TopologyKernel.cc 59.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*===========================================================================*\
 *                                                                           *
 *                            OpenVolumeMesh                                 *
 *        Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen         *
 *                        www.openvolumemesh.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenVolumeMesh.                                     *
 *                                                                           *
 *  OpenVolumeMesh is free software: you can redistribute it and/or modify   *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenVolumeMesh is distributed in the hope that it will be useful,        *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenVolumeMesh.  If not,                              *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
 *   $Revision$                                                         *
 *   $Date$                    *
 *   $LastChangedBy$                                                *
 *                                                                           *
\*===========================================================================*/

43
#include <OpenVolumeMesh/System/FunctionalInclude.hh>
44 45
#include <queue>

46 47 48 49 50 51 52 53 54 55 56 57 58
#include "TopologyKernel.hh"

namespace OpenVolumeMesh {

// Initialize constants
const VertexHandle      TopologyKernel::InvalidVertexHandle   = VertexHandle(-1);
const EdgeHandle        TopologyKernel::InvalidEdgeHandle     = EdgeHandle(-1);
const HalfEdgeHandle    TopologyKernel::InvalidHalfEdgeHandle = HalfEdgeHandle(-1);
const FaceHandle        TopologyKernel::InvalidFaceHandle     = FaceHandle(-1);
const HalfFaceHandle    TopologyKernel::InvalidHalfFaceHandle = HalfFaceHandle(-1);
const CellHandle        TopologyKernel::InvalidCellHandle     = CellHandle(-1);

TopologyKernel::TopologyKernel() :
59
    n_vertices_(0u),
60 61
    v_bottom_up_(true),
    e_bottom_up_(true),
62
    f_bottom_up_(true) {
63 64 65 66 67 68 69 70

}

TopologyKernel::~TopologyKernel() {
}

//========================================================================================

71 72 73 74
VertexHandle TopologyKernel::add_vertex() {

    ++n_vertices_;

75
    // Create item for vertex bottom-up incidences
76 77 78 79 80 81 82 83 84 85 86 87 88
    if(v_bottom_up_) {
        outgoing_hes_per_vertex_.resize(n_vertices_);
    }

    // Resize vertex props
    resize_vprops(n_vertices_);

    // Return 0-indexed handle
    return VertexHandle((int)(n_vertices_ - 1));
}

//========================================================================================

89 90
/// Add edge
EdgeHandle TopologyKernel::add_edge(const VertexHandle& _fromVertex,
91 92
                                    const VertexHandle& _toVertex,
                                    bool _allowDuplicates) {
93

94
#ifndef NDEBUG
95
    if((unsigned int)_fromVertex.idx() >= n_vertices() || (unsigned int)_toVertex.idx() >= n_vertices()) {
96 97 98
        std::cerr << "Vertex handle is out of bounds!" << std::endl;
        return InvalidEdgeHandle;
    }
99
#endif
100 101

    // Test if edge does not exist, yet
102
    if(!_allowDuplicates) {
Mike Kremer's avatar
Mike Kremer committed
103 104 105 106 107 108 109 110 111 112 113
        if(v_bottom_up_) {

            assert(outgoing_hes_per_vertex_.size() > (unsigned int)_fromVertex.idx());
            std::vector<HalfEdgeHandle>& ohes = outgoing_hes_per_vertex_[_fromVertex.idx()];
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = ohes.begin(),
                    he_end = ohes.end(); he_it != he_end; ++he_it) {
                if(halfedge(*he_it).to_vertex() == _toVertex) {
                    return edge_handle(*he_it);
                }
            }
        } else {
114
            for(unsigned int i = 0; i < edges_.size(); ++i) {
Mike Kremer's avatar
Mike Kremer committed
115 116 117 118 119
                if(edge(EdgeHandle(i)).from_vertex() == _fromVertex && edge(EdgeHandle(i)).to_vertex() == _toVertex) {
                    return EdgeHandle(i);
                } else if(edge(EdgeHandle(i)).from_vertex() == _toVertex && edge(EdgeHandle(i)).to_vertex() == _fromVertex) {
                    return EdgeHandle(i);
                }
120
            }
121 122 123 124 125 126 127 128 129 130 131 132
        }
    }

    // Create edge object
    OpenVolumeMeshEdge e(_fromVertex, _toVertex);

    // Store edge locally
    edges_.push_back(e);

    // Resize props
    resize_eprops(n_edges());

133
    EdgeHandle eh((int)edges_.size()-1);
134

135
    // Update vertex bottom-up incidences
136 137 138
    if(v_bottom_up_) {
        assert(outgoing_hes_per_vertex_.size() > (unsigned int)_fromVertex.idx());
        assert(outgoing_hes_per_vertex_.size() > (unsigned int)_toVertex.idx());
139 140
        outgoing_hes_per_vertex_[_fromVertex.idx()].push_back(halfedge_handle(eh, 0));
        outgoing_hes_per_vertex_[_toVertex.idx()].push_back(halfedge_handle(eh, 1));
141 142
    }

143
    // Create item for edge bottom-up incidences
144 145 146 147
    if(e_bottom_up_) {
        incident_hfs_per_he_.resize(n_halfedges());
    }

148
    // Get handle of recently created edge
149
    return eh;
150 151 152 153 154 155 156
}

//========================================================================================

/// Add face via incident edges
FaceHandle TopologyKernel::add_face(const std::vector<HalfEdgeHandle>& _halfedges, bool _topologyCheck) {

157
#ifndef NDEBUG
158
    // Test if all edges are valid
159 160
    for(std::vector<HalfEdgeHandle>::const_iterator it = _halfedges.begin(),
            end = _halfedges.end(); it != end; ++it) {
161
        if((unsigned int)it->idx() >= edges_.size() * 2u) {
162 163 164 165
            std::cerr << "Halfedge handle out of bounds!" << std::endl;
            return InvalidFaceHandle;
        }
    }
166
#endif
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

    // Perform topology check
    if(_topologyCheck) {

        /*
         * Test if halfedges are connected
         *
         * The test works as follows:
         * For every edge in the parameter vector
         * put all incident vertices into a
         * set of either "from"-vertices or "to"-vertices,
         * respectively.
         * If and only if all edges are connected,
         * then both sets are identical.
         */

        std::set<VertexHandle> fromVertices;
        std::set<VertexHandle> toVertices;

