Commit 25178d9d authored by Jan Möbius's avatar Jan Möbius

Fixed explicit making cppcheck fail and some lineendings

parent 5b9326a0
Pipeline #4217 failed with stage
in 44 minutes and 40 seconds
......@@ -85,7 +85,7 @@ class SoOpenMeshNodeT : public SoShape
public:
static void initClass();
SoOpenMeshNodeT(const Mesh* _mesh=0);
explicit SoOpenMeshNodeT(const Mesh* _mesh=0);
void setMesh(const Mesh* mesh) { d_mesh = mesh; }
......
......@@ -96,7 +96,7 @@ template <class T>
class multiplex_target : public basic_multiplex_target
{
public:
multiplex_target(T& _t) : target_(_t) {}
explicit multiplex_target(T& _t) : target_(_t) {}
virtual void operator<<(const std::string& _s) { target_ << _s; }
private:
T& target_;
......
......@@ -90,7 +90,7 @@ public:
*
* @param _resolution specifies the desired resolution for the random number generated
*/
RandomNumberGenerator(const size_t _resolution);
explicit RandomNumberGenerator(const size_t _resolution);
/// returns a random double between 0.0 and 1.0 with a guaranteed resolution
double getRand() const;
......
......@@ -87,7 +87,7 @@ public:
*
* @param _notificationInterval Interval of decimation steps between notifications.
*/
Observer(size_t _notificationInterval);
explicit Observer(size_t _notificationInterval);
/// Destructor
virtual ~Observer();
......
......@@ -115,7 +115,7 @@ public:
CatmullClarkT( ) : parent_t() { }
/// Constructor
CatmullClarkT(MeshType &_m) : parent_t(_m) { }
explicit CatmullClarkT(MeshType &_m) : parent_t(_m) { }
virtual ~CatmullClarkT() {}
......
......@@ -37,215 +37,215 @@
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
/** \file Uniform/Composite/CompositeT.hh
*/
//=============================================================================
//
// CLASS CompositeT
//
//=============================================================================
#ifndef OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_HH
#define OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_HH
//== INCLUDES =================================================================
#include <string>
#include <vector>
// --------------------
#include <OpenMesh/Tools/Subdivider/Uniform/SubdividerT.hh>
//== NAMESPACE ================================================================
namespace OpenMesh { // BEGIN_NS_OPENMESH
namespace Subdivider { // BEGIN_NS_DECIMATER
namespace Uniform { // BEGIN_NS_UNIFORM
//== CLASS DEFINITION =========================================================
/** This class provides the composite subdivision rules for the uniform case.
*
* To create a subdivider derive from this class and overload the functions
* name() and apply_rules(). In the latter one call the wanted rules.
*
* For details on the composite scheme refer to
* - <a
* href="http://cm.bell-labs.com/who/poswald/sqrt3.pdf">P. Oswald,
* P. Schroeder "Composite primal/dual sqrt(3)-subdivision schemes",
* CAGD 20, 3, 2003, 135--164</a>
* \note Not all rules are implemented!
* \see class Adaptive::CompositeT
*/
template <typename MeshType, typename RealType=float >
class CompositeT : public SubdividerT< MeshType, RealType >
{
public:
typedef RealType real_t;
typedef MeshType mesh_t;
typedef SubdividerT< mesh_t, real_t > parent_t;
public:
CompositeT(void) : parent_t(), p_mesh_(NULL) {}
CompositeT(MeshType& _mesh) : parent_t(_mesh), p_mesh_(NULL) {};
virtual ~CompositeT() { }
public: // inherited interface
virtual const char *name( void ) const = 0;
protected: // inherited interface
bool prepare( MeshType& _m );
bool subdivide( MeshType& _m, size_t _n, const bool _update_points = true )
{
assert( p_mesh_ == &_m );
while(_n--)
{
apply_rules();
commit(_m);
}
return true;
}
#ifdef NDEBUG
bool cleanup( MeshType& )
#else
bool cleanup( MeshType& _m )
#endif
{
assert( p_mesh_ == &_m );
p_mesh_=NULL;
return true;
}
protected:
/// Assemble here the rule sequence, by calling the constructor
/// of the wanted rules.
