HexahedralMeshTopologyKernel.hh 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*===========================================================================*\
 *                                                                           *
 *                            OpenVolumeMesh                                 *
 *        Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen         *
 *                        www.openvolumemesh.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenVolumeMesh.                                     *
 *                                                                           *
 *  OpenVolumeMesh is free software: you can redistribute it and/or modify   *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenVolumeMesh is distributed in the hope that it will be useful,        *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenVolumeMesh.  If not,                              *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
 *   $Revision$                                                         *
 *   $Date$                    *
 *   $LastChangedBy$                                                *
 *                                                                           *
\*===========================================================================*/

#ifndef HEXAHEDRALMESHTOPOLOGYKERNEL_HH
#define HEXAHEDRALMESHTOPOLOGYKERNEL_HH

#include <set>

48
#include "../Core/TopologyKernel.hh"
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#include "HexahedralMeshIterators.hh"

namespace OpenVolumeMesh {

/**
 * \class HexahedralMeshTopologyKernel A data structure basing on PolyhedralMesh with specializations for hexahedra.
 *
 * The hexahedron has an induced "virtual" coordinate system. This supposes
 * the incident half-faces to be given in a specific order.
 * See the following figure for an illustration of the induced
 * coordinate system.
 *
 * \image html induced_coordsys.png
 *
 * The abbreviations XF, XB, etc. are short for
 *
 * \li \c XF: X-axis front face
 * \li \c XB: X-axis back face
 * \li \c YF: Y-axis front face
 * \li \c ...
 *
 * The axes refer to the intrinsic "virtual" axes of the hexahedron.
 * The incident half-faces have to be defined in the following order:
 *
 * \li \c 1. XF
 * \li \c 2. XB
 * \li \c 3. YF
 * \li \c 4. YB
 * \li \c 5. ZF
 * \li \c 6. ZB
 */

81
class HexahedralMeshTopologyKernel : public TopologyKernel {
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
public:

    // Orientation constants
    static const unsigned char XF = 0;
    static const unsigned char XB = 1;
    static const unsigned char YF = 2;
    static const unsigned char YB = 3;
    static const unsigned char ZF = 4;
    static const unsigned char ZB = 5;
    static const unsigned char INVALID = 6;

    static inline unsigned char opposite_orientation(const unsigned char _d) {
        return (_d % 2 == 0 ? _d + 1 : _d - 1);
    }

    // Constructor
    HexahedralMeshTopologyKernel();

    // Destructor
    ~HexahedralMeshTopologyKernel();

    // Overridden function
    virtual FaceHandle add_face(const std::vector<HalfEdgeHandle>& _halfedges, bool _topologyCheck = true);

    // Overridden function
    virtual FaceHandle add_face(const std::vector<VertexHandle>& _vertices);

    /// Overridden function
    virtual CellHandle add_cell(const std::vector<HalfFaceHandle>& _halffaces, bool _topologyCheck = true,
            bool _reorderFaces = false);

    // ======================= Specialized Iterators =============================

115 116 117
    friend class CellSheetCellIter;
    friend class HalfFaceSheetHalfFaceIter;
    friend class OutsideNeighborHalfFaceIter;
118

119 120 121
    typedef class CellSheetCellIter CellSheetCellIter;
    typedef class HalfFaceSheetHalfFaceIter HalfFaceSheetHalfFaceIter;
    typedef class OutsideNeighborHalfFaceIter OutsideNeighborHalfFaceIter;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    CellSheetCellIter csc_iter(const CellHandle& _ref_h, const unsigned char _orthDir) const {
        return CellSheetCellIter(_ref_h, _orthDir, this);
    }

    HalfFaceSheetHalfFaceIter hfshf_iter(const HalfFaceHandle& _ref_h) const {
        return HalfFaceSheetHalfFaceIter(_ref_h, this);
    }

    OutsideNeighborHalfFaceIter onhf_iter(const HalfFaceHandle& _ref_h) const {
        return OutsideNeighborHalfFaceIter(_ref_h, this);
    }

    // ======================= Connectivity functions =============================

    inline HalfFaceHandle opposite_halfface_handle_in_cell(const HalfFaceHandle& _hfh, const CellHandle& _ch) {