186 187
        for(std::vector<HalfEdgeHandle>::const_iterator it = _halfedges.begin(),
            end = _halfedges.end(); it != end; ++it) {
188 189 190 191 192

            fromVertices.insert(halfedge(*it).from_vertex());
            toVertices.insert(halfedge(*it).to_vertex());
        }

193 194
        for(std::set<VertexHandle>::const_iterator v_it = fromVertices.begin(),
                v_end = fromVertices.end(); v_it != v_end; ++v_it) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
            if(toVertices.count(*v_it) != 1) {
                std::cerr << "The specified halfedges are not connected!" << std::endl;
                return InvalidFaceHandle;
            }
        }

        // The halfedges are now guaranteed to be connected
    }

    // Create face
    OpenVolumeMeshFace face(_halfedges);

    faces_.push_back(face);

    // Get added face's handle
210
    FaceHandle fh(faces_.size() - 1);
211 212 213 214

    // Resize props
    resize_fprops(n_faces());

215
    // Update edge bottom-up incidences
216 217 218 219 220 221
    if(e_bottom_up_) {

        for(std::vector<HalfEdgeHandle>::const_iterator it = _halfedges.begin(),
            end = _halfedges.end(); it != end; ++it) {
            assert(incident_hfs_per_he_.size() > (unsigned int)it->idx());
            assert(incident_hfs_per_he_.size() > (unsigned int)opposite_halfedge_handle(*it).idx());
222 223
            incident_hfs_per_he_[it->idx()].push_back(halfface_handle(fh, 0));
            incident_hfs_per_he_[opposite_halfedge_handle(*it).idx()].push_back(halfface_handle(fh, 1));
224 225 226
        }
    }

227
    // Create item for face bottom-up incidences
228 229 230 231
    if(f_bottom_up_) {
        incident_cell_per_hf_.resize(n_halffaces(), InvalidCellHandle);
    }

232 233 234 235 236 237 238 239 240 241
    // Return handle of recently created face
    return fh;
}

//========================================================================================

/// Add face via incident vertices
/// Define the _vertices in counter-clockwise order (from the "outside")
FaceHandle TopologyKernel::add_face(const std::vector<VertexHandle>& _vertices) {

242
#ifndef NDEBUG
243
    // Test if all vertices exist
244 245
    for(std::vector<VertexHandle>::const_iterator it = _vertices.begin(),
            end = _vertices.end(); it != end; ++it) {
246
        if((unsigned int)it->idx() >= n_vertices()) {
247 248 249 250
            std::cerr << "Vertex handle out of bounds!" << std::endl;
            return InvalidFaceHandle;
        }
    }
251
#endif
252 253 254 255

    // Add edge for each pair of vertices
    std::vector<HalfEdgeHandle> halfedges;
    std::vector<VertexHandle>::const_iterator it = _vertices.begin();
256 257
    std::vector<VertexHandle>::const_iterator end = _vertices.end();
    for(; (it+1) != end; ++it) {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        EdgeHandle e_idx = add_edge(*it, *(it+1));

        // Swap halfedge if edge already existed and
        // has been initially defined in reverse orientation
        int swap = 0;
        if(edge(e_idx).to_vertex() == *it) swap = 1;

        halfedges.push_back(halfedge_handle(e_idx, swap));
    }
    EdgeHandle e_idx = add_edge(*it, *_vertices.begin());
    int swap = 0;
    if(edge(e_idx).to_vertex() == *it) swap = 1;
    halfedges.push_back(halfedge_handle(e_idx, swap));

    // Add face
#ifndef NDEBUG
    return add_face(halfedges, true);
#else
    return add_face(halfedges, false);
#endif
}

//========================================================================================

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
void TopologyKernel::reorder_incident_halffaces(const EdgeHandle& _eh) {

    /* Put halffaces in clockwise order via the
     * same cell property which now exists.
     * Note, this only works for manifold configurations though.
     * Proceed as follows: Pick one starting halfface. Assuming
     * that all halfface normals point into the incident cell,
     * we find the adjacent halfface within the incident cell
     * along the considered halfedge. We set the found halfface
     * to be the one to be processed next. If we reach an outside
     * region, we try to go back from the starting halfface in reverse
     * order. If the complex is properly connected (the pairwise
     * intersection of two adjacent 3-dimensional cells is always
     * a 2-dimensional entity, namely a facet), such an ordering
     * always exists and will be found. If not, a correct order
     * can not be given and, as a result, the related iterators
     * will address the related entities in an arbitrary fashion.
     */

    for(unsigned char s = 0; s <= 1; s++) {

        HalfEdgeHandle cur_he = halfedge_handle(_eh, s);
        std::vector<HalfFaceHandle> new_halffaces;
        HalfFaceHandle start_hf = InvalidHalfFaceHandle;
        HalfFaceHandle cur_hf = InvalidHalfFaceHandle;

        // Start with one incident halfface and go
        // into the first direction
        assert(incident_hfs_per_he_.size() > (unsigned int)cur_he.idx());

312
        if(incident_hfs_per_he_[cur_he.idx()].size() != 0) {
313 314

            // Get start halfface
315
            cur_hf = *incident_hfs_per_he_[cur_he.idx()].begin();
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
            start_hf = cur_hf;

            while(cur_hf != InvalidHalfFaceHandle) {

                // Add halfface
                new_halffaces.push_back(cur_hf);

                // Go to next halfface
                cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he);

                if(cur_hf != InvalidHalfFaceHandle)
                    cur_hf = opposite_halfface_handle(cur_hf);

                // End when we're through
                if(cur_hf == start_hf) break;
            }

            // First direction has terminated
            // If new_halffaces has the same size as old (unordered)
            // vector of incident halffaces, we are done here
            // If not, try the other way round
337
            if(new_halffaces.size() != incident_hfs_per_he_[cur_he.idx()].size()) {
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

                // Get opposite of start halfface
                cur_hf = start_hf;

                 while(cur_hf != InvalidHalfFaceHandle) {

                     cur_hf = opposite_halfface_handle(cur_hf);
                     cur_hf = adjacent_halfface_in_cell(cur_hf, cur_he);

                     if(cur_hf == start_hf) break;

                     if(cur_hf != InvalidHalfFaceHandle)
                         new_halffaces.insert(new_halffaces.begin(), cur_hf);
                     else break;
                }
            }

