adaptive_subdivider.cc 12.5 KB
Newer Older
Jan Möbius's avatar
Jan Möbius committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// ============================================================================

// -------------------------------------------------------------- includes ----

// -------------------- OpenMesh
#include <OpenMesh/Core/IO/MeshIO.hh>
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
#include <OpenMesh/Tools/Utils/Timer.hh>
#include <OpenMesh/Tools/Utils/getopt.h>
// -------------------- OpenMesh Adaptive Composite Subdivider
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/CompositeT.hh>
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/RulesT.hh>
// -------------------- STL
#include <iostream>
#include <fstream>
#include <sstream>
#if defined(OM_CC_MIPS)
#  include <math.h>
#else
#  include <cmath>
   using std::pow;
#endif

  
using OpenMesh::Subdivider::Adaptive::CompositeTraits;

// define mesh, rule interface, and subdivider types
typedef OpenMesh::TriMesh_ArrayKernelT<CompositeTraits>         MyMesh;
typedef OpenMesh::Subdivider::Adaptive::RuleInterfaceT<MyMesh>  Rule;
typedef OpenMesh::Subdivider::Adaptive::CompositeT<MyMesh>      Subdivider;

// ----------------------------------------------------------------------------

using namespace OpenMesh::Subdivider;

// factory function to add a RULE to a subdivider
#define ADD_FN( RULE ) \
  bool add_ ## RULE( Subdivider& _sub ) \
  { return _sub.add< Adaptive:: RULE < MyMesh > >(); }

ADD_FN( Tvv3 );
ADD_FN( Tvv4 );
ADD_FN( VF   );
ADD_FN( FF   );
ADD_FN( FFc  );
ADD_FN( FV   );
ADD_FN( FVc  );
ADD_FN( VV   );
ADD_FN( VVc  );
ADD_FN( VE   );
ADD_FN( VdE  );
ADD_FN( VdEc );
ADD_FN( EV   );
ADD_FN( EVc  );
ADD_FN( EF   );
ADD_FN( FE   );
ADD_FN( EdE  );
ADD_FN( EdEc );

#undef ADD_FN

typedef bool (*add_rule_ft)( Subdivider& );

// map rule name to factory function
struct RuleMap : std::map< std::string, add_rule_ft >
{
  RuleMap()
  {
#define ADD( RULE ) \
    (*this)[ #RULE ] = add_##RULE;

    ADD( Tvv3 );
    ADD( Tvv4 );
    ADD( VF   );
    ADD( FF   );
    ADD( FFc  );
    ADD( FV   );
    ADD( FVc  );
    ADD( VV   );
    ADD( VVc  );
    ADD( VE   );
    ADD( VdE  );
    ADD( VdEc );
    ADD( EV   );
    ADD( EVc  );
    ADD( EF   );
    ADD( FE   );
    ADD( EdE  );
    ADD( EdEc );

#undef ADD
  }

} available_rules;


// ----------------------------------------------------------------------------

std::string basename( const std::string& _fname );
void usage_and_exit(const std::string& _fname, int xcode);

// ----------------------------------------------------------------------------


int main(int argc, char **argv)
{
  size_t      n_iter = 0;          // n iteration
  size_t      max_nv = size_t(-1); // max. number of vertices in the end
  std::string ifname;              // input mesh
  std::string ofname;              // output mesh
  std::string rule_sequence = "Tvv3 VF FF FVc"; // sqrt3 default
  bool        uniform = false;
  int         c;

  // ---------------------------------------- evaluate command line 
  while ( (c=getopt(argc, argv, "hlm:n:r:sU"))!=-1 )
  {
    switch(c)
    {
      case 's': rule_sequence = "Tvv3 VF FF FVc";       break; // sqrt3
      case 'l': rule_sequence = "Tvv4 VdE EVc VdE EVc"; break; // loop
      case 'n': { std::stringstream s; s << optarg; s >> n_iter; } break;
      case 'm': { std::stringstream s; s << optarg; s >> max_nv; } break;
      case 'r': rule_sequence = optarg; break;
      case 'U': uniform = true; break;
      case 'h': usage_and_exit(argv[0],0);
      case '?':
      default:  usage_and_exit(argv[0],1);
    }
  }

  if ( optind == argc )
    usage_and_exit(argv[0],2);

  if ( optind < argc )
    ifname = argv[optind++];

  if ( optind < argc )
    ofname = argv[optind++];

  // if ( optind < argc ) // too many arguments

  // ---------------------------------------- mesh and subdivider
  MyMesh                          mesh;
  Subdivider                      subdivider(mesh);


  // -------------------- read mesh from file
  std::cout << "Input mesh         : " << ifname << std::endl;
  if (!OpenMesh::IO::read_mesh(mesh, ifname))
  {
    std::cerr << "  Error reading file!\n";
    return 1;
  }

