TopologyKernel.cc 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
/*===========================================================================*\
 *                                                                           *
 *                            OpenVolumeMesh                                 *
 *        Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen         *
 *                        www.openvolumemesh.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenVolumeMesh.                                     *
 *                                                                           *
 *  OpenVolumeMesh is free software: you can redistribute it and/or modify   *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenVolumeMesh is distributed in the hope that it will be useful,        *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenVolumeMesh.  If not,                              *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
 *   $Revision$                                                         *
 *   $Date$                    *
 *   $LastChangedBy$                                                *
 *                                                                           *
\*===========================================================================*/

#include "TopologyKernel.hh"

namespace OpenVolumeMesh {

// Initialize constants
const VertexHandle      TopologyKernel::InvalidVertexHandle   = VertexHandle(-1);
const EdgeHandle        TopologyKernel::InvalidEdgeHandle     = EdgeHandle(-1);
const HalfEdgeHandle    TopologyKernel::InvalidHalfEdgeHandle = HalfEdgeHandle(-1);
const FaceHandle        TopologyKernel::InvalidFaceHandle     = FaceHandle(-1);
const HalfFaceHandle    TopologyKernel::InvalidHalfFaceHandle = HalfFaceHandle(-1);
const CellHandle        TopologyKernel::InvalidCellHandle     = CellHandle(-1);

TopologyKernel::TopologyKernel() :
    n_vertices_(0u),
    has_vertex_adjacencies_(false),
    has_edge_adjacencies_(false),
    has_face_adjacencies_(false) {

}

TopologyKernel::~TopologyKernel() {
}

//========================================================================================

/// Add edge
EdgeHandle TopologyKernel::add_edge(const VertexHandle& _fromVertex,
                                    const VertexHandle& _toVertex) {

    if((unsigned int)_fromVertex >= n_vertices() || (unsigned int)_toVertex >= n_vertices()) {
        std::cerr << "Vertex handle is out of bounds!" << std::endl;
        return InvalidEdgeHandle;
    }

    // Test if edge does not exist, yet
    for(unsigned int i = 0; i < edges_.size(); ++i) {
        if(edge(EdgeHandle(i)).from_vertex() == _fromVertex && edge(EdgeHandle(i)).to_vertex() == _toVertex) {
            return EdgeHandle(i);
        } else if(edge(EdgeHandle(i)).from_vertex() == _toVertex && edge(EdgeHandle(i)).to_vertex() == _fromVertex) {
            return EdgeHandle(i);
        }
    }

    // Create edge object
    OpenVolumeMeshEdge e(_fromVertex, _toVertex);

    // Store edge locally
    edges_.push_back(e);

    // Resize props
    resize_eprops(n_edges());

    // Get handle of recently created edge
    return EdgeHandle((int)edges_.size()-1);
}

//========================================================================================

/// Add face via incident edges
FaceHandle TopologyKernel::add_face(const std::vector<HalfEdgeHandle>& _halfedges, bool _topologyCheck) {

    // Test if all edges are valid
    for(std::vector<HalfEdgeHandle>::const_iterator it = _halfedges.begin();
            it != _halfedges.end(); ++it) {
        if((unsigned int)*it >= edges_.size() * 2u) {
            std::cerr << "Halfedge handle out of bounds!" << std::endl;
            return InvalidFaceHandle;
        }
    }

    // Perform topology check
    if(_topologyCheck) {

        /*
         * Test if halfedges are connected
         *
         * The test works as follows:
         * For every edge in the parameter vector
         * put all incident vertices into a
         * set of either "from"-vertices or "to"-vertices,
         * respectively.
         * If and only if all edges are connected,
         * then both sets are identical.
         */

        std::set<VertexHandle> fromVertices;
        std::set<VertexHandle> toVertices;

        for(std::vector<HalfEdgeHandle>::const_iterator it = _halfedges.begin();
                it != _halfedges.end(); ++it) {

            fromVertices.insert(halfedge(*it).from_vertex());
            toVertices.insert(halfedge(*it).to_vertex());
        }

        for(std::set<VertexHandle>::const_iterator v_it = fromVertices.begin();
                v_it != fromVertices.end(); ++v_it) {
            if(toVertices.count(*v_it) != 1) {
                std::cerr << "The specified halfedges are not connected!" << std::endl;
                return InvalidFaceHandle;
            }
        }