            // Everything worked just fine, set the new ordered vector
356 357
            if(new_halffaces.size() == incident_hfs_per_he_[cur_he.idx()].size()) {
                incident_hfs_per_he_[cur_he.idx()] = new_halffaces;
358 359 360 361 362 363 364
            }
        }
    }
}

//========================================================================================

365 366 367
/// Add cell via incident halffaces
CellHandle TopologyKernel::add_cell(const std::vector<HalfFaceHandle>& _halffaces, bool _topologyCheck) {

368
#ifndef NDEBUG
369
    // Test if halffaces have valid indices
370 371
    for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin(),
            end = _halffaces.end(); it != end; ++it) {
372
        if((unsigned int)it->idx() >= faces_.size() * 2u) {
373 374 375 376
            std::cerr << "HalfFace handle is out of bounds!" << std::endl;
            return InvalidCellHandle;
        }
    }
377
#endif
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

    // Perform topology check
    if(_topologyCheck) {

        /*
         * Test if all halffaces are connected and form a two-manifold
         * => Cell is closed
         *
         * This test is simple: The number of involved half-edges has to be
         * exactly twice the number of involved edges.
         */

        std::set<HalfEdgeHandle> incidentHalfedges;
        std::set<EdgeHandle>     incidentEdges;

393 394
        for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin(),
                end = _halffaces.end(); it != end; ++it) {
395 396

            OpenVolumeMeshFace hface = halfface(*it);
397 398
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = hface.halfedges().begin(),
                    he_end = hface.halfedges().end(); he_it != he_end; ++he_it) {
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
                incidentHalfedges.insert(*he_it);
                incidentEdges.insert(edge_handle(*he_it));
            }
        }

        if(incidentHalfedges.size() != (incidentEdges.size() * 2u)) {
            std::cerr << "The specified halffaces are not connected!" << std::endl;
            return InvalidCellHandle;
        }

        // The halffaces are now guaranteed to form a two-manifold
    }

    // Create new cell
    OpenVolumeMeshCell cell(_halffaces);

    cells_.push_back(cell);

    // Resize props
    resize_cprops(n_cells());

420
    CellHandle ch((int)cells_.size()-1);
421

422
    // Update face bottom-up incidences
423 424 425 426 427 428
    if(f_bottom_up_) {

        std::set<EdgeHandle> cell_edges;
        for(std::vector<HalfFaceHandle>::const_iterator it = _halffaces.begin(),
                end = _halffaces.end(); it != end; ++it) {
            assert(incident_cell_per_hf_.size() > (unsigned int)it->idx());
429 430 431

            if(_topologyCheck) {
                if(incident_cell_per_hf_[it->idx()] != InvalidCellHandle) {
432
                    std::cerr << "Warning: One of the specified half-faces is already incident to another cell!" << std::endl;
433 434 435 436
                }
            }

            // Overwrite incident cell for current half-face
437
            incident_cell_per_hf_[it->idx()] = ch;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

            // Collect all edges of cell
            const std::vector<HalfEdgeHandle> hes = halfface(*it).halfedges();
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                    he_end = hes.end(); he_it != he_end; ++he_it) {
                cell_edges.insert(edge_handle(*he_it));
            }
        }

        if(e_bottom_up_) {

            // Try to reorder all half-faces w.r.t.
            // their incident half-edges such that all
            // half-faces are in cyclic order around
            // a half-edge
            for(std::set<EdgeHandle>::const_iterator e_it = cell_edges.begin(),
                    e_end = cell_edges.end(); e_it != e_end; ++e_it) {
                reorder_incident_halffaces(*e_it);
            }
        }
    }

    return ch;
}

//========================================================================================

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
/// Set the vertices of an edge
void TopologyKernel::set_edge(const EdgeHandle& _eh, const VertexHandle& _fromVertex, const VertexHandle& _toVertex) {

    Edge& e = edge(_eh);

    // Update bottom-up entries
    if(has_vertex_bottom_up_incidences()) {

        const VertexHandle& fv = e.from_vertex();
        const VertexHandle& tv = e.to_vertex();

        const HalfEdgeHandle heh0 = halfedge_handle(_eh, 0);
        const HalfEdgeHandle heh1 = halfedge_handle(_eh, 1);

        std::remove(outgoing_hes_per_vertex_[fv.idx()].begin(), outgoing_hes_per_vertex_[fv.idx()].end(), heh0);
        std::remove(outgoing_hes_per_vertex_[tv.idx()].begin(), outgoing_hes_per_vertex_[tv.idx()].end(), heh1);

        outgoing_hes_per_vertex_[_fromVertex.idx()].push_back(heh0);
        outgoing_hes_per_vertex_[_toVertex.idx()].push_back(heh1);
    }

    e.set_from_vertex(_fromVertex);
    e.set_to_vertex(_toVertex);
}

//========================================================================================

/// Set the half-edges of a face
void TopologyKernel::set_face(const FaceHandle& _fh, const std::vector<HalfEdgeHandle>& _hes) {

    Face& f = face(_fh);

    if(has_edge_bottom_up_incidences()) {

        const HalfFaceHandle hf0 = halfface_handle(_fh, 0);
        const HalfFaceHandle hf1 = halfface_handle(_fh, 1);

        const std::vector<HalfEdgeHandle>& hes = f.halfedges();

        for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                he_end = hes.end(); he_it != he_end; ++he_it) {

            std::remove(incident_hfs_per_he_[he_it->idx()].begin(),
                        incident_hfs_per_he_[he_it->idx()].end(), hf0);
            std::remove(incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].begin(),
                        incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end(), hf1);
        }

        for(std::vector<HalfEdgeHandle>::const_iterator he_it = _hes.begin(),
                he_end = _hes.end(); he_it != he_end; ++he_it) {

            incident_hfs_per_he_[he_it->idx()].push_back(hf0);
            incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].push_back(hf1);
        }

        // TODO: Reorder incident half-faces
    }

    f.set_halfedges(_hes);
}

//========================================================================================

/// Set the half-faces of a cell
void TopologyKernel::set_cell(const CellHandle& _ch, const std::vector<HalfFaceHandle>& _hfs) {

