
1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 1

Zometool R© Rationalization of Freeform Surfaces
Henrik Zimmer, Leif Kobbelt

Abstract—An ever broader availability of freeform designs together with an increasing demand for product customization has lead to
a rising interest in efficient physical realization of such designs, the trend toward personal fabrication. Not only large-scale architectural
applications are (becoming increasingly) popular but also different consumer-level rapid-prototyping applications, including toy and 3D
puzzle creation. In this work we present a method for do-it-yourself reproduction of freeform designs without the typical limitation of
state-of-the-art approaches requiring manufacturing custom parts using semi-professional laser cutters or 3d printers. Our idea is based
on a popular mathematical modeling system (Zometool) commonly used for modeling higher dimensional polyhedra and symmetric
structures such as molecules and crystal lattices. The proposed method extends the scope of Zometool modeling to freeform, disk-
topology surfaces. While being an efficient construction system on the one hand (consisting only of a single node type and 9 different
edge types), this inherent discreteness of the Zometool system, on the other hand gives rise to a hard approximation problem. We base
our method on a marching front approach, where elements are not added in a greedy sense, but rather whole regions on the front are
filled optimally, using a set of problem specific heuristics to keep complexity under control.

Index Terms—Rationalization, discrete optimization, Zometool, freeform surface approximation, advancing front, meshing

F

1 INTRODUCTION

E FFICIENT fabricability and realization of modern
freeform designs is a hot research topic with appli-

cations ranging from making foldable or 3D-printable
toys to real-life realizations of architectural designs.
There is an abundance of recent work in Geometry
Processing dealing with different such rationalizations
of geometric objects. One can classify these approaches
by their respective “scales”, where the scale is often not
only a measure of the actual real-life size of the objects
involved, but also correlates well to the public accessibility
of the results. One can generally differentiate between
three classes of methods for realizing geometric designs:
• large-scale rationalization dealing with architectural

designs and industry produced panels
• intermediate-scale rationalization requiring 3d printing

or laser cutting of custom panels
• small-scale rationalization relying only on commodity

ingredients such as paper
A major goal in large-scale processes is the min-

imization of costs related to the final realization of
a design. Besides aesthetic criteria (e.g., smoothness and
regularity), physical and constructional aspects are re-
ceiving increasing attention in Architectural Geometry,
with a typical focus on either the optimization of panel
properties, such as planarity (e.g. [1], [2], [3], [4]), or on
the minimization of panel diversity (e.g. [5], [6], [7], [8]).

On the intermediate scale various novel algorithms
exist for computing 3d puzzles (e.g., [9], [10], [11]) or
other realizations of 3d models (e.g., [12], [13], [14],
[15]) (even for dealing with moving mechanical parts
[16], [17], [18]). Unfortunately, the public availability of

• The authors are with the Chair for Computer Sciences 8 – Computer
Graphics & Multimedia, RWTH Aachen University, Aachen, Germany
E-mail: {zimmer, kobbelt}@cs.rwth-aachen.de

Fig. 1. Rationalized DOG. Our method computes a Zome-
tool rationalization (middle) of a digital input model (left)
which can then be manually assembled to yield a real-life
rationalization (actual photo on the right).

the results is often limited by the underlying need for
3d printing or laser cutting of custom parts. Likewise,
a widespread use of the physically based computation of
custom-shaped balloons [19] is hindered by the general
unavailability of liquid rubber.

Small-scale (toy-)paper crafting approaches (e.g. [20],
[21], [22]) have the advantage of high accessibility of
the used material (paper) but generally suffer from
structural limitations as well as difficulties to accurately
cut/glue proper seams. Furthermore, the class of real-
izable geometries is restricted to developable surfaces
for folding-based approaches such as [23]. Another gen-
erally accessible technique is beady [24] which presents
an interactive system to help design 3D beadwork from
polygon meshes. The optimization of knitting patterns
[25] is another interesting approach.

Besides paper-based methods the Zometool system (cf.
Section 2.1) probably has the largest user base, being
used in schools as a means to teach and visualize
simple geometries or to model molecules and various
higher dimensional polyhedra in different branches of
science [26]. Furthermore, Zometool has the advantage
of being a construction system consisting of tangible

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 2

parts which can be fit together perfectly (requiring less
manual skills than paper folding), while at the same
time relying only on a small number of pre-defined,
fixed-size elements (fabricational efficiency) and being
over-the-counter purchasable (high public accessibility).
However, until now, Zometool modeling of freeform sur-
faces has been largely overlooked. This paper presents
a first method for realizing freeform surface patches as
polygonal Zometool models with convex, planar facets.
The rationalization is demonstrated in Figure 1.