139
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
140 141 142 143 144 145 146 147

        if(orientation(_hfh, _ch) == XF) return xback_halfface(_ch);
        if(orientation(_hfh, _ch) == XB) return xfront_halfface(_ch);
        if(orientation(_hfh, _ch) == YF) return yback_halfface(_ch);
        if(orientation(_hfh, _ch) == YB) return yfront_halfface(_ch);
        if(orientation(_hfh, _ch) == ZF) return zback_halfface(_ch);
        if(orientation(_hfh, _ch) == ZB) return zfront_halfface(_ch);

148
        return TopologyKernel::InvalidHalfFaceHandle;
149 150 151 152
    }

    inline HalfFaceHandle xfront_halfface(const CellHandle& _ch) const {

153
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
154

155
        return TopologyKernel::cell(_ch).halffaces()[XF];
156 157 158 159
    }

    inline HalfFaceHandle xback_halfface(const CellHandle& _ch) const {

160
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
161

162
        return TopologyKernel::cell(_ch).halffaces()[XB];
163 164 165 166
    }

    inline HalfFaceHandle yfront_halfface(const CellHandle& _ch) const {

167
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
168

169
        return TopologyKernel::cell(_ch).halffaces()[YF];
170 171 172 173
    }

    inline HalfFaceHandle yback_halfface(const CellHandle& _ch) const {

174
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
175

176
        return TopologyKernel::cell(_ch).halffaces()[YB];
177 178 179 180
    }

    inline HalfFaceHandle zfront_halfface(const CellHandle& _ch) const {

181
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
182

183
        return TopologyKernel::cell(_ch).halffaces()[ZF];
184 185 186 187
    }

    inline HalfFaceHandle zback_halfface(const CellHandle& _ch) const {

188
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
189

190
        return TopologyKernel::cell(_ch).halffaces()[ZB];
191 192 193 194
    }

    unsigned char orientation(const HalfFaceHandle& _hfh, const CellHandle& _ch) const {

195
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
196

197
        std::vector<HalfFaceHandle> halffaces = TopologyKernel::cell(_ch).halffaces();
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        for(unsigned int i = 0; i < halffaces.size(); ++i) {
            if(halffaces[i] == _hfh) return (unsigned char)i;
        }

        return INVALID;
    }

    static inline unsigned char orthogonal_orientation(const unsigned char _o1, const unsigned char _o2) {

        if(_o1 == XF && _o2 == YF) return ZF;
        if(_o1 == XF && _o2 == YB) return ZB;
        if(_o1 == XF && _o2 == ZF) return YB;
        if(_o1 == XF && _o2 == ZB) return YF;
        if(_o1 == XB && _o2 == YF) return ZB;
        if(_o1 == XB && _o2 == YB) return ZF;
        if(_o1 == XB && _o2 == ZF) return YF;
        if(_o1 == XB && _o2 == ZB) return YB;

        if(_o1 == YF && _o2 == XF) return ZB;
        if(_o1 == YF && _o2 == XB) return ZF;
        if(_o1 == YF && _o2 == ZF) return XF;
        if(_o1 == YF && _o2 == ZB) return XB;
        if(_o1 == YB && _o2 == XF) return ZF;
        if(_o1 == YB && _o2 == XB) return ZB;
        if(_o1 == YB && _o2 == ZF) return XB;
        if(_o1 == YB && _o2 == ZB) return XF;

        if(_o1 == ZF && _o2 == YF) return XB;
        if(_o1 == ZF && _o2 == YB) return XF;
        if(_o1 == ZF && _o2 == XF) return YF;
        if(_o1 == ZF && _o2 == XB) return YB;
        if(_o1 == ZB && _o2 == YF) return XF;
        if(_o1 == ZB && _o2 == YB) return XB;
        if(_o1 == ZB && _o2 == XF) return YB;
        if(_o1 == ZB && _o2 == XB) return YF;

        return INVALID;