    Cell& c = cell(_ch);

    if(has_face_bottom_up_incidences()) {

        const std::vector<HalfFaceHandle>& hfs = c.halffaces();
        for(std::vector<HalfFaceHandle>::const_iterator hf_it = hfs.begin(),
                hf_end = hfs.end(); hf_it != hf_end; ++hf_it) {

            incident_cell_per_hf_[*hf_it] = InvalidCellHandle;
        }

        for(std::vector<HalfFaceHandle>::const_iterator hf_it = _hfs.begin(),
                hf_end = _hfs.end(); hf_it != hf_end; ++hf_it) {

            incident_cell_per_hf_[*hf_it] = _ch;
        }
    }

    c.set_halffaces(_hfs);
}

//========================================================================================

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/**
 * \brief Delete vertex from mesh
 *
 * Get al incident higher-dimensional entities and delete the complete
 * subtree of the mesh incident to vertex _h.
 * In this function all incident entities are gathered
 * and deleted using the delete_*_core functions
 * that do the actual deletion including the update
 * of the bottom-up incidences, etc.
 *
 * @param _h The handle to the vertex to be deleted
 */
VertexIter TopologyKernel::delete_vertex(const VertexHandle& _h) {

    std::vector<VertexHandle> vs;
    vs.push_back(_h);

    std::set<EdgeHandle> incidentEdges_s;
    get_incident_edges(vs, incidentEdges_s);

    std::set<FaceHandle> incidentFaces_s;
    get_incident_faces(incidentEdges_s, incidentFaces_s);

    std::set<CellHandle> incidentCells_s;
    get_incident_cells(incidentFaces_s, incidentCells_s);

    // Delete cells
    for(std::set<CellHandle>::const_reverse_iterator c_it = incidentCells_s.rbegin(),
            c_end = incidentCells_s.rend(); c_it != c_end; ++c_it) {
        delete_cell_core(*c_it);
    }

    // Delete faces
    for(std::set<FaceHandle>::const_reverse_iterator f_it = incidentFaces_s.rbegin(),
            f_end = incidentFaces_s.rend(); f_it != f_end; ++f_it) {
        delete_face_core(*f_it);
    }

    // Delete edges
    for(std::set<EdgeHandle>::const_reverse_iterator e_it = incidentEdges_s.rbegin(),
            e_end = incidentEdges_s.rend(); e_it != e_end; ++e_it) {
        delete_edge_core(*e_it);
    }

    // Delete vertex
    return delete_vertex_core(_h);
}

//========================================================================================

/**
 * \brief Delete edge from mesh
 *
 * Get al incident higher-dimensional entities and delete the complete
 * subtree of the mesh incident to edge _h.
 * In this function all incident entities are gathered
 * and deleted using the delete_*_core functions
 * that do the actual deletion including the update
 * of the bottom-up incidences, etc.
 *
 * @param _h The handle to the edge to be deleted
 */
EdgeIter TopologyKernel::delete_edge(const EdgeHandle& _h) {

    std::vector<EdgeHandle> es;
    es.push_back(_h);

    std::set<FaceHandle> incidentFaces_s;
    get_incident_faces(es, incidentFaces_s);

    std::set<CellHandle> incidentCells_s;
    get_incident_cells(incidentFaces_s, incidentCells_s);

    // Delete cells
    for(std::set<CellHandle>::const_reverse_iterator c_it = incidentCells_s.rbegin(),
            c_end = incidentCells_s.rend(); c_it != c_end; ++c_it) {
        delete_cell_core(*c_it);
    }

    // Delete faces
    for(std::set<FaceHandle>::const_reverse_iterator f_it = incidentFaces_s.rbegin(),
            f_end = incidentFaces_s.rend(); f_it != f_end; ++f_it) {
        delete_face_core(*f_it);
    }

    // Delete edge
    return delete_edge_core(_h);
}

//========================================================================================

/**
 * \brief Delete face from mesh
 *
 * Get al incident higher-dimensional entities and delete the complete
 * subtree of the mesh incident to face _h.
 * In this function all incident entities are gathered
 * and deleted using the delete_*_core functions
 * that do the actual deletion including the update
 * of the bottom-up incidences, etc.
 *
 * @param _h The handle to the face to be deleted
 */
FaceIter TopologyKernel::delete_face(const FaceHandle& _h) {

    std::vector<FaceHandle> fs;
    fs.push_back(_h);

    std::set<CellHandle> incidentCells_s;
    get_incident_cells(fs, incidentCells_s);

    // Delete cells
    for(std::set<CellHandle>::const_reverse_iterator c_it = incidentCells_s.rbegin(),
            c_end = incidentCells_s.rend(); c_it != c_end; ++c_it) {
        delete_cell_core(*c_it);
    }

    // Delete face
    return delete_face_core(_h);
}

//========================================================================================

/**
 * \brief Delete cell from mesh
 *
 * Since there's no higher dimensional incident
 * entity to a cell, we can safely delete it from the
 * mesh.
 *
 * @param _h The handle to the cell to be deleted
 */
CellIter TopologyKernel::delete_cell(const CellHandle& _h) {

    return delete_cell_core(_h);
}

//========================================================================================

template <class ContainerT>
void TopologyKernel::get_incident_edges(const ContainerT& _vs,
                                        std::set<EdgeHandle>& _es) const {

    _es.clear();

    if(v_bottom_up_) {

        for(typename ContainerT::const_iterator v_it = _vs.begin(),
                v_end = _vs.end(); v_it != v_end; ++v_it) {

            const std::vector<HalfEdgeHandle>& inc_hes = outgoing_hes_per_vertex_[v_it->idx()];

            for(std::vector<HalfEdgeHandle>::const_iterator he_it = inc_hes.begin(),
                    he_end = inc_hes.end(); he_it != he_end; ++he_it) {

                _es.insert(edge_handle(*he_it));
            }
        }
    } else {

        for(typename ContainerT::const_iterator v_it = _vs.begin(),
                v_end = _vs.end(); v_it != v_end; ++v_it) {

            for(EdgeIter e_it = edges_begin(), e_end = edges_end(); e_it != e_end; ++e_it) {

                const Edge& e = edge(*e_it);

                if(e.from_vertex() == *v_it || e.to_vertex() == *v_it) {
                    _es.insert(*e_it);
                }
            }
        }
    }
}

//========================================================================================

template <class ContainerT>
void TopologyKernel::get_incident_faces(const ContainerT& _es,
                                        std::set<FaceHandle>& _fs) const {