Zometool is a powerful system which, unrestricted,
allows for a huge variety of different panel types. For
practical and fabricational reasons we limit our attention
to a small subset consisting of triangles and convex
(planar) quads. Due to the fact that there are roughly
four times as many such quads than triangles, our sur-
face approximation method naturally yields planarized,
quad-dominant output meshes. With the set of panels
fixed, the rationalization problem translates into finding
the highest quality (best approximating) tessellation using
only panels from this set. In this setting there is no
continuous optimization of panels or relaxation of the
input geometry, the problem is entirely discrete and thus
inherently hard to solve. There is no analytical solution,
no epsilons or tolerances, either two panels fit together or
they don’t. This puts substantial restrictions on meshing
algorithms for this problem, since the common “vent”
of adding new panels to let a solution relax locally (e.g.
Steiner points in Delaunay meshing) is not admissible.

Due to the different target applications direct compar-
isons between methods on the different scales is often
not meaningful. Still, typical rationalization-specific ge-
ometric problems tend to re-occur regardless of problem
scale, often enabling comparisons on a technical level
and even utilizing results between levels. For example,
ignoring structural stability issues, the Zometool ratio-
nalization presented here could be directly transferred to
an architectural level by manufacturing the correspond-
ing elements at a different scale, although this is not
a central claim of this paper.

2 ZOMETOOL SURFACE APPROXIMATION

Before introducing the approximation problem consid-
ered in this paper along with our proposed approach and
related work, this section reviews the basic properties of
the Zometool system.

2.1 The Zometool System

The history of the Zometool system dates back to the
60’s where it started out as a simple construction system
inspired by Buckminster Fulleresque geodesic domes. In
the early 70s the system was introduced as a toy, which
over the years evolved into the current Zometool state
(cf. Section 2.1), and has since been used for visualization
and modeling in various branches of natural sciences,
from mathematics to chemistry and research at space

agencies [26]. Due to the symmetries inherent in the sys-
tem it is particularly popular for modeling various kinds
of symmetric and repetitive shapes, such as molecules or
higher dimensional mathematical constructs.

2.1.1 Struts and Nodes
The standard Zometool system consists
of three different types of colored edges
or struts (red, yellow, blue) and a single
node type. Each strut is available in
three different lengths (0 = short, 1 =
medium, 2 = long), e.g., b0, b1 and b2 refer to the three
different lengths of blue struts. The strut lengths of
a certain type are golden-ratio scalings of each other, i.e.,
b1 = b0 · γ and b2 = b0 · γ2, where γ = 0.5 · (1 +

√
5) is

the golden-ratio. Furthermore, simple scalings relate the
three strut types to each other as follows: y0 = 0.5 ·

√
3 ·b0

and r0 = 0.5·
√

2 + γ ·b0. Note that the struts (lengths) de-
scribed here are measured from/to the node midpoints,
the real-life struts don’t extend all the way to the node
midpoints.

The Zometool node is a slightly mod-
ified rhombicosidodecahedron with 62
slots: 12 pentagonal slots for the red struts,
20 triangular slots for the yellow struts and
30 golden-ratio rectangular slots for the
blue struts. Let D = {0, . . . , 61} denote the set of the
62 outgoing directions corresponding to the node slots.

Our surface approximation algorithm mainly relies on
three important properties of the Zometool system (for
more mathematical details on the struts we refer to [27]):
• Node symmetry: Due to the symmetry of the rhombi-

cosidodecahedron there is for each slot an opposite
slot of the same type, and incidentally, as γ2 = 1+γ,
the longest struts (r2, y2, b2) can be built by com-
bining the two shorter ones of the same type, e.g.,
b2 = b0 + b1.

• (Fixed) Node orientation: Each strut only causes
a translation of a node in space, i.e., the node’s
orientation (the orientation of the slots) remains
constant.

• Node Coordinates: The possible coordinates of Zome-
tool nodes in space are of the form 0.5 · (a0γ +
a1, a2γ + a3, a4γ + a5) with ai ∈ Z and can theo-
retically take on any position in three-space.

Furthermore, we briefly introduce the Zometool planes
and panels used later on.

