/* ========================================================================= * * * * OpenMesh * * Copyright (c) 2001-2015, RWTH-Aachen University * * Department of Computer Graphics and Multimedia * * All rights reserved. * * www.openmesh.org * * * *---------------------------------------------------------------------------* * This file is part of OpenMesh. * *---------------------------------------------------------------------------* * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * * * 1. Redistributions of source code must retain the above copyright notice, * * this list of conditions and the following disclaimer. * * * * 2. Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * * 3. Neither the name of the copyright holder nor the names of its * * contributors may be used to endorse or promote products derived from * * this software without specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER * * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * * ========================================================================= */ /** \file ModHausdorffT_impl.hh */ //============================================================================= // // CLASS ModHausdorffT - IMPLEMENTATION // //============================================================================= #define OPENMESH_DECIMATER_MODHAUSDORFFT_C //== INCLUDES ================================================================= #include "ModHausdorffT.hh" //== NAMESPACES =============================================================== namespace OpenMesh { namespace Decimater { //== IMPLEMENTATION ========================================================== template typename ModHausdorffT::Scalar ModHausdorffT:: distPointTriangleSquared( const Point& _p, const Point& _v0, const Point& _v1, const Point& _v2 ) { const Point v0v1 = _v1 - _v0; const Point v0v2 = _v2 - _v0; const Point n = v0v1 % v0v2; // not normalized ! const Scalar d = n.sqrnorm(); // Check if the triangle is degenerated if (d < FLT_MIN && d > -FLT_MIN) { return -1.0; } const Scalar invD = static_cast(1.0) / d; // these are not needed for every point, should still perform // better with many points against one triangle const Point v1v2 = _v2 - _v1; const Scalar inv_v0v2_2 = static_cast(1.0) / v0v2.sqrnorm(); const Scalar inv_v0v1_2 = static_cast(1.0) / v0v1.sqrnorm(); const Scalar inv_v1v2_2 = static_cast(1.0) / v1v2.sqrnorm(); Point v0p = _p - _v0; Point t = v0p % n; typename Point::value_type s01, s02, s12; const Scalar a = (t | v0v2) * -invD; const Scalar b = (t | v0v1) * invD; if (a < 0) { // Calculate the distance to an edge or a corner vertex s02 = ( v0v2 | v0p ) * inv_v0v2_2; if (s02 < 0.0) { s01 = ( v0v1 | v0p ) * inv_v0v1_2; if (s01 <= 0.0) { v0p = _v0; } else if (s01 >= 1.0) { v0p = _v1; } else { v0p = _v0 + v0v1 * s01; } } else if (s02 > 1.0) { s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2; if (s12 >= 1.0) { v0p = _v2; } else if (s12 <= 0.0) { v0p = _v1; } else { v0p = _v1 + v1v2 * s12; } } else { v0p = _v0 + v0v2 * s02; } } else if (b < 0.0) { // Calculate the distance to an edge or a corner vertex s01 = ( v0v1 | v0p ) * inv_v0v1_2; if (s01 < 0.0) { // const Point n = v0v1 % v0v2; // not normalized ! s02 = ( v0v2 | v0p ) * inv_v0v2_2; if (s02 <= 0.0) { v0p = _v0; } else if (s02 >= 1.0) { v0p = _v2; } else { v0p = _v0 + v0v2 * s02; } } else if (s01 > 1.0) { s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2; if (s12 >= 1.0) { v0p = _v2; } else if (s12 <= 0.0) { v0p = _v1; } else { v0p = _v1 + v1v2 * s12; } } else { v0p = _v0 + v0v1 * s01; } } else if (a+b > 1.0) { // Calculate the distance to an edge or a corner vertex s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2; if (s12 >= 1.0) { s02 = ( v0v2 | v0p ) * inv_v0v2_2; if (s02 <= 0.0) { v0p = _v0; } else if (s02 >= 1.0) { v0p = _v2; } else { v0p = _v0 + v0v2*s02; } } else if (s12 <= 0.0) { s01 = ( v0v1 | v0p ) * inv_v0v1_2; if (s01 <= 0.0) { v0p = _v0; } else if (s01 >= 1.0) { v0p = _v1; } else { v0p = _v0 + v0v1 * s01; } } else { v0p = _v1 + v1v2 * s12; } } else { // Calculate the distance to an interior point of the triangle return ( (_p - n*((n|v0p) * invD)) - _p).sqrnorm(); } return (v0p - _p).sqrnorm(); } template void ModHausdorffT:: initialize() { typename Mesh::FIter f_it(mesh_.faces_begin()), f_end(mesh_.faces_end()); for (; f_it!