Algorithms.hh 16.8 KB
Newer Older
Jan Möbius's avatar
Jan Möbius committed
1 2 3
/*===========================================================================*\
 *                                                                           *
 *                              OpenFlipper                                  *
Jan Möbius's avatar
Jan Möbius committed
4
 *      Copyright (C) 2001-2010 by Computer Graphics Group, RWTH Aachen      *
Jan Möbius's avatar
Jan Möbius committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *                           www.openflipper.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenFlipper.                                        *
 *                                                                           *
 *  OpenFlipper is free software: you can redistribute it and/or modify      *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenFlipper is distributed in the hope that it will be useful,           *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenFlipper. If not,                                  *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
Jan Möbius's avatar
Jan Möbius committed
37
 *   $Revision$                                                       *
Jan Möbius's avatar
Jan Möbius committed
38 39 40 41
 *   $Author$                                                      *
 *   $Date$                   *
 *                                                                           *
\*===========================================================================*/
Jan Möbius's avatar
 
Jan Möbius committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61




#ifndef GEO_ALGORITHMS_HH
#define GEO_ALGORITHMS_HH


//== INCLUDES =================================================================

#include <float.h>
#include "../Math/VectorT.hh"


namespace ACG {
namespace Geometry {


//== 3D STUFF =================================================================

Jan Möbius's avatar
Jan Möbius committed
62
 
Jan Möbius's avatar
 
Jan Möbius committed
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

/// return circumcenter of tetrahedron (_v0,_v1,_v2,_v3)
template<typename Scalar>
bool
circumCenter( const VectorT<Scalar,3>&  _v0,
	      const VectorT<Scalar,3>&  _v1,
	      const VectorT<Scalar,3>&  _v2,
	      const VectorT<Scalar,3>&  _v3,
	      VectorT<Scalar,3>&        _result );


/// return squared radius of circumcircle of tetrahedron (_v0,_v1,_v2,_v3)
template<typename Scalar>
Scalar
circumRadiusSquared( const VectorT<Scalar,3>&  _v0,
		     const VectorT<Scalar,3>&  _v1,
		     const VectorT<Scalar,3>&  _v2,
		     const VectorT<Scalar,3>&  _v3 )
{
  VectorT<Scalar,3> cc;
  return circumCenter(_v0, _v1, _v2, _v3, cc) ? (cc-_v0).sqrnorm() : FLT_MAX;
}


/// return radius of circumcircle of tetrahedron (_v0,_v1,_v2,_v3)
template<typename Scalar>
Scalar
circumRadius( const VectorT<Scalar,3>&  _v0,
	      const VectorT<Scalar,3>&  _v1,
	      const VectorT<Scalar,3>&  _v2,
	      const VectorT<Scalar,3>&  _v3 )
{
  return sqrt(circumRadiusSquared(_v0, _v1, _v2, _v3));
}


/// find a vector that's perpendicular to _v
template <typename Scalar>
VectorT<Scalar,3>
perpendicular( const VectorT<Scalar,3>&  _v );


105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/**  \brief Intersect a ray and a triangle.
  *
  * Computes the intersection point between a ray and a triangle.
  *
  * @param _o origin of the ray
  * @param _dir direction vector of the ray
  * @param _v0 first point of the triangle
  * @param _v1 second point of the triangle
  * @param _v2 third point of the triangle
  * @param _t returned distance from the origin to the intersection, in units of _dir
  * @param _u returned first barycentric coordinate of the intersection point in the triangle
  * @param _v returned second barycentric coordinate of the intersection point in the triangle
  * @return true if an intersection was found
  */
template<typename Vec>
bool
triangleIntersection( const Vec&  _o,
		      const Vec&  _dir,
		      const Vec&  _v0,
		      const Vec&  _v1,
		      const Vec&  _v2,
		      typename Vec::value_type& _t,
		      typename Vec::value_type& _u,
		      typename Vec::value_type& _v );
      

/**  \brief Intersect a ray and an axis aligned bounding box
  *
  * Computes the intersection point between a ray and an axis aligned bounding box
  *
  * @param _dir direction vector of the ray
  * @param _bbmin lower left front corner of the bounding box
  * @param _bbmax upper right back corner of the bounding box
  * @param _t0 if there was an intersection, this value marks the entry point
  * @param _t1 if there was an intersection, this value marks the exit point
  * @return true if an intersection was found
  */
template<typename Vec>
bool
axisAlignedBBIntersection( const Vec&  _o,
		  const Vec&  _dir,
		  const Vec& _bbmin,
		  const Vec& _bbmax,
		  typename Vec::value_type& _t0,
		  typename Vec::value_type& _t1 );


