int)n_vertices()); for(VertexOHalfEdgeIter voh_it = voh_iter(_vh1); voh_it.valid(); ++voh_it) { if(halfedge(*voh_it).to_vertex() == _vh2) { return *voh_it; } } return InvalidHalfEdgeHandle; } //======================================================================================== const HalfFaceHandle TopologyKernel::halfface(const std::vector& _vs) const { assert(_vs.size() > 2); VertexHandle v0 = _vs[0], v1 = _vs[1], v2 = _vs[2]; assert(v0.is_valid() && v1.is_valid() && v2.is_valid()); HalfEdgeHandle he0 = halfedge(v0, v1); if(!he0.is_valid()) return InvalidHalfFaceHandle; HalfEdgeHandle he1 = halfedge(v1, v2); if(!he1.is_valid()) return InvalidHalfFaceHandle; std::vector hes; hes.push_back(he0); hes.push_back(he1); return halfface(hes); } //======================================================================================== const HalfFaceHandle TopologyKernel::halfface(const std::vector& _hes) const { assert(_hes.size() >= 2); HalfEdgeHandle he0 = _hes[0], he1 = _hes[1]; assert(he0.is_valid() && he1.is_valid()); for(HalfEdgeHalfFaceIter hehf_it = hehf_iter(he0); hehf_it.valid(); ++hehf_it) { std::vector hes = halfface(*hehf_it).halfedges(); if(std::find(hes.begin(), hes.end(), he1) != hes.end()) { return *hehf_it; } } return InvalidHalfFaceHandle; } //======================================================================================== const HalfEdgeHandle TopologyKernel::next_halfedge_in_halfface(const HalfEdgeHandle& _heh, const HalfFaceHandle& _hfh) const { assert((unsigned int)_hfh.idx() < faces_.size() * 2u); assert((unsigned int)_heh.idx() < edges_.size() * 2u); std::vector hes = halfface(_hfh).halfedges(); for(std::vector::const_iterator it = hes.begin(); it != hes.end(); ++it) { if(*it == _heh) { if((it + 1) != hes.end()) return *(it + 1); else return *hes.begin(); } } return InvalidHalfEdgeHandle; } //======================================================================================== const HalfEdgeHandle TopologyKernel::prev_halfedge_in_halfface(const HalfEdgeHandle& _heh, const HalfFaceHandle& _hfh) const { assert((unsigned int)_hfh.idx() < faces_.size() * 2u); assert((unsigned int)_heh.idx() < edges_.size() * 2u); std::vector hes = halfface(_hfh).halfedges(); for(std::vector::const_iterator it = hes.begin(); it != hes.end(); ++it) { if(*it == _heh) { if(it != hes.begin()) return *(it - 1); else return *(hes.end() - 1); } } return InvalidHalfEdgeHandle; } //======================================================================================== HalfFaceHandle TopologyKernel::adjacent_halfface_in_cell(const HalfFaceHandle& _halfFaceHandle, const HalfEdgeHandle& _halfEdgeHandle) const { #ifndef NDEBUG if((unsigned int)_halfFaceHandle.idx() >= incident_cell_per_hf_.size() || _halfFaceHandle.idx() < 0) { return InvalidHalfFaceHandle; } #endif if(!has_face_bottom_up_adjacencies()) { std::cerr << "Error: Function adjacent_halfface_in_cell() needs face bottom-up adjacencies!" << std::endl; return InvalidHalfFaceHandle; } if(incident_cell_per_hf_[_halfFaceHandle.idx()] == InvalidCellHandle) { // Specified halfface is on the outside of the complex return InvalidHalfFaceHandle; } OpenVolumeMeshCell c = cell(incident_cell_per_hf_[_halfFaceHandle.idx()]); // Make sure that _halfFaceHandle is incident to _halfEdgeHandle bool skipped = false; bool found = false; HalfFaceHandle idx = InvalidHalfFaceHandle; for(std::vector::const_iterator hf_it = c.halffaces().begin(); hf_it != c.halffaces().end(); ++hf_it) { if(*hf_it == _halfFaceHandle) { skipped = true; continue; } OpenVolumeMeshFace hf = halfface(*hf_it); for(std::vector::const_iterator he_it = hf.halfedges().begin(); he_it != hf.halfedges().end(); ++he_it) { if(edge_handle(*he_it) == edge_handle(_halfEdgeHandle)) { found = true; idx = *hf_it; } if(skipped && found) break; } if(skipped && found) break; } return ((skipped && found) ? idx : InvalidHalfFaceHandle); } //======================================================================================== CellHandle TopologyKernel::incident_cell(const HalfFaceHandle& _halfFaceHandle) const { if(!has_face_bottom_up_adjacencies()) { return InvalidCellHandle; } if((unsigned int)_halfFaceHandle.idx() >= incident_cell_per_hf_.size() || _halfFaceHandle.idx() < 0) { return InvalidCellHandle; } return incident_cell_per_hf_[_halfFaceHandle.idx()]; } //======================================================================================== void TopologyKernel::compute_vertex_bottom_up_adjacencies() { // Clear adjacencies outgoing_hes_per_vertex_.clear(); outgoing_hes_per_vertex_.resize(n_vertices()); // Store outgoing halfedges per vertex unsigned int n_edges = edges_.size(); for(unsigned int i = 0; i < n_edges; ++i) { VertexHandle from = edges_[i].from_vertex(); if((unsigned int)from.idx() >= outgoing_hes_per_vertex_.size()) { std::cerr << "update_adjacencies(): Vertex handle is out of bounds!" << std::endl; return; } outgoing_hes_per_vertex_[from.idx()].push_back(halfedge_handle(EdgeHandle(i), 0)); VertexHandle to = edges_[i].to_vertex(); if((unsigned int)to.idx() >= outgoing_hes_per_vertex_.size()) { std::cerr << "update_adjacencies(): Vertex handle is out of bounds!" << std::endl; return; } // Store opposite halfedge handle outgoing_hes_per_vertex_[to.idx()].push_back(halfedge_handle(EdgeHandle(i), 1)); } } //======================================================================================== void TopologyKernel::compute_edge_bottom_up_adjacencies() { // Clear incident_hfs_per_he_.clear(); incident_hfs_per_he_.resize(edges_.size() * 2u); // Store incident halffaces per halfedge unsigned int n_faces = faces_.size(); for(unsigned int i = 0; i < n_faces; ++i) { std::vector halfedges = faces_[i].halfedges(); // Go over all halfedges for(std::vector::const_iterator he_it = halfedges.begin(); he_it != halfedges.end(); ++he_it) { incident_hfs_per_he_[he_it->idx()].push_back(halfface_handle(FaceHandle(i), 0)); incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].push_back( halfface_handle(FaceHandle(i), 1)); } } } //======================================================================================== void TopologyKernel::compute_face_bottom_up_adjacencies() { // Clear incident_cell_per_hf_.clear(); incident_cell_per_hf_.resize(faces_.size() * 2u, InvalidCellHandle); unsigned int n_cells = cells_.size(); for(unsigned int i = 0; i < n_cells; ++i) { std::vector halffaces = cells_[i].halffaces(); // Go over all halffaces for(std::vector::const_iterator hf_it = halffaces.begin(); hf_it != halffaces.end(); ++hf_it) { if(incident_cell_per_hf_[hf_it->idx()] == InvalidCellHandle) { incident_cell_per_hf_[hf_it->idx()] = CellHandle(i); } else { std::cerr << "Detected non-three-manifold configuration!" << std::endl; std::cerr << "Connectivity probably won't work." << std::endl; continue; } } } } } // Namespace OpenVolumeMesh