2.1.2 Planes
The directions of any two non-parallel slot directions in
a Zome node describe a plane Γ with normal vector
nΓ. Let D|Γ denote the subset of all slot directions in
D lying in the plane Γ, by the node symmetry above
D|Γ always has at least four directions. By forming all
combinations of pairs of slots and collecting planes with
identical sets D|Γ (or equivalently with identical normal
vectors, disregarding the sign) we extracted a total of

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 3

121 different planes. These planes can be divided into 6
different types, where the planes of the same type are
defined by having sets D|Γ containing the same number
and types (red, blue, yellow) of slots and only differ in
orientation (cf. Figure 2). The first three types have as
normal vector a blue, red or yellow strut of the system
respectively, the last three types are not orthogonal to
any direction in the system. The different plane types
allow for a more or less rich variety of (planar) faces.
Type 1 can be considered the richest, as it contains the
most struts. For tessellation purposes, planes of types 4
and 6 are the most restrictive in the sense that they only
allow for quad panels.

2.1.3 Panels
While the Zometool system does not explicitly provide
a set of polygonal faces, such a set can be defined
in a natural way: each k-tuple of struts that can be
connected to a simple closed loop can be thought of as
a k-gon face. Let Z denote the set of all such polygonal
panels. Besides for the case k = 3, the so defined faces
may be neither planar nor convex. However, if the face-
defining tuple of struts lies completely in one of the
121 planes defined above it is planar. While planarity
is not essential for general surface approximation, it
can be critical for architectural scenarios. For practical
reasons, the rationalization algorithm presented in this
work deals exclusively with triangle and quad panels.
In detail, the used set of panels
P ⊂ Z consists of the 29 unique
triangles of the Zometool system
together with a set of 118 different
convex, planar quads (extracted
as described in Section 3.4). The
inset figure visualizes five dif-
ferent panels from this set. For
higher k the number of such faces
steeply rises, making general k-
gon-based Zometool tessellations
unsuitable for efficient, low panel count rationalization.

2.2 Problem Statement
Our goal is to convert a freeform design S to a Zome-
tool representation Z , called Zome mesh. Naturally, the
restricted set of directions of the system implies that not
all curvature configurations can be reconstructed and,
hence, the “best fitting” Zome mesh Z approximating
S is sought. The complexity and inherent discreteness
naturally exclude the possibility of a direct solution or
even relaxation of the problem. Since a globally optimal
solution is infeasible we are restricted to making (the
best of) local decisions. A common class of meshing
algorithms based on this metaphor is advancing front
techniques, where, starting from a seed, the output mesh
is grown over the input surface face-by-face. Advancing
front techniques rely on the ability to insert arbitrary
panels where needed. In general, two different parts

Type 1

= 15

Type 2

= 6

Type 3

= 10

Type 4

= 30

Type 5

= 30

Type 6

= 30

Fig. 2. The 121 planes of Zometool system can be
divided into 6 types. A representative plane of each type
is visualized as a node together with all struts lying in
that particular plane. For the first three types additionally
the orthogonal strut is shown. The small images below
show the different variations (orientations) of planes of
the respective type and # states the total number of
variations within each type.

of a front meeting somewhere on a curved surface can
always be joined by inserting a custom panel, whereas
in the Zometool system there may be no fitting (set of)
panels available. Front self-collisions are related to the
topological structure of a surface [28] and are inevitable
on closed surfaces and surfaces with genus 6= 0. Un-
fortunately, front collisions can occur also on open flat
surfaces if the growing is not handled properly. Further-
more, to be in accordance with the Zometool rule: If it
works, it works perfectly, a solution to the approximation
problem should not rely on manipulation or bending of
nodes or struts.

2.3 Our Approach
In this work we consider the class of freeform patches,
i.e., disk-topology surfaces, and propose a novel ad-
vancing front technique to grow Z over such a surface
S, based on a pre-computed harmonic growing field
designed to avoid front self-collisions. We generally do
not grow on a face-by-face basis but rather compute
locally optimal solutions to fill gaps on the front in
a “best-fitting” manner. This process is made tractable
by a controlled growing based on a pre-computed set
of possible panels. While the method performs well on
general freeform patches, on objects having reflectional
symmetry asymmetric results can be distracting. For this
we further present a simple, but effective symmetry
plane constraint to enable reflective symmetric results.

Section 3 introduces the foundations of our advancing
front approach. The symmetry constraint used for mesh-
ing reflective symmetric objects is the topic of Section 4.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 4

Before presenting results in Section 6, Section 5 presents
experiments, motivating various choices and heuristics
used in our method. Limitations of the method are
discussed in Section 7 and Section 8 concludes the paper.