virtual void apply_rules(void) = 0;
protected:
/// Move vertices to new positions after the rules have been applied
/// to the mesh (called by subdivide()).
void commit( MeshType &_m)
{
typename MeshType::VertexIter v_it;
for (v_it=_m.vertices_begin(); v_it != _m.vertices_end(); ++v_it)
_m.set_point(*v_it, _m.data(*v_it).position());
}
public:
/// Abstract base class for coefficient functions
struct Coeff
{
virtual ~Coeff() { }
virtual double operator() (size_t _valence) = 0;
};
protected:
typedef typename MeshType::Scalar scalar_t;
typedef typename MeshType::VertexHandle VertexHandle;
typedef typename MeshType::FaceHandle FaceHandle;
typedef typename MeshType::EdgeHandle EdgeHandle;
typedef typename MeshType::HalfedgeHandle HalfedgeHandle;
/// \name Uniform composite subdivision rules
//@{
void Tvv3(); ///< Split Face, using Vertex information (1-3 split)
void Tvv4(); ///< Split Face, using Vertex information (1-4 split)
void Tfv(); ///< Split Face, using Face Information
void FF(); ///< Face to face averaging.
void FFc(Coeff& _coeff); ///< Weighted face to face averaging.
void FFc(scalar_t _c); ///< Weighted face to face averaging.
void FV(); ///< Face to vertex averaging.
void FVc(Coeff& _coeff); ///< Weighted face to vertex Averaging with flaps
void FVc(scalar_t _c); ///< Weighted face to vertex Averaging with flaps
void FE(); ///< Face to edge averaging.
void VF(); ///< Vertex to Face Averaging.
void VFa(Coeff& _coeff); ///< Vertex to Face Averaging, weighted.
void VFa(scalar_t _alpha); ///< Vertex to Face Averaging, weighted.
void VV(); ///< Vertex to vertex averaging.
void VVc(Coeff& _coeff); ///< Vertex to vertex averaging, weighted.
void VVc(scalar_t _c); ///< Vertex to vertex averaging, weighted.
void VE(); ///< VE Step (Vertex to Edge Averaging)
void VdE(); ///< Vertex to edge averaging, using diamond of edges.
void VdEc(scalar_t _c); ///< Weighted vertex to edge averaging, using diamond of edges
/// Weigthed vertex to edge averaging, using diamond of edges for
/// irregular vertices.
void VdEg(Coeff& _coeff);
/// Weigthed vertex to edge averaging, using diamond of edges for
/// irregular vertices.
void VdEg(scalar_t _gamma);
void EF(); ///< Edge to face averaging.
void EV(); ///< Edge to vertex averaging.
void EVc(Coeff& _coeff); ///< Weighted edge to vertex averaging.
void EVc(scalar_t _c); ///< Weighted edge to vertex averaging.
void EdE(); ///< Edge to edge averaging w/ flap rule.
void EdEc(scalar_t _c); ///< Weighted edge to edge averaging w/ flap rule.