    }

    inline HalfFaceHandle get_oriented_halfface(const unsigned char _o, const CellHandle& _ch) const {

        if(_o == XF) return xfront_halfface(_ch);
        if(_o == XB) return xback_halfface(_ch);
        if(_o == YF) return yfront_halfface(_ch);
        if(_o == YB) return yback_halfface(_ch);
        if(_o == ZF) return zfront_halfface(_ch);
        if(_o == ZB) return zback_halfface(_ch);
246
        return TopologyKernel::InvalidHalfFaceHandle;
247 248 249 250
    }

    HalfFaceHandle adjacent_halfface_on_sheet(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

251
        if(!TopologyKernel::has_bottom_up_adjacencies()) {
252
            std::cerr << "No bottom-up adjacencies computed so far, could not get adjacent halfface on sheet!" << std::endl;
253
            return TopologyKernel::InvalidHalfFaceHandle;
254 255 256 257 258 259 260
        }

        HalfFaceHandle n_hf = _hfh;
        HalfEdgeHandle n_he = _heh;

        // Try the 1st way
        while(true) {
261 262 263 264 265 266 267 268
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, n_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            n_hf = TopologyKernel::opposite_halfface_handle(n_hf);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            HalfEdgeHandle o_he = TopologyKernel::opposite_halfedge_handle(n_he);
            if(o_he == TopologyKernel::InvalidHalfEdgeHandle) break;
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, o_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
269 270 271
            else return n_hf;
        }

272 273
        n_hf = TopologyKernel::opposite_halfface_handle(_hfh);
        n_he = TopologyKernel::opposite_halfedge_handle(_heh);
274 275 276

        // Try the 2nd way
        while(true) {
277 278 279 280 281 282 283 284 285
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, n_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            n_hf = TopologyKernel::opposite_halfface_handle(n_hf);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            HalfEdgeHandle o_he = TopologyKernel::opposite_halfedge_handle(n_he);
            if(o_he == TopologyKernel::InvalidHalfEdgeHandle) break;
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, o_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            else return TopologyKernel::opposite_halfface_handle(n_hf);
286 287
        }

288
        return TopologyKernel::InvalidHalfFaceHandle;
289 290 291 292
    }

    HalfFaceHandle adjacent_halfface_on_surface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

293
        for(OpenVolumeMesh::HalfEdgeHalfFaceIter hehf_it = TopologyKernel::hehf_iter(_heh);
294 295
                hehf_it.valid(); ++hehf_it) {
            if(*hehf_it == _hfh) continue;
296
            if(TopologyKernel::is_boundary(*hehf_it)) {
297 298
                return *hehf_it;
            }
299 300
            if(TopologyKernel::is_boundary(TopologyKernel::opposite_halfface_handle(*hehf_it))) {
                return TopologyKernel::opposite_halfface_handle(*hehf_it);
301 302
            }
        }
303
        return TopologyKernel::InvalidHalfFaceHandle;
304 305 306 307
    }

    HalfFaceHandle neighboring_outside_halfface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

308
        if(!TopologyKernel::has_bottom_up_adjacencies()) {
309
            std::cerr << "No bottom-up adjacencies computed so far, could not get neighboring outside halfface!" << std::endl;
310
            return TopologyKernel::InvalidHalfFaceHandle;
311 312
        }

313
        for(OpenVolumeMesh::HalfEdgeHalfFaceIter hehf_it = TopologyKernel::hehf_iter(_heh);
314 315
                hehf_it; ++hehf_it) {
            if(*hehf_it == _hfh) continue;
316 317 318
            if(TopologyKernel::is_boundary(*hehf_it)) return *hehf_it;
            if(TopologyKernel::is_boundary(TopologyKernel::opposite_halfface_handle(*hehf_it)))
                return TopologyKernel::opposite_halfface_handle(*hehf_it);
319 320
        }

321
        return TopologyKernel::InvalidHalfFaceHandle;
322 323 324 325 326 327 328 329 330 331 332 333
    }

private:

    const HalfFaceHandle& get_adjacent_halfface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh,
            const std::vector<HalfFaceHandle>& _halffaces) const;

};

} // Namespace OpenVolumeMesh

#endif /* HEXAHEDRALMESHTOPOLOGYKERNEL_HH */