    _fs.clear();

    if(e_bottom_up_) {

        for(typename ContainerT::const_iterator e_it = _es.begin(),
                e_end = _es.end(); e_it != e_end; ++e_it) {

            for(HalfEdgeHalfFaceIter hehf_it = hehf_iter(halfedge_handle(*e_it, 0));
                    hehf_it.valid(); ++hehf_it) {

                const FaceHandle fh = face_handle(*hehf_it);

                if(_fs.count(fh) == 0) {
                    _fs.insert(fh);
                }
            }
        }
    } else {

        for(typename ContainerT::const_iterator e_it = _es.begin(),
                e_end = _es.end(); e_it != e_end; ++e_it) {

            for(FaceIter f_it = faces_begin(),
                    f_end = faces_end(); f_it != f_end; ++f_it) {

                const std::vector<HalfEdgeHandle>& hes = face(*f_it).halfedges();

                for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                        he_end = hes.end(); he_it != he_end; ++he_it) {

                    if(edge_handle(*he_it) == *e_it) {
                        _fs.insert(*f_it);
                        break;
                    }
                }
            }
        }
    }
}

//========================================================================================

template <class ContainerT>
void TopologyKernel::get_incident_cells(const ContainerT& _fs,
                                        std::set<CellHandle>& _cs) const {

    _cs.clear();

    if(f_bottom_up_) {

        for(typename ContainerT::const_iterator f_it = _fs.begin(),
            f_end = _fs.end(); f_it != f_end; ++f_it) {

            const HalfFaceHandle hfh0 = halfface_handle(*f_it, 0);
            const HalfFaceHandle hfh1 = halfface_handle(*f_it, 1);

            const CellHandle c0 = incident_cell(hfh0);
            const CellHandle c1 = incident_cell(hfh1);

            if(c0.is_valid()) _cs.insert(c0);
            if(c1.is_valid()) _cs.insert(c1);
        }
    } else {

        for(typename ContainerT::const_iterator f_it = _fs.begin(),
            f_end = _fs.end(); f_it != f_end; ++f_it) {

            for(CellIter c_it = cells_begin(), c_end = cells_end();
                c_it != c_end; ++c_it) {

                const std::vector<HalfFaceHandle>& hfs = cell(*c_it).halffaces();

                for(std::vector<HalfFaceHandle>::const_iterator hf_it = hfs.begin(),
                        hf_end = hfs.end(); hf_it != hf_end; ++hf_it) {

                    if(face_handle(*hf_it) == *f_it) {
                        _cs.insert(*c_it);
                        break;
                    }
                }
            }
        }
    }
}

//========================================================================================

822 823 824 825 826 827 828 829 830
/**
 * \brief Delete vertex from mesh
 *
 * After performing this operation, all vertices
 * following vertex _h in the array will be accessible
 * through their old handle decreased by one.
 * This function directly fixes the vertex links
 * in all edges. These steps are performed:
 *
831 832
 * 1) Decrease all vertex handles > _h in incident edges
 * 2) Delete entry in bottom-up list: V -> HE
833 834 835 836
 * 3) Delete vertex itself (not necessary here since
 *    a vertex is only represented by a number)
 * 4) Delete property entry
 *
837
 * @param _h A vertex's handle
838
 */
839
VertexIter TopologyKernel::delete_vertex_core(const VertexHandle& _h) {
840 841 842 843 844 845

    assert(_h.idx() < (int)n_vertices());

    // 1)
    if(v_bottom_up_) {

846 847
        // Decrease all vertex handles >= _h in all edge definitions
        for(int i = _h.idx(), end = n_vertices(); i < end; ++i) {
848 849 850
            const std::vector<HalfEdgeHandle>& hes = outgoing_hes_per_vertex_[i];
            for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                    he_end = hes.end(); he_it != he_end; ++he_it) {
851

852 853 854 855 856 857
                Edge& e = edge(edge_handle(*he_it));
                if(e.from_vertex().idx() == i) {
                    e.set_from_vertex(VertexHandle(i-1));
                }
                if(e.to_vertex().idx() == i) {
                    e.set_to_vertex(VertexHandle(i-1));
858 859 860
                }
            }
        }
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    } else {

        // Iterate over all edges
        for(EdgeIter e_it = edges_begin(), e_end = edges_end();
                e_it != e_end; ++e_it) {

            // Decrease all vertex handles in edge definitions that are greater than _h
            if(edge(*e_it).from_vertex() > _h) {
                edge(*e_it).set_from_vertex(VertexHandle(edge(*e_it).from_vertex().idx() - 1));
            }
            if(edge(*e_it).to_vertex() > _h) {
                edge(*e_it).set_to_vertex(VertexHandle(edge(*e_it).to_vertex().idx() - 1));
            }
        }
    }

    // 2)
    if(v_bottom_up_) {
        assert(outgoing_hes_per_vertex_.size() > (unsigned int)_h.idx());
        outgoing_hes_per_vertex_.erase(outgoing_hes_per_vertex_.begin() + _h.idx());
    }

    // 3)
    --n_vertices_;

    // 4)
    vertex_deleted(_h);

    // Iterator to next element in vertex list
    return (vertices_begin() + _h.idx());
}

//========================================================================================

/**
 * \brief Delete edge from mesh
 *
 * After performing this operation, all edges
 * following edge _h in the array will be accessible
 * through their old handle decreased by one.
 * This function directly fixes the edge links
 * in all faces. These steps are performed:
 *
905 906 907 908 909 910 911
 * 1) Delete bottom-up links from incident vertices
 * 2) Decrease all half-edge handles > _h in incident faces
 * 3) Delete entry in bottom-up list: HE -> HF
 * 4) Decrease all half-edge handles > 2*_h.idx() in
 *    vertex bottom-up list
 * 5) Delete edge itself
 * 6) Delete property entry
912
 *
913
 * @param _h An edge's handle
914
 */
915
EdgeIter TopologyKernel::delete_edge_core(const EdgeHandle& _h) {
916

917
    assert(_h.idx() < (int)edges_.size());
918 919 920 921 922 923

    // 1)
    if(v_bottom_up_) {

        VertexHandle v0 = edge(_h).from_vertex();
        VertexHandle v1 = edge(_h).to_vertex();
924
        assert(outgoing_hes_per_vertex_.size() > (unsigned int)std::max(v0.idx(), v1.idx()));
925