//@}
void corner_cutting(HalfedgeHandle _heh);
VertexHandle split_edge(HalfedgeHandle _heh);
private:
MeshType* p_mesh_;
};
//=============================================================================
} // END_NS_UNIFORM
} // END_NS_SUBDIVIDER
} // END_NS_OPENMESH
//=============================================================================
#if defined(OM_INCLUDE_TEMPLATES) && !defined(OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_CC)
#define OPENMESH_SUBDIVIDER_TEMPLATES
#include "CompositeT.cc"
#endif
//=============================================================================
#endif // COMPOSITET_HH defined
//=============================================================================
* ========================================================================= */
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
/** \file Uniform/Composite/CompositeT.hh
*/
//=============================================================================
//
// CLASS CompositeT
//
//=============================================================================
#ifndef OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_HH
#define OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_HH
//== INCLUDES =================================================================
#include <string>
#include <vector>
// --------------------
#include <OpenMesh/Tools/Subdivider/Uniform/SubdividerT.hh>
//== NAMESPACE ================================================================
namespace OpenMesh { // BEGIN_NS_OPENMESH
namespace Subdivider { // BEGIN_NS_DECIMATER
namespace Uniform { // BEGIN_NS_UNIFORM
//== CLASS DEFINITION =========================================================
/** This class provides the composite subdivision rules for the uniform case.
*
* To create a subdivider derive from this class and overload the functions
* name() and apply_rules(). In the latter one call the wanted rules.
*
* For details on the composite scheme refer to
* - <a
* href="http://cm.bell-labs.com/who/poswald/sqrt3.pdf">P. Oswald,
* P. Schroeder "Composite primal/dual sqrt(3)-subdivision schemes",
* CAGD 20, 3, 2003, 135--164</a>
* \note Not all rules are implemented!
* \see class Adaptive::CompositeT
*/
template <typename MeshType, typename RealType=float >
class CompositeT : public SubdividerT< MeshType, RealType >
{
public:
typedef RealType real_t;
typedef MeshType mesh_t;
typedef SubdividerT< mesh_t, real_t > parent_t;
public:
CompositeT(void) : parent_t(), p_mesh_(NULL) {}
explicit CompositeT(MeshType& _mesh) : parent_t(_mesh), p_mesh_(NULL) {};
virtual ~CompositeT() { }
public: // inherited interface
virtual const char *name( void ) const = 0;
protected: // inherited interface
bool prepare( MeshType& _m );
bool subdivide( MeshType& _m, size_t _n, const bool _update_points = true )
{
assert( p_mesh_ == &_m );
while(_n--)
{
apply_rules();
commit(_m);
}
return true;
}
#ifdef NDEBUG
bool cleanup( MeshType& )
#else
bool cleanup( MeshType& _m )
#endif
{
assert( p_mesh_ == &_m );
p_mesh_=NULL;
return true;
}
protected:
/// Assemble here the rule sequence, by calling the constructor
/// of the wanted rules.
virtual void apply_rules(void) = 0;
protected:
/// Move vertices to new positions after the rules have been applied
/// to the mesh (called by subdivide()).
void commit( MeshType &_m)
{
typename MeshType::VertexIter v_it;
for (v_it=_m.vertices_begin(); v_it != _m.vertices_end(); ++v_it)
_m.set_point(*v_it, _m.data(*v_it).position());
}
public:
/// Abstract base class for coefficient functions
struct Coeff
{
virtual ~Coeff() { }
virtual double operator() (size_t _valence) = 0;
};
protected:
typedef typename MeshType::Scalar scalar_t;
typedef typename MeshType::VertexHandle VertexHandle;
typedef typename MeshType::FaceHandle FaceHandle;
typedef typename MeshType::EdgeHandle EdgeHandle;
typedef typename MeshType::HalfedgeHandle HalfedgeHandle;
/// \name Uniform composite subdivision rules
//@{
void Tvv3(); ///< Split Face, using Vertex information (1-3 split)
void Tvv4(); ///< Split Face, using Vertex information (1-4 split)
void Tfv(); ///< Split Face, using Face Information
void FF(); ///< Face to face averaging.
void FFc(Coeff& _coeff); ///< Weighted face to face averaging.
void FFc(scalar_t _c); ///< Weighted face to face averaging.
void FV(); ///< Face to vertex averaging.
void FVc(Coeff& _coeff); ///< Weighted face to vertex Averaging with flaps
void FVc(scalar_t _c); ///< Weighted face to vertex Averaging with flaps
void FE(); ///< Face to edge averaging.