152
//== 2D STUFF =================================================================
Jan Möbius's avatar
 
Jan Möbius committed
153

154
/// orientation of point _p w.r.t. line through _v0,_v1 in 2D
Jan Möbius's avatar
 
Jan Möbius committed
155 156 157 158 159 160 161 162 163 164 165
template<typename Scalar>
Scalar
pointLineOrientation( const VectorT<Scalar,2>&  _p,
		      const VectorT<Scalar,2>&  _v0,
		      const VectorT<Scalar,2>&  _v1 )
{
  VectorT<Scalar,2> d1(_p-_v0), d2(_v1-_v0);
  return (d1[0]*d2[1]-d1[1]*d2[0]);
}


166
/// are 3 vertices in counterclockwise order? in 2D
Jan Möbius's avatar
 
Jan Möbius committed
167 168 169 170 171 172 173 174 175 176
template<typename Scalar>
bool
isCCW( const VectorT<Scalar,2>&  _v0,
       const VectorT<Scalar,2>&  _v1,
       const VectorT<Scalar,2>&  _v2 )
{
  return ( pointLineOrientation(_v0, _v1, _v2) < Scalar(0.0) );
}


177
/// are 3 vertices in clockwise order? in 2D
Jan Möbius's avatar
 
Jan Möbius committed
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
template<typename Scalar>
bool
isCW( const VectorT<Scalar,2>&  _v0,
      const VectorT<Scalar,2>&  _v1,
      const VectorT<Scalar,2>&  _v2 )
{
  return ( pointLineOrientation(_v0, _v1, _v2) > Scalar(0.0) );
}


/// intersect two line segments (_v0,_v1) and (_v2,_v3)
template<typename Scalar>
bool
lineIntersection( const VectorT<Scalar,2>&  _v0,
		  const VectorT<Scalar,2>&  _v1,
		  const VectorT<Scalar,2>&  _v2,
		  const VectorT<Scalar,2>&  _v3,
		  Scalar& _t1,
		  Scalar& _t2 );


199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
//===========================================================================
/** @name Distance Functions ( N-Dimensional )
* @{ */
//===========================================================================     

/// distance from point _p to line (_v0,_v1)
template<class Vec>
typename Vec::value_type
distPointLine( const Vec& _p,
               const Vec& _v0,
               const Vec& _v1,
               Vec*       _min_v=0 )
{ return sqrt(distPointLineSquared(_p, _v0, _v1, _min_v)); }


/// squared distance from point _p to line (_v0,_v1)
template<class Vec>
typename Vec::value_type
distPointLineSquared( const Vec& _p,
                      const Vec& _v0,
                      const Vec& _v1,
                      Vec*       _min_v=0);

/// distance from point _p to triangle (_v0, _v1, _v2)
template <class Vec>
typename Vec::value_type
distPointTriangle( const Vec& _p,
                   const Vec& _v0,
                   const Vec& _v1,
                   const Vec& _v2,
                   Vec& _nearestPoint )
{ return sqrt(distPointTriangleSquared(_p, _v0, _v1, _v2, _nearestPoint)); }


/// squared distance from point _p to triangle (_v0, _v1, _v2)
template <class Vec>
typename Vec::value_type
distPointTriangleSquared( const Vec& _p,
                          const Vec& _v0,
                          const Vec& _v1,
                          const Vec& _v2,
                          Vec& _nearestPoint );
Jan Möbius's avatar
Jan Möbius committed
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
                          
/** \brief Checks the distance from a point to a plane
*
*
* @param _porigin Planes origin
* @param _pnormal Plane normal ( has to be normalized!)
* @param _point   point to test
* @return         distance
*/
template < typename VectorT , typename ValueT >
inline
ValueT 
distPointPlane(const VectorT& _porigin, 
               const VectorT& _pnormal, 
               const VectorT&  _point);                          
256

Jan Möbius's avatar
Jan Möbius committed
257 258 259 260 261 262 263 264
          
/** @} */   
          
//===========================================================================
/** @name Distance Functions ( 3-Dimensional )
* @{ */
//===========================================================================                             
                          