        // The halfedges are now guaranteed to be connected
    }

    // Create face
    OpenVolumeMeshFace face(_halfedges);

    faces_.push_back(face);

    // Get added face's handle
    FaceHandle fh(faces_.size() - 1);

    // Resize props
    resize_fprops(n_faces());

    // Return handle of recently created face
    return fh;
}

//========================================================================================

/// Add face via incident vertices
/// Define the _vertices in counter-clockwise order (from the "outside")
FaceHandle TopologyKernel::add_face(const std::vector<VertexHandle>& _vertices) {

    // Test if all vertices exist
    for(std::vector<VertexHandle>::const_iterator it = _vertices.begin();
            it != _vertices.end(); ++it) {
        if((unsigned int)*it >= n_vertices()) {
            std::cerr << "Vertex handle out of bounds!" << std::endl;
            return InvalidFaceHandle;
        }
    }

    // Add edge for each pair of vertices
    std::vector<HalfEdgeHandle> halfedges;
    std::vector<VertexHandle>::const_iterator it = _vertices.begin();
    for(; (it+1) != _vertices.end(); ++it) {
        EdgeHandle e_idx = add_edge(*it, *(it+1));

        // Swap halfedge if edge already existed and
        // has been initially defined in reverse orientation
        int swap = 0;
        if(edge(e_idx).to_vertex() == *it) swap = 1;

        halfedges.push_back(halfedge_handle(e_idx, swap));
    }
    EdgeHandle e_idx = add_edge(*it, *_vertices.begin());
    int swap = 0;
    if(edge(e_idx).to_vertex() == *it) swap = 1;
    halfedges.push_back(halfedge_handle(e_idx, swap));

    // Add face
#ifndef NDEBUG
    return add_face(halfedges, true);
#else
    return add_face(halfedges, false);
#endif
}

//========================================================================================

/// Add cell via incident halffaces
CellHandle TopologyKernel::add_cell(const std::vector<HalfFaceHandle>& _halffaces, bool _topologyCheck) {

    // Test if halffaces have valid indices
    for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin();
            it != _halffaces.end(); ++it) {
        if((unsigned int)*it >= faces_.size() * 2u) {
            std::cerr << "HalfFace handle is out of bounds!" << std::endl;
            return InvalidCellHandle;
        }
    }

    // Perform topology check
    if(_topologyCheck) {

        /*
         * Test if all halffaces are connected and form a two-manifold
         * => Cell is closed
         *
         * This test is simple: The number of involved half-edges has to be
         * exactly twice the number of involved edges.
         */

        std::set<HalfEdgeHandle> incidentHalfedges;
        std::set<EdgeHandle>     incidentEdges;

        for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin();
                it != _halffaces.end(); ++it) {

            OpenVolumeMeshFace hface = halfface(*it);
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = hface.halfedges().begin();
                    he_it != hface.halfedges().end(); ++he_it) {
                incidentHalfedges.insert(*he_it);
                incidentEdges.insert(edge_handle(*he_it));
            }
        }

        if(incidentHalfedges.size() != (incidentEdges.size() * 2u)) {
            std::cerr << "The specified halffaces are not connected!" << std::endl;
            return InvalidCellHandle;
        }

        // The halffaces are now guaranteed to form a two-manifold
    }

    // Create new cell
    OpenVolumeMeshCell cell(_halffaces);

    cells_.push_back(cell);

    // Resize props
    resize_cprops(n_cells());

    return CellHandle((int)cells_.size()-1);
}

//========================================================================================

/// Get edge with handle _edgeHandle
const OpenVolumeMeshEdge& TopologyKernel::edge(const EdgeHandle& _edgeHandle) const {