void VF(); ///< Vertex to Face Averaging.
void VFa(Coeff& _coeff); ///< Vertex to Face Averaging, weighted.
void VFa(scalar_t _alpha); ///< Vertex to Face Averaging, weighted.
void VV(); ///< Vertex to vertex averaging.
void VVc(Coeff& _coeff); ///< Vertex to vertex averaging, weighted.
void VVc(scalar_t _c); ///< Vertex to vertex averaging, weighted.
void VE(); ///< VE Step (Vertex to Edge Averaging)
void VdE(); ///< Vertex to edge averaging, using diamond of edges.
void VdEc(scalar_t _c); ///< Weighted vertex to edge averaging, using diamond of edges
/// Weigthed vertex to edge averaging, using diamond of edges for
/// irregular vertices.
void VdEg(Coeff& _coeff);
/// Weigthed vertex to edge averaging, using diamond of edges for
/// irregular vertices.
void VdEg(scalar_t _gamma);
void EF(); ///< Edge to face averaging.
void EV(); ///< Edge to vertex averaging.
void EVc(Coeff& _coeff); ///< Weighted edge to vertex averaging.
void EVc(scalar_t _c); ///< Weighted edge to vertex averaging.
void EdE(); ///< Edge to edge averaging w/ flap rule.
void EdEc(scalar_t _c); ///< Weighted edge to edge averaging w/ flap rule.
//@}
void corner_cutting(HalfedgeHandle _heh);
VertexHandle split_edge(HalfedgeHandle _heh);
private:
MeshType* p_mesh_;
};
//=============================================================================
} // END_NS_UNIFORM
} // END_NS_SUBDIVIDER
} // END_NS_OPENMESH
//=============================================================================
#if defined(OM_INCLUDE_TEMPLATES) && !defined(OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_CC)
#define OPENMESH_SUBDIVIDER_TEMPLATES
#include "CompositeT.cc"
#endif
//=============================================================================
#endif // COMPOSITET_HH defined
//=============================================================================
......@@ -107,7 +107,7 @@ public:
/// Constructor to be used with interface 1 (calls attach())
/// \see operator()( MeshType&, size_t )
SubdividerT( MeshType &_m ) : attached_(NULL) { attach(_m); }
explicit SubdividerT( MeshType &_m ) : attached_(NULL) { attach(_m); }
//@}
......
......@@ -74,7 +74,7 @@ using namespace std;
class GnuplotException : public runtime_error
{
public:
GnuplotException(const string &msg) : runtime_error(msg){}
explicit GnuplotException(const string &msg) : runtime_error(msg){}
};
// ----------------------------------------------------------------------------
......@@ -113,7 +113,7 @@ public:
Gnuplot();
/// Set a style during construction.
Gnuplot(const string & _style);
explicit Gnuplot(const string & _style);
/// Constructor calling plot_xy().
Gnuplot(const string & _title,
......
......@@ -80,7 +80,7 @@ class MeshCheckerT
public:
/// constructor
MeshCheckerT(const Mesh& _mesh) : mesh_(_mesh) {}
explicit MeshCheckerT(const Mesh& _mesh) : mesh_(_mesh) {}
/// destructor
~MeshCheckerT() {}
......