  // store orignal size of mesh
  size_t n_vertices = mesh.n_vertices();
  size_t n_edges    = mesh.n_edges();
  size_t n_faces    = mesh.n_faces();
  
  if ( n_iter > 0 )
    std::cout << "Desired #iterations: " << n_iter << std::endl;

  if ( max_nv < size_t(-1) )
  {
    std::cout << "Desired max. #V    : " << max_nv << std::endl;
    if (!n_iter )
      n_iter = size_t(-1);
  }


  // -------------------- Setup rule sequence
  {    
    std::stringstream s;
    std::string       token;    

    RuleMap::iterator it = available_rules.end();

    for (s << rule_sequence; s >> token; )
    {
      if ( (it=available_rules.find( token )) != available_rules.end() )
      {
        it->second( subdivider );
      }      
      else if ( token[0]=='(' && (subdivider.n_rules() > 0) )
      {
        std::string::size_type beg(1);
        if (token.length()==1)
        {
          s >> token;
          beg = 0;
        }

        std::string::size_type 
          end  = token.find_last_of(')');
        std::string::size_type 
          size = end==std::string::npos ? token.size()-beg : end-beg;
          
        std::stringstream v;
        MyMesh::Scalar coeff;
        std::cout << "  " << token << std::endl;
        std::cout << "  " << beg << " " << end << " " << size << std::endl;
        v << token.substr(beg, size);
        v >> coeff;
        std::cout << "  coeffecient " << coeff << std::endl;
        subdivider.rule( subdivider.n_rules()-1 ).set_coeff(coeff);

        if (end == std::string::npos)
        {
          s >> token;
          if (token[0]!=')')
          {
            std::cerr << "Syntax error: Missing ')'\n";
            return 1;
          }
        }
      }
      else
      {
        std::cerr << "Syntax error: " << token << "?\n";
        return 1;
      }
    }
  }

  std::cout << "Rule sequence      : " 
            << subdivider.rules_as_string() << std::endl;

  // -------------------- Initialize subdivider
  std::cout << "Initialize subdivider\n";
  if (!subdivider.initialize())
  {
    std::cerr << "  Error!\n";
    return 1;
  }

  // 
  MyMesh::FaceFaceIter   ff_it;
  double                 quality(0.0), face_quality, temp_quality;
  int                    valence;         

  // ---------------------------------------- subdivide
  std::cout << "\nSubdividing...\n";

  OpenMesh::Utils::Timer timer, timer2;
  size_t                 i;

  if ( uniform )
  { // unifom
    MyMesh::VertexHandle vh;
    MyMesh::VertexIter   v_it;
    MyMesh::FaceHandle   fh;
    MyMesh::FaceIter     f_it;


    // raise all vertices to target state
    timer.start();

    size_t n       = n_iter;
    size_t n_rules = subdivider.n_rules();

    i = 0;

    // calculate target states for faces and vertices
    int target1 = (n - 1) * n_rules + subdivider.subdiv_rule().number() + 1;
    int target2 = n * n_rules;

    for (f_it = mesh.faces_begin(); f_it != mesh.faces_end(); ++f_it) {
      
      if (mesh.data(f_it).state() < target1) {
        ++i;        
        fh = f_it.handle();
        timer2.start();
        subdivider.refine(fh);
        timer2.stop();
      }
    }

    for (v_it = mesh.vertices_begin(); v_it != mesh.vertices_end(); ++v_it) {
      
      if (mesh.data(v_it).state() < target2) {
        vh = v_it.handle();
        timer2.cont();
        subdivider.refine(vh);
        timer2.stop();
      }
    }
    timer.stop();    
  }
  else
  { // adaptive

    MyMesh::FaceIter   f_it;
    MyMesh::FaceHandle fh;

    std::vector<double> __acos;
    size_t              buckets(3000);
    double              range(2.0);
    double              range2bucket(buckets/range);

    for (i = 0; i < buckets; ++i)
      __acos.push_back( acos(-1.0 + i * range / buckets) );

    timer.start(); // total time needed

    //  n iterations or until desired number of vertices reached approx.
    for (i = 0; i < n_iter && mesh.n_vertices() < max_nv; ++i) 
    {
      mesh.update_face_normals();

      // calculate quality
      quality = 0.0;

      fh = mesh.faces_begin().handle();