    // Test if edge is valid
    assert((unsigned int)_edgeHandle < edges_.size());
    assert(_edgeHandle >= 0);

    return edges_[_edgeHandle];
}

//========================================================================================

/// Get face with handle _faceHandle
const OpenVolumeMeshFace& TopologyKernel::face(const FaceHandle& _faceHandle) const {

    // Test if face is valid
    assert((unsigned int)_faceHandle < faces_.size());
    assert(_faceHandle >= 0);

    return faces_[_faceHandle];
}

//========================================================================================

/// Get cell with handle _cellHandle
const OpenVolumeMeshCell& TopologyKernel::cell(const CellHandle& _cellHandle) const {

    // Test if cell is valid
    assert((unsigned int)_cellHandle < cells_.size());
    assert(_cellHandle >= 0);

    return cells_[_cellHandle];
}

//========================================================================================

/// Get edge with handle _edgeHandle
OpenVolumeMeshEdge& TopologyKernel::edge(const EdgeHandle& _edgeHandle) {

    // Test if edge is valid
    assert((unsigned int)_edgeHandle < edges_.size());
    assert(_edgeHandle >= 0);

    return edges_[_edgeHandle];
}

//========================================================================================

/// Get face with handle _faceHandle
OpenVolumeMeshFace& TopologyKernel::face(const FaceHandle& _faceHandle) {

    // Test if face is valid
    assert((unsigned int)_faceHandle < faces_.size());
    assert(_faceHandle >= 0);

    return faces_[_faceHandle];
}

//========================================================================================

/// Get cell with handle _cellHandle
OpenVolumeMeshCell& TopologyKernel::cell(const CellHandle& _cellHandle) {

    // Test if cell is valid
    assert((unsigned int)_cellHandle < cells_.size());
    assert(_cellHandle >= 0);

    return cells_[_cellHandle];
}

//========================================================================================

/// Get edge that corresponds to halfedge with handle _halfEdgeHandle
const OpenVolumeMeshEdge TopologyKernel::halfedge(const HalfEdgeHandle& _halfEdgeHandle) const {

    // Is handle in range?
    assert((unsigned int)_halfEdgeHandle < (edges_.size() * 2));
    assert(_halfEdgeHandle >= 0);

    // In case the handle is even, just return the corresponding edge
    /// Otherwise return the opposite halfedge via opposite()
    if(_halfEdgeHandle % 2 == 0)
        return edges_[(int)(_halfEdgeHandle / 2)];
    else
        return opposite_halfedge(edges_[(int)(_halfEdgeHandle / 2)]);
}

//========================================================================================

/// Get face that corresponds to halfface with handle _halfFaceHandle
const OpenVolumeMeshFace TopologyKernel::halfface(const HalfFaceHandle& _halfFaceHandle) const {

    // Is handle in range?
    assert((unsigned int)_halfFaceHandle < (faces_.size() * 2));
    assert(_halfFaceHandle >= 0);

    // In case the handle is not even, just return the corresponding face
    // Otherwise return the opposite halfface via opposite()
    if(_halfFaceHandle % 2 == 0)
        return faces_[(int)(_halfFaceHandle / 2)];
    else
        return opposite_halfface(faces_[(int)(_halfFaceHandle / 2)]);
}

//========================================================================================

/// Get opposite halfedge that corresponds to halfedge with handle _halfEdgeHandle
const OpenVolumeMeshEdge TopologyKernel::opposite_halfedge(const HalfEdgeHandle& _halfEdgeHandle) const {

    // Is handle in range?
    assert(_halfEdgeHandle >= 0);
    assert((unsigned int)_halfEdgeHandle < (edges_.size() * 2));

    // In case the handle is not even, just return the corresponding edge
    // Otherwise return the opposite halfedge via opposite()
    if(_halfEdgeHandle % 2 != 0)
        return edges_[(int)(_halfEdgeHandle / 2)];
    else
        return opposite_halfedge(edges_[(int)(_halfEdgeHandle / 2)]);
}