=f_end; ++f_it) mesh_.property(points_, *f_it).clear(); } //----------------------------------------------------------------------------- template float ModHausdorffT:: collapse_priority(const CollapseInfo& _ci) { std::vector faces; faces.reserve(20); typename Mesh::VertexFaceIter vf_it; typename Mesh::FaceHandle fh; const typename Mesh::Scalar sqr_tolerace = tolerance_*tolerance_; typename Mesh::CFVIter fv_it; bool ok; // Clear the temporary point storage tmp_points_.clear(); // collect all points to be tested // collect all faces to be tested against for (vf_it=mesh_.vf_iter(_ci.v0); vf_it.is_valid(); ++vf_it) { fh = *vf_it; if (fh != _ci.fl && fh != _ci.fr) faces.push_back(fh); Points& pts = mesh_.property(points_, fh); std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_)); } // add point to be removed tmp_points_.push_back(_ci.p0); // setup iterators typename std::vector::iterator fh_it, fh_end(faces.end()); typename Points::const_iterator p_it, p_end(tmp_points_.end()); // simulate collapse mesh_.set_point(_ci.v0, _ci.p1); // for each point: try to find a face such that error is < tolerance ok = true; for (p_it=tmp_points_.begin(); ok && p_it!=p_end; ++p_it) { ok = false; for (fh_it=faces.begin(); !ok && fh_it!=fh_end; ++fh_it) { fv_it=mesh_.cfv_iter(*fh_it); const Point& p0 = mesh_.point(*fv_it); const Point& p1 = mesh_.point(*(++fv_it)); const Point& p2 = mesh_.point(*(++fv_it)); if ( distPointTriangleSquared(*p_it, p0, p1, p2) <= sqr_tolerace) ok = true; } } // undo simulation changes mesh_.set_point(_ci.v0, _ci.p0); return ( ok ? static_cast(Base::LEGAL_COLLAPSE) : static_cast(Base::ILLEGAL_COLLAPSE) ); } //----------------------------------------------------------------------------- template void ModHausdorffT::set_error_tolerance_factor(double _factor) { if (_factor >= 0.0 && _factor <= 1.0) { // the smaller the factor, the smaller tolerance gets // thus creating a stricter constraint // division by error_tolerance_factor_ is for normalization Scalar tolerance = tolerance_ * Scalar(_factor / this->error_tolerance_factor_); set_tolerance(tolerance); this->error_tolerance_factor_ = _factor; } } //----------------------------------------------------------------------------- template void ModHausdorffT:: postprocess_collapse(const CollapseInfo& _ci) { typename Mesh::VertexFaceIter vf_it; FaceHandle fh; std::vector faces; // collect points & neighboring triangles tmp_points_.clear(); faces.reserve(20); // collect active faces and their points for (vf_it=mesh_.vf_iter(_ci.v1); vf_it.is_valid(); ++vf_it) { fh = *vf_it; faces.push_back(fh); Points& pts = mesh_.property(points_, fh); std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_)); pts.clear(); } if (faces.empty()) return; // should not happen anyway... // collect points of the 2 deleted faces if ((fh=_ci.fl).is_valid()) { Points& pts = mesh_.property(points_, fh); std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_)); pts.clear(); } if ((fh=_ci.fr).is_valid()) { Points& pts = mesh_.property(points_, fh); std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_)); pts.clear(); } // add the deleted point tmp_points_.push_back(_ci.p0); // setup iterators typename std::vector::iterator fh_it, fh_end(faces.end()); typename Points::const_iterator p_it, p_end(tmp_points_.end()); // re-distribute points Scalar emin, e; typename Mesh::CFVIter fv_it; for (p_it=tmp_points_.begin(); p_it!=p_end; ++p_it) { emin = FLT_MAX; for (fh_it=faces.begin(); fh_it!=fh_end; ++fh_it) { fv_it=mesh_.cfv_iter(*fh_it); const Point& p0 = mesh_.point(*fv_it); const Point& p1 = mesh_.point(*(++fv_it)); const Point& p2 = mesh_.point(*(++fv_it)); e = distPointTriangleSquared(*p_it, p0, p1, p2); if (e < emin) { emin = e; fh = *fh_it; } } mesh_.property(points_, fh).push_back(*p_it); } } //----------------------------------------------------------------------------- template typename ModHausdorffT::Scalar ModHausdorffT:: compute_sqr_error(FaceHandle _fh, const Point& _p) const { typename Mesh::CFVIter fv_it = mesh_.cfv_iter(_fh); const Point& p0 = mesh_.point(fv_it); const Point& p1 = mesh_.point(++fv_it); const Point& p2 = mesh_.point(++fv_it); const Points& points = mesh_.property(points_, _fh); typename Points::const_iterator p_it = points.begin(); typename Points::const_iterator p_end = points.end(); Point dummy; Scalar e; Scalar emax = distPointTriangleSquared(_p, p0, p1, p2); for (; p_it!=p_end; ++p_it) { e = distPointTriangleSquared(*p_it, p0, p1, p2); if (e > emax) emax = e; } return emax; } //============================================================================= } } //=============================================================================