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
/// squared distance of lines (_v00, _v01) and (_v10, _v11)
template<typename Scalar>
Scalar
distLineLineSquared( const VectorT<Scalar,3>& _v00,
                     const VectorT<Scalar,3>& _v01,
                     const VectorT<Scalar,3>& _v10,
                     const VectorT<Scalar,3>& _v11,
                     VectorT<Scalar,3>*       _min_v0=0,
                     VectorT<Scalar,3>*       _min_v1=0,
                     bool                          _fastApprox=false );


/// distance of lines (_v00, _v01) and (_v10, _v11)
template<typename Scalar>
Scalar
distLineLine( const VectorT<Scalar,3>& _v00,
              const VectorT<Scalar,3>& _v01,
              const VectorT<Scalar,3>& _v10,
              const VectorT<Scalar,3>& _v11,
              VectorT<Scalar,3>*       _min_v0=0,
              VectorT<Scalar,3>*       _min_v1=0 )
{
  return sqrt(distLineLineSquared(_v00, _v01, _v10, _v11,
                                  _min_v0, _min_v1));
}

Jan Möbius's avatar
Jan Möbius committed
291 292
/** @} */   
   
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

//===========================================================================
/** @name Projection Functions ( N-Dimensional )
* @{ */
//===========================================================================      


/**
project one point to an edge. If its projection is not on the edge itself, the start or the endpoint is returned
@param _start beginning of edge
@param _end   end of the edge
@param _point point to be projected
*/
template < typename VectorT >
VectorT projectToEdge(const VectorT& _start , 
                      const VectorT& _end , 
                      const VectorT& _point );
                      
                      
/** \brief projects a point to a plane
* @param _porigin Planes origin
* @param _pnormal Plane normal ( has to be normalized! )
* @param _point   point to project
* @return         projected point
*/
template < typename VectorT >
inline
VectorT
projectToPlane(const VectorT& _porigin, 
               const VectorT& _pnormal, 
               const VectorT&  _point);                      
              
/** @} */           

//===========================================================================
/** @name Triangle Functions (2D Only!!)
* @{ */
//===========================================================================   

/** \brief return circumcenter of triangle (_v0,_v1,_v2)
*
*/

/// barycentric coord of _p w.r.t. (_u,_v,_w) in 2D
template<typename Scalar>
bool
baryCoord( const VectorT<Scalar,2>&  _p,
           const VectorT<Scalar,2>&  _u,
           const VectorT<Scalar,2>&  _v,
           const VectorT<Scalar,2>&  _w,
           VectorT<Scalar,3>&        _result );
           

/// is point _p in triangle (_v0,_v1,_v2) in 2D
template<typename Scalar>
bool
isInTriangle( const VectorT<Scalar,2>&  _p,
              const VectorT<Scalar,2>&  _u,
              const VectorT<Scalar,2>&  _v,
              const VectorT<Scalar,2>&  _w )
{
  VectorT<Scalar,3> bary;
  if (baryCoord(_p, _u, _v, _w, bary)) 
    return ((bary[0]>0.0) && (bary[1]>0.0) && (bary[2]>0.0));
  else {
    std::cerr << "point in triangle error\n";
    return false;
  }
}

Jan Möbius's avatar
 
Jan Möbius committed
363 364 365
template<typename Scalar>
bool
circumCenter( const VectorT<Scalar,2>&  _v0,
366 367 368
              const VectorT<Scalar,2>&  _v1,
              const VectorT<Scalar,2>&  _v2,
              VectorT<Scalar,2>&        _result );
Jan Möbius's avatar
 
Jan Möbius committed
369

370
/** @} */   
Jan Möbius's avatar
 
Jan Möbius committed
371

Jan Möbius's avatar
Jan Möbius committed
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
//===========================================================================
/** @name Triangle Functions 3-Dimensional
* @{ */
//===========================================================================  
 
/** barycentric coord of _p w.r.t. (_u,_v,_w) in 3D
    _p has to lie in plane (_u,_v,_w) **/
template<typename Scalar>
bool
baryCoord( const VectorT<Scalar,3>&  _p,
           const VectorT<Scalar,3>&  _u,
           const VectorT<Scalar,3>&  _v,
           const VectorT<Scalar,3>&  _w,
           VectorT<Scalar,3>&        _result );


/// construct min. enclosing sphere
template<typename Scalar>
bool
minSphere(const VectorT<Scalar,3>&  _v0,
          const VectorT<Scalar,3>&  _v1,
          const VectorT<Scalar,3>&  _v2,
          VectorT<Scalar,3>&        _center,
          Scalar&                   _radius);