//========================================================================================

/// Get opposite halfface that corresponds to halfface with handle _halfFaceHandle
const OpenVolumeMeshFace TopologyKernel::opposite_halfface(const HalfFaceHandle& _halfFaceHandle) const {

    // Is handle in range?
    assert(_halfFaceHandle >= 0);
    assert((unsigned int)_halfFaceHandle < (faces_.size() * 2));

    // In case the handle is not even, just return the corresponding face
    // Otherwise return the opposite via the first face's opposite() function
    if(_halfFaceHandle % 2 != 0)
        return faces_[(int)(_halfFaceHandle / 2)];
    else
        return opposite_halfface(faces_[(int)(_halfFaceHandle / 2)]);
}

//========================================================================================

const HalfEdgeHandle TopologyKernel::halfedge(const VertexHandle& _vh1, const VertexHandle& _vh2) const {

    assert(_vh1.idx() < (int)n_vertices());
    assert(_vh2.idx() < (int)n_vertices());

    for(VertexOHalfEdgeIter voh_it = voh_iter(_vh1); voh_it.valid(); ++voh_it) {
        if(halfedge(*voh_it).to_vertex() == _vh2) {
            return *voh_it;
        }
    }

    return InvalidHalfEdgeHandle;
}

//========================================================================================

const HalfEdgeHandle TopologyKernel::next_halfedge_in_halfface(const HalfEdgeHandle& _heh, const HalfFaceHandle& _hfh) const {

    assert((unsigned int)_hfh < faces_.size() * 2u);
    assert((unsigned int)_heh < edges_.size() * 2u);

    std::vector<HalfEdgeHandle> hes = halfface(_hfh).halfedges();

428
    for(std::vector<HalfEdgeHandle>::const_iterator it = hes.begin();
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            it != hes.end(); ++it) {
        if(*it == _heh) {
            if((it + 1) != hes.end()) return *(it + 1);
            else return *hes.begin();
        }
    }

    return InvalidHalfEdgeHandle;
}

//========================================================================================

const HalfEdgeHandle TopologyKernel::prev_halfedge_in_halfface(const HalfEdgeHandle& _heh, const HalfFaceHandle& _hfh) const {

    assert((unsigned int)_hfh < faces_.size() * 2u);
    assert((unsigned int)_heh < edges_.size() * 2u);

    std::vector<HalfEdgeHandle> hes = halfface(_hfh).halfedges();

448
    for(std::vector<HalfEdgeHandle>::const_iterator it = hes.begin();
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            it != hes.end(); ++it) {
        if(*it == _heh) {
            if(it != hes.begin()) return *(it - 1);
            else return *(hes.end() - 1);
        }
    }

    return InvalidHalfEdgeHandle;
}

//========================================================================================

void TopologyKernel::update_adjacencies() {

    update_vertex_adjacencies();

    update_edge_adjacencies();

    update_face_adjacencies();
}

//========================================================================================

void TopologyKernel::update_vertex_adjacencies() {

    // Clear adjacencies
    outgoing_hes_per_vertex_.clear();
    outgoing_hes_per_vertex_.resize(n_vertices());

    // Store outgoing halfedges per vertex
Mike Kremer's avatar
Mike Kremer committed
479 480
    unsigned int n_vertices = edges_.size();
    for(unsigned int i = 0; i < n_vertices; ++i) {
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

        VertexHandle from = edges_[i].from_vertex();
        if((unsigned int)from >= outgoing_hes_per_vertex_.size()) {
            std::cerr << "update_adjacencies(): Vertex handle is out of bounds!" << std::endl;
            return;
        }
        outgoing_hes_per_vertex_[from].push_back(halfedge_handle(EdgeHandle(i), 0));