926 927 928
        outgoing_hes_per_vertex_[v0.idx()].erase(
                std::remove(outgoing_hes_per_vertex_[v0.idx()].begin(),
                            outgoing_hes_per_vertex_[v0.idx()].end(),
929
                            halfedge_handle(_h, 0)),
930
                            outgoing_hes_per_vertex_[v0.idx()].end());
931

932 933 934
        outgoing_hes_per_vertex_[v1.idx()].erase(
                std::remove(outgoing_hes_per_vertex_[v1.idx()].begin(),
                            outgoing_hes_per_vertex_[v1.idx()].end(),
935
                            halfedge_handle(_h, 1)),
936
                            outgoing_hes_per_vertex_[v1.idx()].end());
937 938 939 940 941
    }

    // 2)
    if(e_bottom_up_) {

942
        assert(incident_hfs_per_he_.size() > (unsigned int)halfedge_handle(_h, 0).idx());
943

944 945
        // Decrease all half-edge handles > he and
        // delete all half-edge handles == he in face definitions
946 947 948
        // Get all faces that need updates
        std::set<FaceHandle> update_faces;
        for(std::vector<std::vector<HalfFaceHandle> >::const_iterator iit =
949
                (incident_hfs_per_he_.begin() + halfedge_handle(_h, 0).idx()),
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
                iit_end = incident_hfs_per_he_.end(); iit != iit_end; ++iit) {
            for(std::vector<HalfFaceHandle>::const_iterator it = iit->begin(),
                    end = iit->end(); it != end; ++it) {
                update_faces.insert(face_handle(*it));
            }
        }
        // Update respective handles
        HEHandleCorrection cor(halfedge_handle(_h, 1));
        for(std::set<FaceHandle>::iterator f_it = update_faces.begin(),
                f_end = update_faces.end(); f_it != f_end; ++f_it) {

            std::vector<HalfEdgeHandle> hes = face(*f_it).halfedges();

            // Delete current half-edge from face's half-edge list
            hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 0)), hes.end());
            hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 1)), hes.end());

            std::for_each(hes.begin(), hes.end(),
968
                          fun::bind(&HEHandleCorrection::correctValue, &cor, fun::placeholders::_1));
969 970 971 972 973 974 975 976
            face(*f_it).set_halfedges(hes);
        }
    } else {

        // Iterate over all faces
        for(FaceIter f_it = faces_begin(), f_end = faces_end();
                f_it != f_end; ++f_it) {

977
            // Get face's half-edges
978 979 980 981 982 983 984 985 986
            std::vector<HalfEdgeHandle> hes = face(*f_it).halfedges();

            // Delete current half-edge from face's half-edge list
            hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 0)), hes.end());
            hes.erase(std::remove(hes.begin(), hes.end(), halfedge_handle(_h, 1)), hes.end());

            // Decrease all half-edge handles greater than _h in face
            HEHandleCorrection cor(halfedge_handle(_h, 1));
            std::for_each(hes.begin(), hes.end(),
987
                          fun::bind(&HEHandleCorrection::correctValue, &cor, fun::placeholders::_1));
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
            face(*f_it).set_halfedges(hes);
        }
    }

    // 3)
    if(e_bottom_up_) {
        assert(incident_hfs_per_he_.size() > (unsigned int)halfedge_handle(_h, 1).idx());
        incident_hfs_per_he_.erase(incident_hfs_per_he_.begin() + halfedge_handle(_h, 1).idx());
        incident_hfs_per_he_.erase(incident_hfs_per_he_.begin() + halfedge_handle(_h, 0).idx());
    }

    // 4)
    if(v_bottom_up_) {
        HEHandleCorrection cor(halfedge_handle(_h, 1));
        std::for_each(outgoing_hes_per_vertex_.begin(),
                      outgoing_hes_per_vertex_.end(),
1004
                      fun::bind(&HEHandleCorrection::correctVecValue, &cor, fun::placeholders::_1));
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    }

    // 5)
    edges_.erase(edges_.begin() + _h.idx());

    // 6)
    edge_deleted(_h);

    // Return iterator to next element in list
    return (edges_begin() + _h.idx());
}

//========================================================================================

/**
 * \brief Delete face from mesh
 *
 * After performing this operation, all faces
 * following face _h in the array will be accessible
 * through their old handle decreased by one.
 * This function directly fixes the face links
 * in all cells. These steps are performed:
 *
1028 1029 1030 1031 1032 1033 1034
 * 1) Delete bottom-up links from incident edges
 * 2) Decrease all half-face handles > _h in incident cells
 * 3) Delete entry in bottom-up list: HF -> C
 * 4) Decrease all half-face handles > 2*_h.idx() in
 *    half-edge bottom-up list
 * 5) Delete face itself
 * 6) Delete property entry
1035
 *
1036
 * @param _h An face's handle
1037
 */
1038
FaceIter TopologyKernel::delete_face_core(const FaceHandle& _h) {
1039

1040
    assert(_h.idx() < (int)faces_.size());
1041 1042 1043 1044 1045 1046 1047 1048

    // 1)
    if(e_bottom_up_) {

        const std::vector<HalfEdgeHandle>& hes = face(_h).halfedges();
        for(std::vector<HalfEdgeHandle>::const_iterator he_it = hes.begin(),
                he_end = hes.end(); he_it != he_end; ++he_it) {

1049
            assert(incident_hfs_per_he_.size() > (unsigned int)std::max(he_it->idx(), opposite_halfedge_handle(*he_it).idx()));
1050

1051 1052 1053 1054
            incident_hfs_per_he_[he_it->idx()].erase(
                    std::remove(incident_hfs_per_he_[he_it->idx()].begin(),
                                incident_hfs_per_he_[he_it->idx()].end(),
                                halfface_handle(_h, 0)), incident_hfs_per_he_[he_it->idx()].end());
1055 1056


1057 1058 1059 1060
            incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].erase(
                    std::remove(incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].begin(),
                                incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end(),
                                halfface_handle(_h, 1)), incident_hfs_per_he_[opposite_halfedge_handle(*he_it).idx()].end());
1061 1062 1063 1064 1065 1066 1067
        }
    }

    // 2)
    if(f_bottom_up_) {

        // Decrease all half-face handles > _h in all cells
1068
        // and delete all half-face handles == _h
1069
        std::set<CellHandle> update_cells;
1070
        for(std::vector<CellHandle>::const_iterator c_it = (incident_cell_per_hf_.begin() + halfface_handle(_h, 0).idx()),
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
                c_end = incident_cell_per_hf_.end(); c_it != c_end; ++c_it) {
            if(!c_it->is_valid()) continue;
            update_cells.insert(*c_it);
        }
        for(std::set<CellHandle>::const_iterator c_it = update_cells.begin(),
                c_end = update_cells.end(); c_it != c_end; ++c_it) {

            std::vector<HalfFaceHandle> hfs = cell(*c_it).halffaces();