2.4 Related Work

2.4.1 Zometool
For designing Zometool structures two software tools
exist: vZome [29] and ZomeCAD [30]. Both implement
powerful symmetry commands and also include differ-
ent ready-defined polytopes to support the manual de-
sign interface where nodes and struts can be added one-
by-one. Except for a recently submitted approach [31]
dealing with Zometool approximation of closed surfaces,
without guaranteeing the potentially important qualities
of planar, convex panels, to the best of our knowledge
no other attempts have been made at Zometool based
freeform surface approximation.

2.4.2 Paneling Techniques
Rationalization approaches dealing with the reduction
of panel diversity are in spirit similar to our approach
as the goal is to cover an input design with a restricted
set of panels. In [6], [7] an iterative process based on
clustering and averaging of (quadrilateral resp. triangu-
lar) faces is used to reduce the set of different panels
and to modify the input surface to accommodate to
the change. Eigensatz et al. add another component to
the optimization by explicitly also considering re-usage
and optimization of different classes of panel molds [5].
The rationalization method of Zimmer et al. [8] leaves
the input geometry unaltered while erecting a set of
optimized pyramidal elements on the faces of the input
mesh. These approaches typically consist of two main
components: a discrete optimization (usually variants
of the classical Set Cover problem) for clustering the
different panels or molds and continuous optimizations
to compute representative molds and adapt the input
geometry to the change.

In a broader sense, remeshing algorithms ([32],
[33], [34] provide an overview) also perform surface
re-paneling. However, remeshing processes are often
guided by continuous measures such as smoothness,
inner-angles or alignment of the panels of the resulting
mesh and seldomly consider discrete criteria such as
panel diversity. To our knowledge there are no published
remeshing techniques restricted to a predefined, fixed set
of panels.

2.4.3 Advancing Front Paneling Techniques
A vast number of advancing front remeshing strategies
exist, with applications ranging from Delaunay mesh
generation [35], point cloud interpolation [36], height-
field triangulation [37] to extracting iso-surfaces from
implicit functions [38] to name a few, but all without
the fixed-panel restrictions posed in our setting.

3 ZOMETOOL FRONT GROWING

First, a few short notes on notation: The input freeform
surface patch is denoted S and the approximating Zome
mesh Z . The vertices v ∈ Z are referred to as nodes.
Depending on the context either s or a pair (d, l) of
direction d ∈ D and strut length l ∈ {0, 1, 2} will be used
to refer to a strut. Finally, π : R3 7→ S denotes a projection
operator for mapping points (generally nodes of Z) to
their respective closest point on S . For practical reasons
S is represented as a (high resolution) triangle mesh.

The structure of our approximation method is illus-
trated in the block diagram in Figure 3. After placing
an initial panel, Z is grown by incrementally adding
panels p ∈ P to the struts (edges) on the boundary
∂ Z of the current mesh. To avoid front self-collisions,
the order of growing is controlled by a harmonic field
of arrival times (cf. Section 3.1), while the actual grow-
operation performed depends on the local shape of the
front (cf. Section 3.2). Panel approximation energies (cf.
Section 3.3) are used to evaluate the quality of different
grow-options. To enable efficient growing, the set of all
available panels P is pre-computed and stored in a look-
up table Panels(s) for quick access to the subset of
panels compatible with the current strut s (cf. Section
3.4).

3.1 Harmonic Front-Growing Strategy

Assuming a first polygon p ∈ P has been placed on S,
i.e., Z = p, the goal is now to make sure that the front
of polygons of Z grown from this position does not self-
intersect. For this a field G of arrival times on S is pre-
computed that is free of critical points. Field growing
starts around π(p) (the projection of the polygon onto
S) and ends at the boundary ∂ S. The intuitive wish of
advancing the front at a constant rate from the starting
point, i.e., according to a geodesic field, can lead to self-
intersections on the front, as this field is generally not
free of critical points. Figure 4 visualizes the difference
between such a geodesic field and an harmonic field,
which is indeed free of such critical points. Hence,
G : S 7→ R is computed to be a harmonic field on S,
where the projection of p has arrival time 0 and the
boundary of S has arrival time 1:

∆SG = 0 s.t. G(π(p)) = 0 and G(∂ S) = 1,

where ∆S is the graph-Laplacian. Our front-growing
strategy is now to advance the front (∂ Z) according
to G using a priority-queue of the nodes lying on the
front. I.e., the part of the front around the node with
the earliest arrival time shall be popped from the queue
and expanded next. Note that the graph-Laplacian is
guaranteed to always yield a field free of degeneracies,
which can however be biased by irregular tessellations.
The opposite holds when using geometrically motivated
weights, e.g., the cotangent-Laplacian. In our setting, S
is assumed to be a high-resolution, uniformly remeshed

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 5

Fig. 3. Block diagram of the proposed Zome mesh
growing algorithm.

triangle mesh, where both are acceptable choices and the
graph-Laplacian can safely be chosen for simplicity.