      // check every face
      for (f_it = mesh.faces_begin(); f_it != mesh.faces_end(); ++f_it) {

        face_quality = 0.0;
        valence      = 0;

        for (ff_it = mesh.ff_iter(f_it.handle()); ff_it; ++ff_it) {

          temp_quality = OpenMesh::dot( mesh.normal(f_it), 
                                        mesh.normal(ff_it) );

          if (temp_quality >= 1.0)
            temp_quality = .99;
          else if (temp_quality <= -1.0)
            temp_quality = -.99;
          temp_quality  = (1.0+temp_quality) * range2bucket;
          face_quality += __acos[int(temp_quality+.5)];

          ++valence;
        }

        face_quality /= valence;

        // calaculate face area
        MyMesh::Point  p1, p2, p3;
        MyMesh::Scalar area;

#define heh halfedge_handle
#define nheh next_halfedge_handle
#define tvh to_vertex_handle
#define fvh from_vertex_handle
        p1 = mesh.point(mesh.tvh(mesh.heh(f_it.handle())));
        p2 = mesh.point(mesh.fvh(mesh.heh(f_it.handle())));
        p3 = mesh.point(mesh.tvh(mesh.nheh(mesh.heh(f_it.handle()))));
#undef heh
#undef nheh
#undef tvh
#undef fvh

        area = ((p2 - p1) % (p3 - p1)).norm();

        // weight face_quality
        face_quality *= pow(double(area), double(.1));
        //face_quality *= area;

        if (face_quality >= quality && !mesh.is_boundary(f_it.handle())) 
        {
          quality = face_quality;
          fh      = f_it.handle();
        }
      }

      // Subdivide Face
      timer2.cont();
      subdivider.refine(fh);
      timer2.stop();
    }

    // calculate time
    timer.stop();

  } // uniform/adaptive?

  // calculate maximum refinement level
  Adaptive::state_t max_level(0);
  
  for (MyMesh::VertexIter v_it = mesh.vertices_begin(); 
       v_it != mesh.vertices_end(); ++v_it) 
  {    
    if (mesh.data(v_it).state() > max_level)
      max_level = mesh.data(v_it).state();
  }


  // output results
  std::cout << "\nDid " << i << (uniform ? " uniform " : "" )
            << " subdivision steps in "
            << timer.as_string()
            << ", " << i/timer.seconds() << " steps/s\n";
  std::cout << "  only refinement: " << timer2.as_string()
            << ", " << i/timer2.seconds() << " steps/s\n\n";

  std::cout << "Before: ";
  std::cout << n_vertices << " Vertices, ";
  std::cout << n_edges << " Edges, ";
  std::cout << n_faces << " Faces. \n";

  std::cout << "Now   : ";
  std::cout << mesh.n_vertices() << " Vertices, ";
  std::cout << mesh.n_edges() << " Edges, ";
  std::cout << mesh.n_faces() << " Faces. \n\n";

  std::cout << "Maximum quality          : " << quality << std::endl;
  std::cout << "Maximum Subdivision Level: " << max_level/subdivider.n_rules()
            << std::endl << std::endl;

  // ---------------------------------------- write mesh to file
  {
    if ( ofname.empty() )
    {
      std::stringstream s;

      s << "result." << subdivider.rules_as_string("_")
        << "-" << i << "x.off";
      s >> ofname;
    }

    std::cout << "Output file: '" << ofname << "'.\n";
    if (!OpenMesh::IO::write_mesh(mesh, ofname, OpenMesh::IO::Options::Binary))
    {
      std::cerr << "  Error writing file!\n";
      return 1;
    }
  }
  return 0;
}

// ----------------------------------------------------------------------------
// helper

void usage_and_exit(const std::string& _fname, int xcode)
{
  using namespace std;

  cout << endl
       << "Usage: " << basename(_fname)
       << " [Options] input-mesh [output-mesh]\n\n";
  cout << "\tAdaptively refine an input-mesh. The refined mesh is stored in\n"
       << "\ta file named \"result.XXX.off\" (binary .off), if not specified\n"
       << "\texplicitely (optional 2nd parameter of command line).\n\n";
  cout << "Options:\n\n";
  cout << "-m <int>\n\tAdaptively refine up to approx. <int> vertices.\n\n"
       << "-n <int>\n\tAdaptively refine <int> times.\n\n"
       << "-r <rule sequence>\n\tDefine a custom rule sequence.\n\n"
       << "-l\n\tUse rule sequence for adaptive Loop.\n\n"
       << "-s\n\tUse rule sequence for adaptive sqrt(3).\n\n"
       << "-U\n\tRefine mesh uniformly (simulates uniform subdivision).\n\n";

  exit(xcode);    
}

std::string basename(const std::string& _f)
{
  std::string::size_type dot = _f.rfind("/");
  if (dot == std::string::npos)
    return _f;
  return _f.substr(dot+1, _f.length()-(dot+1));
}

// ----------------------------------------------------------------------------
//                                end of file
// ============================================================================