            // Delete current half-faces from cell's half-face list
            hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 0)), hfs.end());
            hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 1)), hfs.end());

            HFHandleCorrection cor(halfface_handle(_h, 1));
            std::for_each(hfs.begin(), hfs.end(),
1086
                          fun::bind(&HFHandleCorrection::correctValue, &cor, fun::placeholders::_1));
1087 1088 1089 1090 1091 1092 1093 1094 1095
            cell(*c_it).set_halffaces(hfs);
        }

    } else {

        // Iterate over all cells
        for(CellIter c_it = cells_begin(), c_end = cells_end(); c_it != c_end; ++c_it) {

            std::vector<HalfFaceHandle> hfs = cell(*c_it).halffaces();
1096

1097 1098 1099 1100 1101 1102
            // Delete current half-faces from cell's half-face list
            hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 0)), hfs.end());
            hfs.erase(std::remove(hfs.begin(), hfs.end(), halfface_handle(_h, 1)), hfs.end());

            HFHandleCorrection cor(halfface_handle(_h, 1));
            std::for_each(hfs.begin(), hfs.end(),
1103
                          fun::bind(&HFHandleCorrection::correctValue, &cor, fun::placeholders::_1));
1104 1105 1106 1107 1108 1109
            cell(*c_it).set_halffaces(hfs);
        }
    }

    // 3)
    if(f_bottom_up_) {
1110
        assert(incident_cell_per_hf_.size() > (unsigned int)halfface_handle(_h, 1).idx());
1111 1112 1113 1114 1115 1116 1117 1118 1119
        incident_cell_per_hf_.erase(incident_cell_per_hf_.begin() + halfface_handle(_h, 1).idx());
        incident_cell_per_hf_.erase(incident_cell_per_hf_.begin() + halfface_handle(_h, 0).idx());
    }

    // 4)
    if(e_bottom_up_) {
        HFHandleCorrection cor(halfface_handle(_h, 1));
        std::for_each(incident_hfs_per_he_.begin(),
                      incident_hfs_per_he_.end(),
1120
                      fun::bind(&HFHandleCorrection::correctVecValue, &cor, fun::placeholders::_1));
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    }

    // 5)
    faces_.erase(faces_.begin() + _h.idx());

    // 6)
    face_deleted(_h);

    // Return iterator to next element in list
    return (faces_begin() + _h.idx());
}

//========================================================================================

/**
 * \brief Delete cell from mesh
 *
 * After performing this operation, all cells
 * following cell _h in the array will be accessible
 * through their old handle decreased by one.
 * These steps are performed:
 *
 * 1) Delete links in BU: HF -> C
 * 2) Decrease all entries > c in BU: HF -> C
 * 3) Delete cell from storage array
 * 4) Delete property item
 *
 * @param _h A cell handle
 */
1150
CellIter TopologyKernel::delete_cell_core(const CellHandle& _h) {
1151

1152
    assert(_h.idx() < (int)cells_.size());
1153 1154 1155 1156 1157 1158 1159 1160

    // 1)
    if(f_bottom_up_) {
        const std::vector<HalfFaceHandle>& hfs = cell(_h).halffaces();
        for(std::vector<HalfFaceHandle>::const_iterator hf_it = hfs.begin(),
                hf_end = hfs.end(); hf_it != hf_end; ++hf_it) {
            assert(incident_cell_per_hf_.size() > (unsigned int)hf_it->idx());

1161
            incident_cell_per_hf_[hf_it->idx()] = InvalidCellHandle;
1162 1163 1164 1165 1166 1167 1168 1169
        }
    }

    // 2)
    if(f_bottom_up_) {
        CHandleCorrection cor(_h);
        std::for_each(incident_cell_per_hf_.begin(),
                      incident_cell_per_hf_.end(),
1170
                      fun::bind(&CHandleCorrection::correctValue, &cor, fun::placeholders::_1));
1171 1172 1173 1174 1175 1176 1177 1178 1179
    }

    // 3)
    cells_.erase(cells_.begin() + _h.idx());

    // 4)
    cell_deleted(_h);

    return (cells_begin() + _h.idx());
1180 1181 1182 1183
}

//========================================================================================

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
void TopologyKernel::delete_multiple_vertices(const std::vector<bool>& _tag) {

    assert(_tag.size() == n_vertices_);

    std::vector<int> newIndices(n_vertices(), -1);
    int curIdx = 0;

    std::vector<int>::iterator idx_it = newIndices.begin();
    for(std::vector<bool>::const_iterator t_it = _tag.begin(),
            t_end = _tag.end(); t_it != t_end; ++t_it, ++idx_it) {

        if(!(*t_it)) {
            // Not marked as deleted
            *idx_it = curIdx;
            ++curIdx;
        } else {
            --n_vertices_;
        }
    }

    // Delete properties accordingly
    delete_multiple_vertex_props(_tag);

    EdgeCorrector corrector(newIndices);
    std::for_each(edges_.begin(), edges_.end(), corrector);
}

//========================================================================================

void TopologyKernel::delete_multiple_edges(const std::vector<bool>& _tag) {

    assert(_tag.size() == n_edges());

    std::vector<int> newIndices(n_edges(), -1);
    int curIdx = 0;

    std::vector<Edge> newEdges;

    std::vector<int>::iterator idx_it = newIndices.begin();
    std::vector<Edge>::const_iterator e_it = edges_.begin();

    for(std::vector<bool>::const_iterator t_it = _tag.begin(),
            t_end = _tag.end(); t_it != t_end; ++t_it, ++idx_it, ++e_it) {

        if(!(*t_it)) {
            // Not marked as deleted

            newEdges.push_back(*e_it);

            *idx_it = curIdx;
            ++curIdx;
        }
    }

    // Swap edges
    edges_.swap(newEdges);

    // Delete properties accordingly
    delete_multiple_edge_props(_tag);

    FaceCorrector corrector(newIndices);
    std::for_each(faces_.begin(), faces_.end(), corrector);
}