3.1.1 Initial Panel
To accommodate for different usage scenarios we have
implemented two different growing modes:
• Free Mode: free growing starting with the best

fitting panel at the harmonic center of S.
• Symmetry Mode: the growing starts close to the

harmonic center of S with one edge constrained to
lie on a user-defined symmetry plane with growing
restricted to one side of the plane (cf. Section 4).

We define the harmonic center of S as the middle vertex
of the harmonic disc parametrization of S with circular
boundary conditions. Using this position as a starting
point tends to produce harmonic fields G with more
concentric iso-contours. However, in coarse panelings

Fig. 4. Growing along a geodesic field (left) can lead to
self-intersections of the front, whereas an harmonic field
(right) is free of critical points.

important features on the input surface can be missed
if they are not sampled (hit by a node). For this there is
also the option of a user-selected starting position, e.g.,
to not miss HOMER’s nose it was manually specified as
the starting point in Figure 15.

3.2 Segment Filling Strategy
While the arrival time dictates where to grow next, the
local shape of the front at that position dictates how it
is grown. To avoid complicated intersection handling in
each step we differentiate between convex and concave
segments on the front (cf. Figure 5). Intuitively, in convex
segments one can simply grow the front by adding pan-
els without risking self-intersections, whereas in concave
segments this is not the case. However, panels cannot be
added independently from each other (especially not in
concave segments) as a new panel might easily generate
a concavity not fillable by any other (combination of)
panels in P . We thus adapt a [39]-inspired filling strategy
to optimally fill entire connected segments on the front in
one step. The same strategy is applied to fill concave and
convex segments, but, since the concave areas are the
more problematic ones, our strategy is to handle them
first. The strategy is explained in more detail below and
Section 3.2.1 describes the optimal fill computation.

We measure convexity on the input surface by first
projecting the front ∂ Z onto S . For a node v ∈ ∂ Z
let A(v) ∈ [0, 360◦] be the front angle or convexity of v,
defined as the angle between the two edges spanned by v
and its boundary neighbors w and u when projected onto

∂ Z

∂ Z

Convex segment Concave segment

u v
w

A(v)

Fig. 5. Care needs to be taken when advancing the
front in concave segments (right). Squares denote convex
nodes and circles concave ones. The nodes u and v are
purely convex. A concave segment is a connected set of
struts with concave inner nodes.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 6

the tangent plane at π(v). We call v convex if A(v) > 180◦.
A segment on the boundary is defined as a connected
set of struts S := {s0, · · · , sn} (the inner nodes between
these struts shall be covered by the filling). In a concave
segment all inner nodes are concave and a convex segment
is defined to consist only of the two outgoing struts
of a (purely) convex center node. A node is considered
purely convex if also both its neighbors are convex.

Now depending on the convexity of a node v (popped
from the priority-queue) and its surrounding segment,
the front is grown differently around v:

1) If v is purely convex, then an optimal fill is com-
puted for its convex segment S := {s0, s1}.

2) If v is convex but has concave neighbors, then the
concave segment of the most concave (potentially
most problematic) neighbor is filled first (see next
step).

3) If v is concave, then the concave segment S :=
{s0, · · · sn} around v is optimally filled.

3.2.1 Computing the Optimal Segment Filling
First, a valid filling of a segment S is defined as a strip
of panels F ⊂ P which cover the inner nodes of
the segment without intersecting other parts of Z or
changing the topology. A node is considered as covered
if it has a complete 1-ring (i.e., no longer lies on the
boundary). Figure 6 shows a valid filling (left) and an
invalid filling (right) which neither covers the vertices
nor leaves the topology intact. Assuming the existence

p0
p1

F = {p0, p1} F = {p0, p1}

p0
p1

Fig. 6. Two fillings of the concave segment from Figure
5. Note that after the filling, some previously convex front
nodes can turn concave.

of an energy functional Cost(p,S) ≥ 0 (to be defined
later) measuring the approximation quality of the panel
p w.r.t. the freeform surface S, an optimal filling of
a segment is defined as the valid filling F minimizing
Cost(F) =

∑
p∈F Cost(p,S).