        VertexHandle to = edges_[i].to_vertex();
        if((unsigned int)to >= outgoing_hes_per_vertex_.size()) {
            std::cerr << "update_adjacencies(): Vertex handle is out of bounds!" << std::endl;
            return;
        }
        // Store opposite halfedge handle
        outgoing_hes_per_vertex_[to].push_back(halfedge_handle(EdgeHandle(i), 1));
    }

    has_vertex_adjacencies_ = true;
}

//========================================================================================

void TopologyKernel::update_edge_adjacencies() {

    // Clear
    incident_hfs_per_he_.clear();
    incident_hfs_per_he_.resize(edges_.size() * 2u);

    // Store incident halffaces per halfedge
Mike Kremer's avatar
Mike Kremer committed
510 511
    unsigned int n_faces = faces_.size();
    for(unsigned int i = 0; i < n_faces; ++i) {
512 513 514 515

        std::vector<HalfEdgeHandle> halfedges = faces_[i].halfedges();

        // Go over all halfedges
516
        for(std::vector<HalfEdgeHandle>::const_iterator he_it = halfedges.begin();
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
                he_it != halfedges.end(); ++he_it) {

            incident_hfs_per_he_[*he_it].push_back(halfface_handle(FaceHandle(i), 0));
            incident_hfs_per_he_[opposite_halfedge_handle(*he_it)].push_back(
                    halfface_handle(FaceHandle(i), 1));
        }
    }

    has_edge_adjacencies_ = true;
}

//========================================================================================

void TopologyKernel::update_face_adjacencies() {

    // Clear
    incident_cell_per_hf_.clear();
    incident_cell_per_hf_.resize(faces_.size() * 2u, InvalidCellHandle);

Mike Kremer's avatar
Mike Kremer committed
536 537
    unsigned int n_cells = cells_.size();
    for(unsigned int i = 0; i < n_cells; ++i) {
538 539 540 541

        std::vector<HalfFaceHandle> halffaces = cells_[i].halffaces();

        // Go over all halffaces
542
        for(std::vector<HalfFaceHandle>::const_iterator hf_it = halffaces.begin();
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
                hf_it != halffaces.end(); ++hf_it) {

            if(incident_cell_per_hf_[*hf_it] == InvalidCellHandle) {

                incident_cell_per_hf_[*hf_it] = CellHandle(i);

            } else {
                std::cerr << "Detected non-three-manifold configuration!" << std::endl;
                std::cerr << "Connectivity probably won't work." << std::endl;
                continue;
            }
        }
    }

    /* Put halffaces in clockwise order via the
     * same cell property which now exists.
     * Note, this only works for manifold configurations though.
     * Proceed as follows: Pick one starting halfface. Assuming
     * that all halfface normals point into the incident cell,
     * we find the adjacent halfface within the incident cell
     * along the considered halfedge. We set the found halfface
     * to be the one to be processed next. If we reach an outside
     * region, we try to go back from the starting halfface in reverse
     * order. If the complex is properly connected (the pairwise
     * intersection of two adjacent 3-dimensional cells is always
     * a 2-dimensional entity, namely a facet), such an ordering
     * always exists and will be found. If not, a correct order
     * can not be given and, as a result, the related iterators
     * will address the related entities in an arbitrary fashion.
     */

Mike Kremer's avatar
Mike Kremer committed
574 575
    unsigned int n_edges = edges_.size();
    for(unsigned int i = 0; i < n_edges; ++i) {
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

        for(unsigned char s = 0; s <= 1; s++) {

            HalfEdgeHandle cur_he = halfedge_handle(i, s);
            std::vector<HalfFaceHandle> new_halffaces;
            HalfFaceHandle start_hf = InvalidHalfFaceHandle;
            HalfFaceHandle cur_hf = InvalidHalfFaceHandle;

            // Start with one incident halfface and go
            // into the first direction
            if(incident_hfs_per_he_[cur_he].size() != 0) {

                // Get start halfface
                cur_hf = *incident_hfs_per_he_[cur_he].begin();
                start_hf = cur_hf;

                while(cur_hf != InvalidHalfFaceHandle) {

                    // Add halfface
                    new_halffaces.push_back(cur_hf);

                    // Go to next halfface
                    cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he);

                    if(cur_hf != InvalidHalfFaceHandle)
                        cur_hf = opposite_halfface_handle(cur_hf);