......@@ -37,97 +37,97 @@
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
//=============================================================================
//
// CLASS newClass
//
//=============================================================================
#ifndef OPENMESH_VDPROGMESH_VHIERARCHYNODEINDEX_HH
#define OPENMESH_VDPROGMESH_VHIERARCHYNODEINDEX_HH
//== INCLUDES =================================================================
#include <vector>
#include <cassert>
//== FORWARDDECLARATIONS ======================================================
//== NAMESPACES ===============================================================
namespace OpenMesh {
namespace VDPM {
//== CLASS DEFINITION =========================================================
/** Index of vertex hierarchy node
*/
class VHierarchyNodeIndex
{
private:
unsigned int value_;
public:
static const VHierarchyNodeIndex InvalidIndex;
public:
VHierarchyNodeIndex()
{ value_ = 0; }
VHierarchyNodeIndex(unsigned int _value)
{ value_ = _value; }
VHierarchyNodeIndex(const VHierarchyNodeIndex &_other)
{ value_ = _other.value_; }
VHierarchyNodeIndex(unsigned int _tree_id,
unsigned int _node_id,
unsigned short _tree_id_bits)
{
assert(_tree_id < ((unsigned int) 0x00000001 << _tree_id_bits));
assert(_node_id < ((unsigned int) 0x00000001 << (32 - _tree_id_bits)));
value_ = (_tree_id << (32 - _tree_id_bits)) | _node_id;
}
bool is_valid(unsigned short _tree_id_bits) const
{ return node_id(_tree_id_bits) != 0 ? true : false; }
unsigned int tree_id(unsigned short _tree_id_bits) const
{ return value_ >> (32 - _tree_id_bits); }
unsigned int node_id(unsigned short _tree_id_bits) const
{ return value_ & ((unsigned int) 0xFFFFFFFF >> _tree_id_bits); }
bool operator< (const VHierarchyNodeIndex &other) const
{ return (value_ < other.value_) ? true : false; }
unsigned int value() const
{ return value_; }
};
/// Container for vertex hierarchy node indices
typedef std::vector<VHierarchyNodeIndex> VHierarchyNodeIndexContainer;
//=============================================================================
} // namespace VDPM
} // namespace OpenMesh
//=============================================================================
#endif // OPENMESH_VDPROGMESH_VHIERARCHYNODEINDEX_HH defined
//=============================================================================
* ========================================================================= */
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
//=============================================================================
//
// CLASS newClass
//
//=============================================================================
#ifndef OPENMESH_VDPROGMESH_VHIERARCHYNODEINDEX_HH
#define OPENMESH_VDPROGMESH_VHIERARCHYNODEINDEX_HH
//== INCLUDES =================================================================
#include <vector>
#include <cassert>
//== FORWARDDECLARATIONS ======================================================
//== NAMESPACES ===============================================================
namespace OpenMesh {
namespace VDPM {
//== CLASS DEFINITION =========================================================
/** Index of vertex hierarchy node
*/
class VHierarchyNodeIndex
{
private:
unsigned int value_;
public:
static const VHierarchyNodeIndex InvalidIndex;
public:
VHierarchyNodeIndex()
{ value_ = 0; }
explicit VHierarchyNodeIndex(unsigned int _value)
{ value_ = _value; }
VHierarchyNodeIndex(const VHierarchyNodeIndex &_other)
{ value_ = _other.value_; }
VHierarchyNodeIndex(unsigned int _tree_id,
unsigned int _node_id,
unsigned short _tree_id_bits)
{
assert(_tree_id < ((unsigned int) 0x00000001 << _tree_id_bits));
assert(_node_id < ((unsigned int) 0x00000001 << (32 - _tree_id_bits)));
value_ = (_tree_id << (32 - _tree_id_bits)) | _node_id;
}
bool is_valid(unsigned short _tree_id_bits) const
{ return node_id(_tree_id_bits) != 0 ? true : false; }
unsigned int tree_id(unsigned short _tree_id_bits) const
{ return value_ >> (32 - _tree_id_bits); }
unsigned int node_id(unsigned short _tree_id_bits) const
{ return value_ & ((unsigned int) 0xFFFFFFFF >> _tree_id_bits); }
bool operator< (const VHierarchyNodeIndex &other) const
{ return (value_ < other.value_) ? true : false; }
unsigned int value() const
{ return value_; }
};
/// Container for vertex hierarchy node indices
typedef std::vector<VHierarchyNodeIndex> VHierarchyNodeIndexContainer;
//=============================================================================
} // namespace VDPM
} // namespace OpenMesh
//=============================================================================