/// return squared radius of min. enclosing circle of triangle (_v0,_v1,_v2)
template<typename Scalar>
Scalar
minRadiusSquared( const VectorT<Scalar,3>&  _v0,
                  const VectorT<Scalar,3>&  _v1,
                  const VectorT<Scalar,3>&  _v2 );

  
/// return radius of min. enclosing circle of triangle (_v0,_v1,_v2)
template<typename Scalar>
Scalar
minRadius( const VectorT<Scalar,3>&  _v0,
           const VectorT<Scalar,3>&  _v1,
           const VectorT<Scalar,3>&  _v2 )
{
  return sqrt(minRadiusSquared(_v0, _v1, _v2));
}


/// return circumcenter of triangle (_v0,_v1,_v2)
template<typename Scalar>
bool
circumCenter( const VectorT<Scalar,3>&  _v0,
              const VectorT<Scalar,3>&  _v1,
              const VectorT<Scalar,3>&  _v2,
              VectorT<Scalar,3>&        _result );


/// return squared radius of circumcircle of triangle (_v0,_v1,_v2)
template<typename Scalar>
Scalar
circumRadiusSquared( const VectorT<Scalar,3>&  _v0,
                     const VectorT<Scalar,3>&  _v1,
                     const VectorT<Scalar,3>&  _v2 );


/// return radius of circumcircle of triangle (_v0,_v1,_v2)
template<typename Scalar>
Scalar
circumRadius( const VectorT<Scalar,3>&  _v0,
              const VectorT<Scalar,3>&  _v1,
              const VectorT<Scalar,3>&  _v2 )
{
  return sqrt(circumRadiusSquared(_v0, _v1, _v2));
}

444 445 446 447 448 449 450 451 452 453 454 455
/**
* test angles in triangle
* return 0 if all smaller than 90?
* return 1 if angle at _p0 ist greater than 90?
* return 2 if angle at _p1 ist greater than 90?
* return 3 if angle at _p2 ist greater than 90?
*/
template<class VectorT>
int isObtuse(const VectorT& _p0,
             const VectorT& _p1,
             const VectorT& _p2 );

Jan Möbius's avatar
Jan Möbius committed
456
/** @} */   
Jan Möbius's avatar
 
Jan Möbius committed
457

458 459 460 461
//===========================================================================
/** @name Triangle Functions N-Dimensional
* @{ */
//===========================================================================   
Jan Möbius's avatar
 
Jan Möbius committed
462

Jan Möbius's avatar
Jan Möbius committed
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

/** \brief return area of triangle (_v0, _v1, _v2)
*
*/
template <class Vec>
typename Vec::value_type
triangleArea( const Vec& _v0,
              const Vec& _v1,
              const Vec& _v2 )
{
  return sqrt(triangleAreaSquared(_v0,_v1,_v2));
}
  

/** \brief return squared area of triangle (_v0, _v1, _v2)
*
*/
template <class Vec>
typename Vec::value_type
triangleAreaSquared( const Vec& _v0,
                     const Vec& _v1,
                     const Vec& _v2 );



488 489 490
/** \brief return aspect ratio of triangle
*
*/
Jan Möbius's avatar
 
Jan Möbius committed
491 492 493
template <typename Scalar, int N>
Scalar
aspectRatio( const VectorT<Scalar, N>& _v0,
494 495
             const VectorT<Scalar, N>& _v1,
             const VectorT<Scalar, N>& _v2 );
Jan Möbius's avatar
 
Jan Möbius committed
496

497 498 499
/** \brief return roundness of triangle: 1=equilateral, 0=colinear
*
*/
Jan Möbius's avatar
 
Jan Möbius committed
500 501 502
template <typename Scalar, int N>
Scalar
roundness( const VectorT<Scalar, N>& _v0,
503 504
           const VectorT<Scalar, N>& _v1,
           const VectorT<Scalar, N>& _v2 );
Jan Möbius's avatar
 
Jan Möbius committed
505

506
/** @} */              
Jan Möbius's avatar
 
Jan Möbius committed
507 508 509 510 511 512 513 514 515 516 517 518 519

//=============================================================================
} // namespace Geometry
} // namespace ACG
//=============================================================================
#if defined(INCLUDE_TEMPLATES) && !defined(GEO_ALGORITHMS_C)
#define GEO_ALGORITHMS_TEMPLATES
#include "Algorithms.cc"
#endif
//=============================================================================
#endif // GEO_ALGORITHMS_HH defined
//=============================================================================