/*===========================================================================*\
* *
* OpenMesh *
* Copyright (C) 2001-2011 by Computer Graphics Group, RWTH Aachen *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
* *
* OpenMesh is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of *
* the License, or (at your option) any later version with the *
* following exceptions: *
* *
* If other files instantiate templates or use macros *
* or inline functions from this file, or you compile this file and *
* link it with other files to produce an executable, this file does *
* not by itself cause the resulting executable to be covered by the *
* GNU Lesser General Public License. This exception does not however *
* invalidate any other reasons why the executable file might be *
* covered by the GNU Lesser General Public License. *
* *
* OpenMesh is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU LesserGeneral Public *
* License along with OpenMesh. If not, *
* see . *
* *
\*===========================================================================*/
/*===========================================================================*\
* *
* $Revision: 448 $ *
* $Date: 2011-11-04 13:59:37 +0100 (Fri, 04 Nov 2011) $ *
* *
\*===========================================================================*/
/** \file ModHausdorffT.cc
*/
//=============================================================================
//
// CLASS ModHausdorffT - IMPLEMENTATION
//
//=============================================================================
#define MB_MODHAUSDORFFT_C
//== INCLUDES =================================================================
#include "ModHausdorffT.hh"
//== NAMESPACES ===============================================================
namespace OpenMesh {
namespace Decimater {
//== IMPLEMENTATION ==========================================================
template
typename ModHausdorffT::Scalar
ModHausdorffT::
distPointTriangleSquared( const Point& _p,
const Point& _v0,
const Point& _v1,
const Point& _v2,
Point& _nearestPoint )
{
Point v0v1 = _v1 - _v0;
Point v0v2 = _v2 - _v0;
Point n = v0v1 % v0v2; // not normalized !
double d = n.sqrnorm();
// Check if the triangle is degenerated
if (d < FLT_MIN && d > -FLT_MIN) {
std::cerr << "distPointTriangleSquared: Degenerated triangle !\n";
return -1.0;
}
double invD = 1.0 / d;
// these are not needed for every point, should still perform
// better with many points against one triangle
Point v1v2 = _v2 - _v1;
double inv_v0v2_2 = 1.0 / v0v2.sqrnorm();
double inv_v0v1_2 = 1.0 / v0v1.sqrnorm();
double inv_v1v2_2 = 1.0 / v1v2.sqrnorm();
Point v0p = _p - _v0;
Point t = v0p % n;
double s01, s02, s12;
double a = (t | v0v2) * -invD;
double b = (t | v0v1) * invD;
if (a < 0)
{
// Calculate the distance to an edge or a corner vertex
s02 = ( v0v2 | v0p ) * inv_v0v2_2;
if (s02 < 0.0)
{
s01 = ( v0v1 | v0p ) * inv_v0v1_2;
if (s01 <= 0.0) {
v0p = _v0;
} else if (s01 >= 1.0) {
v0p = _v1;
} else {
v0p = _v0 + v0v1 * s01;
}
} else if (s02 > 1.0) {
s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2;
if (s12 >= 1.0) {
v0p = _v2;
} else if (s12 <= 0.0) {
v0p = _v1;
} else {
v0p = _v1 + v1v2 * s12;
}
} else {
v0p = _v0 + v0v2 * s02;
}
} else if (b < 0.0) {
// Calculate the distance to an edge or a corner vertex
s01 = ( v0v1 | v0p ) * inv_v0v1_2;
if (s01 < 0.0)
{
s02 = ( v0v2 | v0p ) * inv_v0v2_2;
if (s02 <= 0.0) {
v0p = _v0;
} else if (s02 >= 1.0) {
v0p = _v2;
} else {
v0p = _v0 + v0v2 * s02;
}
} else if (s01 > 1.0) {
s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2;
if (s12 >= 1.0) {
v0p = _v2;
} else if (s12 <= 0.0) {
v0p = _v1;
} else {
v0p = _v1 + v1v2 * s12;
}
} else {
v0p = _v0 + v0v1 * s01;
}
} else if (a+b > 1.0) {
// Calculate the distance to an edge or a corner vertex
s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2;
if (s12 >= 1.0) {
s02 = ( v0v2 | v0p ) * inv_v0v2_2;
if (s02 <= 0.0) {
v0p = _v0;
} else if (s02 >= 1.0) {
v0p = _v2;
} else {
v0p = _v0 + v0v2*s02;
}
} else if (s12 <= 0.0) {
s01 = ( v0v1 | v0p ) * inv_v0v1_2;
if (s01 <= 0.0) {
v0p = _v0;
} else if (s01 >= 1.0) {
v0p = _v1;
} else {
v0p = _v0 + v0v1 * s01;
}
} else {
v0p = _v1 + v1v2 * s12;
}
} else {
// Calculate the distance to an interior point of the triangle
_nearestPoint = _p - n*((n|v0p) * invD);
return (_nearestPoint - _p).sqrnorm();
}
_nearestPoint = v0p;