//========================================================================================

void TopologyKernel::delete_multiple_faces(const std::vector<bool>& _tag) {

    assert(_tag.size() == n_faces());

    std::vector<int> newIndices(n_faces(), -1);
    int curIdx = 0;

    std::vector<Face> newFaces;

    std::vector<int>::iterator idx_it = newIndices.begin();
    std::vector<Face>::const_iterator f_it = faces_.begin();

    for(std::vector<bool>::const_iterator t_it = _tag.begin(),
            t_end = _tag.end(); t_it != t_end; ++t_it, ++idx_it, ++f_it) {

        if(!(*t_it)) {
            // Not marked as deleted

            newFaces.push_back(*f_it);

            *idx_it = curIdx;
            ++curIdx;
        }
    }

    // Swap faces
    faces_.swap(newFaces);

    // Delete properties accordingly
    delete_multiple_face_props(_tag);

    CellCorrector corrector(newIndices);
    std::for_each(cells_.begin(), cells_.end(), corrector);
}

//========================================================================================

void TopologyKernel::delete_multiple_cells(const std::vector<bool>& _tag) {

    assert(_tag.size() == n_cells());

    std::vector<Cell> newCells;

    std::vector<Cell>::const_iterator c_it = cells_.begin();

    for(std::vector<bool>::const_iterator t_it = _tag.begin(),
            t_end = _tag.end(); t_it != t_end; ++t_it, ++c_it) {

        if(!(*t_it)) {
            // Not marked as deleted

            newCells.push_back(*c_it);
        }
    }

    // Swap cells
    cells_.swap(newCells);

    // Delete properties accordingly
    delete_multiple_cell_props(_tag);
}

//========================================================================================

1314 1315 1316 1317 1318 1319 1320
CellIter TopologyKernel::delete_cell_range(const CellIter& _first, const CellIter& _last) {

    assert(_first >= cells_begin());
    assert(_last < cells_end());

    std::vector<Cell>::iterator it = cells_.erase(cells_.begin() + _first->idx(), cells_.begin() + _last->idx());

1321
    // Re-compute face bottom-up incidences if necessary
Mike Kremer's avatar
Mike Kremer committed
1322 1323
    if(f_bottom_up_) {
        f_bottom_up_ = false;
1324
        enable_face_bottom_up_incidences(true);
1325 1326 1327 1328 1329 1330 1331
    }

    return CellIter(this, CellHandle(it - cells_.begin()));
}

//========================================================================================

1332 1333 1334 1335
/// Get edge with handle _edgeHandle
const OpenVolumeMeshEdge& TopologyKernel::edge(const EdgeHandle& _edgeHandle) const {

    // Test if edge is valid
1336
    assert((unsigned int)_edgeHandle.idx() < edges_.size());
1337
    assert(_edgeHandle.idx() >= 0);
1338

1339
    return edges_[_edgeHandle.idx()];
1340 1341 1342 1343 1344 1345 1346 1347
}

//========================================================================================

/// Get face with handle _faceHandle
const OpenVolumeMeshFace& TopologyKernel::face(const FaceHandle& _faceHandle) const {

    // Test if face is valid
1348
    assert((unsigned int)_faceHandle.idx() < faces_.size());
1349
    assert(_faceHandle.idx() >= 0);
1350

1351
    return faces_[_faceHandle.idx()];
1352 1353 1354 1355 1356 1357 1358 1359
}

//========================================================================================

/// Get cell with handle _cellHandle
const OpenVolumeMeshCell& TopologyKernel::cell(const CellHandle& _cellHandle) const {

    // Test if cell is valid
1360
    assert((unsigned int)_cellHandle.idx() < cells_.size());
1361
    assert(_cellHandle.idx() >= 0);
1362

1363
    return cells_[_cellHandle.idx()];
1364 1365 1366 1367 1368 1369 1370 1371
}

//========================================================================================

/// Get edge with handle _edgeHandle
OpenVolumeMeshEdge& TopologyKernel::edge(const EdgeHandle& _edgeHandle) {

    // Test if edge is valid
1372
    assert((unsigned int)_edgeHandle.idx() < edges_.size());
1373
    assert(_edgeHandle.idx() >= 0);
1374

1375
    return edges_[_edgeHandle.idx()];
1376 1377 1378 1379 1380 1381 1382 1383
}

//========================================================================================

/// Get face with handle _faceHandle
OpenVolumeMeshFace& TopologyKernel::face(const FaceHandle& _faceHandle) {

    // Test if face is valid
1384
    assert((unsigned int)_faceHandle.idx() < faces_.size());
1385
    assert(_faceHandle.idx() >= 0);
1386

1387
    return faces_[_faceHandle.idx()];
1388 1389 1390 1391 1392 1393 1394 1395
}

//========================================================================================

/// Get cell with handle _cellHandle
OpenVolumeMeshCell& TopologyKernel::cell(const CellHandle& _cellHandle) {

    // Test if cell is valid
1396
    assert((unsigned int)_cellHandle.idx() < cells_.size());
1397
    assert(_cellHandle.idx() >= 0);
1398

1399
    return cells_[_cellHandle.idx()];
1400 1401 1402 1403 1404
}

//========================================================================================

/// Get edge that corresponds to halfedge with handle _halfEdgeHandle
1405
OpenVolumeMeshEdge TopologyKernel::halfedge(const HalfEdgeHandle& _halfEdgeHandle) const {
1406 1407

    // Is handle in range?
1408
    assert((unsigned int)_halfEdgeHandle.idx() < (edges_.size() * 2));
1409
    assert(_halfEdgeHandle.idx() >= 0);
1410 1411 1412

    // In case the handle is even, just return the corresponding edge
    /// Otherwise return the opposite halfedge via opposite()
1413 1414
    if(_halfEdgeHandle.idx() % 2 == 0)
        return edges_[(int)(_halfEdgeHandle.idx() / 2)];
1415
    else
1416
        return opposite_halfedge(edges_[(int)(_halfEdgeHandle.idx() / 2)]);
1417 1418 1419 1420 1421
}

//========================================================================================

/// Get face that corresponds to halfface with handle _halfFaceHandle
1422
OpenVolumeMeshFace TopologyKernel::halfface(const HalfFaceHandle& _halfFaceHandle) const {
1423 1424

    // Is handle in range?
1425
    assert((unsigned int)_halfFaceHandle.idx() < (faces_.size() * 2));
1426