                    // End when we're through
                    if(cur_hf == start_hf) break;
                }

                // First direction has terminated
                // If new_halffaces has the same size as old (unordered)
                // vector of incident halffaces, we are done here
                // If not, try the other way round
                if(new_halffaces.size() != incident_hfs_per_he_[cur_he].size()) {

                    // Get opposite of start halfface
                    cur_hf = start_hf;

                     while(cur_hf != InvalidHalfFaceHandle) {

                         cur_hf = opposite_halfface_handle(cur_hf);
                         cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he);

                         if(cur_hf == start_hf) break;

                         if(cur_hf != InvalidHalfFaceHandle)
                             new_halffaces.insert(new_halffaces.begin(), cur_hf);
                         else break;
                    }
                }

                // Everything worked just fine, set the new ordered vector
                if(new_halffaces.size() == incident_hfs_per_he_[cur_he].size()) {
                    incident_hfs_per_he_[cur_he] = new_halffaces;
                }
            }
        }
    }

    // Compute boundary faces

    // Clear
    boundary_faces_.clear();

    // Get boundary faces
Mike Kremer's avatar
Mike Kremer committed
643 644
    unsigned int n_faces = faces_.size();
    for(unsigned int i = 0; i < n_faces; ++i) {
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

        if(incident_cell_per_hf_[halfface_handle(FaceHandle(i), 0)] == InvalidCellHandle ||
           incident_cell_per_hf_[halfface_handle(FaceHandle(i), 1)] == InvalidCellHandle) {

            // If at least one of two halffaces does not have an
            // incident cell it is a boundary face
            boundary_faces_.push_back(FaceHandle(i));
        }
    }

    has_face_adjacencies_ = true;
}

//========================================================================================

HalfFaceHandle
TopologyKernel::adjacent_halfface_in_cell(const HalfFaceHandle& _halfFaceHandle, const HalfEdgeHandle& _halfEdgeHandle) const {

    if((unsigned int)_halfFaceHandle >= incident_cell_per_hf_.size() || _halfFaceHandle < 0) {
        return InvalidHalfFaceHandle;
    }
    if(incident_cell_per_hf_[_halfFaceHandle] == InvalidCellHandle) {
        // Specified halfface is on the outside of the complex
        return InvalidHalfFaceHandle;
    }

    OpenVolumeMeshCell c = cell(incident_cell_per_hf_[_halfFaceHandle]);

    // Make sure that _halfFaceHandle is incident to _halfEdgeHandle
    bool skipped = false;
    bool found = false;
    HalfFaceHandle idx = InvalidHalfFaceHandle;
677
    for(std::vector<HalfFaceHandle>::const_iterator hf_it = c.halffaces().begin();
678 679 680 681 682 683 684 685
            hf_it != c.halffaces().end(); ++hf_it) {

        if(*hf_it == _halfFaceHandle) {
            skipped = true;
            continue;
        }

        OpenVolumeMeshFace hf = halfface(*hf_it);
686
        for(std::vector<HalfEdgeHandle>::const_iterator he_it = hf.halfedges().begin();
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            he_it != hf.halfedges().end(); ++he_it) {

            if(edge_handle(*he_it) == edge_handle(_halfEdgeHandle)) {
                found = true;
                idx = *hf_it;
            }
            if(skipped && found) break;
        }
        if(skipped && found) break;
    }
    return ((skipped && found) ? idx : InvalidHalfFaceHandle);
}

//========================================================================================

CellHandle TopologyKernel::incident_cell(const HalfFaceHandle& _halfFaceHandle) const {

Mike Kremer's avatar
Mike Kremer committed
704
    if((unsigned int)_halfFaceHandle >= incident_cell_per_hf_.size() || _halfFaceHandle.idx() < 0) {
705 706 707 708 709 710 711
        return InvalidCellHandle;
    }

    return incident_cell_per_hf_[_halfFaceHandle];
}

} // Namespace OpenVolumeMesh