return (_nearestPoint - _p).sqrnorm();
}
template
void
ModHausdorffT::
initialize()
{
typename Mesh::FIter f_it(mesh_.faces_begin()), f_end(mesh_.faces_end());
for (; f_it!=f_end; ++f_it)
mesh_.property(points_, f_it).clear();
}
//-----------------------------------------------------------------------------
template
float
ModHausdorffT::
collapse_priority(const CollapseInfo& _ci)
{
static Points points; points.clear();
std::vector faces; faces.reserve(20);
typename Mesh::VertexFaceIter vf_it;
typename Mesh::FaceHandle fh;
typename Mesh::Scalar sqr_tolerace = tolerance_*tolerance_;
typename Mesh::Point dummy;
typename Mesh::CFVIter fv_it;
bool ok;
// collect all points to be tested
// collect all faces to be tested against
for (vf_it=mesh_.vf_iter(_ci.v0); vf_it; ++vf_it) {
fh = vf_it.handle();
if (fh != _ci.fl && fh != _ci.fr)
faces.push_back(fh);
Points& pts = mesh_.property(points_, fh);
std::copy(pts.begin(), pts.end(), std::back_inserter(points));
}
// add point to be removed
points.push_back(_ci.p0);
// setup iterators
typename std::vector::iterator fh_it, fh_end(faces.end());
typename Points::const_iterator p_it, p_end(points.end());
// simulate collapse
mesh_.set_point(_ci.v0, _ci.p1);
// for each point: try to find a face such that error is < tolerance
ok = true;
for (p_it=points.begin(); ok && p_it!=p_end; ++p_it) {
ok = false;
for (fh_it=faces.begin(); !ok && fh_it!=fh_end; ++fh_it) {
const Point& p0 = mesh_.point(fv_it=mesh_.cfv_iter(*fh_it));
const Point& p1 = mesh_.point(++fv_it);
const Point& p2 = mesh_.point(++fv_it);
if ( distPointTriangleSquared(*p_it, p0, p1, p2, dummy) <= sqr_tolerace)
ok = true;
}
}
// undo simulation changes
mesh_.set_point(_ci.v0, _ci.p0);
return ( ok ? Base::LEGAL_COLLAPSE : Base::ILLEGAL_COLLAPSE );
}
//-----------------------------------------------------------------------------
template
void
ModHausdorffT::
postprocess_collapse(const CollapseInfo& _ci)
{
static Points points;
typename Mesh::VertexFaceIter vf_it;
FaceHandle fh;
std::vector faces;
// collect points & neighboring triangles
points.clear(); // it's static !
faces.reserve(20);
// collect active faces and their points
for (vf_it=mesh_.vf_iter(_ci.v1); vf_it; ++vf_it) {
fh = vf_it.handle();
faces.push_back(fh);
Points& pts = mesh_.property(points_, fh);
std::copy(pts.begin(), pts.end(), std::back_inserter(points));
pts.clear();
}
if (faces.empty()) return; // should not happen anyway...
// collect points of the 2 deleted faces
if ((fh=_ci.fl).is_valid()) {
Points& pts = mesh_.property(points_, fh);
std::copy(pts.begin(), pts.end(), std::back_inserter(points));
pts.clear();
}
if ((fh=_ci.fr).is_valid()) {
Points& pts = mesh_.property(points_, fh);
std::copy(pts.begin(), pts.end(), std::back_inserter(points));
pts.clear();
}
// add the deleted point
points.push_back(_ci.p0);
// setup iterators
typename std::vector::iterator fh_it, fh_end(faces.end());
typename Points::const_iterator p_it, p_end(points.end());
// re-distribute points
Scalar emin, e;
Point dummy;
typename Mesh::CFVIter fv_it;
for (p_it=points.begin(); p_it!=p_end; ++p_it) {
emin = FLT_MAX;
for (fh_it=faces.begin(); fh_it!=fh_end; ++fh_it) {
const Point& p0 = mesh_.point(fv_it=mesh_.cfv_iter(*fh_it));
const Point& p1 = mesh_.point(++fv_it);
const Point& p2 = mesh_.point(++fv_it);
e = distPointTriangleSquared(*p_it, p0, p1, p2, dummy);
if (e < emin) {
emin = e;
fh = *fh_it;
}
}
mesh_.property(points_, fh).push_back(*p_it);
}
}
//-----------------------------------------------------------------------------
template
typename ModHausdorffT::Scalar
ModHausdorffT::
compute_sqr_error(FaceHandle _fh, const Point& _p) const
{
typename Mesh::CFVIter fv_it = mesh_.cfv_iter(_fh);
const Point& p0 = mesh_.point(fv_it);
const Point& p1 = mesh_.point(++fv_it);
const Point& p2 = mesh_.point(++fv_it);
const Points& points = mesh_.property(points_, _fh);
typename Points::const_iterator p_it = points.begin();
typename Points::const_iterator p_end = points.end();
Point dummy;
Scalar e;
Scalar emax = distPointTriangleSquared(_p, p0, p1, p2, dummy);
for (; p_it!=p_end; ++p_it) {
e = distPointTriangleSquared(*p_it, p0, p1, p2, dummy);
if (e > emax)
emax = e;
}
return emax;
}
//=============================================================================
}
}
//=============================================================================