An optimal filling can be computed in a recursive fash-
ion by exhaustively trying out “all fillings” of the gap,
but for that to be practicable the number of candidate
fillings has to be bounded. An unfortunate difference to
[39] is that the Zometool setting does not permit for an
efficient dynamic programming-based solution, as, due
to the limited diversity of panels, it is not possible to
efficiently enumerate all possible solutions a priori. The
approach described here therefore limits the full-search
and makes it practicable by (1) only considering a thin
1-ring filling strip, i.e., all new nodes must only be one
strut away from the segment, (2) restricting the number

of new panels (the recursion depth maxdepth) and (3)
using pruning to early discard invalid and energetically
poor solutions. These three components are detailed in
the following.

To guarantee a local, thin filling-strip (1), the gap is
filled in a structured, recursive manner from left to right.
In each step (recursion level) a panel from Panels(s)
is added to the current so-called active strut s. Every
added panel updates the segment S: struts in S which
are part of the new panel are removed from S and
when S is empty and the filling is valid, it is completed.
Figure 7 demonstrates the filling process and how the
segment and the active strut are updated. In detail,
the filling starts from the left-most strut s0 ∈ S, the
initial active strut, it points to the first inner node to
be covered. After a panel p has been added and the
corresponding struts have been removed from S, unless
the filling is completed or maxdepth has been reached,
the new strut that points to the next un-covered node
is added to S and gets activated. Note that the next

s0

s1
s2

s = s0

S = {s, s1, s2, . . .}
F = ∅

s0

s1
s2

s′

S = {s′, s1, s2, . . .}
F = {p0}

p0 s0

s1
s2

s′′
p0

p1

S = {s′′, s2, . . .}
F = {p0, p1}

Fig. 7. A “gap” on the front to be filled is defined by
a set of directed struts S, called segment. The optimal
filling F is computed in a structured manner from left
to right, in each iteration a panel is appended to the
current active strut s (denoted by an arrow). The three
subfigures demonstrate the filling process. Each added
panel modifies the segment S (and the active strut), when
S is empty the gap is filled.

un-covered node is the same as the previous one if the
added panel did not complete the corresponding 1-ring.
Pseudo-code for the OptFill function for computing
an optimal filling of a gap is detailed in Algorithm 1.
A useful heuristic in practice is the sorting of the panels
in the look-up table Panels(s) in descending order of
approximation error (or cost). Based on the observation
that panels with high costs (having a bad orientation
and/or distance w.r.t. S) are less likely to be part of
an optimal filling of a smooth surface S than panels
with low costs, this enables reaching the optimal filling
faster in general. The function UpdateSegment referred
to in the code is responsible for updating the segment
S as mentioned above, i.e., removing struts covered
by a panel and possibly adding the new active strut.
The function NoLocalIntersect tests for intersections
between the filling and the neighboring part of Z .

Continuing the recursive growing process only along
the active strut localizes the filling, as it always re-
mains directly connected to the segment to be filled.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 7

Algorithm 1: Procedure to recursively compute the
optimal filling bestF ill with cost bestCost of a seg-
ment S.

Input: Segment to be filled S
Output: Optimal filling bestF ill, cost bestCost
Initialization: bestF ill← ∅, bestCost←∞,

minGS ← minv∈S(G(π(v)))

Function OptFill(S, F , depth);
Input: Current segment S, filling F and depth
if S = ∅ then /* filling done */

if IsValidFill(F) then
bestF ill← F ;
bestCost←Cost(F);

end
else /* continue filling */

if depth < maxdepth then
s← get next active strut from S;
E ← sort Panels(s) by descending cost;
forall the panels p of E do

if minv∈p(G(π(v))) > minGS then
/* remove struts covered by p */
S′ ←UpdateSegment(S, p) ;
/* add panel to filling */
F ′ ← F ∪ p ;
if Cost(F ′) < bestCost then

if NoLocalIntersect(F ′, Z) then
/* recurse */
OptFill(S′,F ′,depth+ 1)

end
end

end
end

end
end

Still, to guarantee termination (2) the maximal recur-
sion depth (i.e., number of panels) must somehow be
restricted. To do this we first limit the size of seg-
ments by restricting the total convexity of their inner
nodes to max. 360◦, i.e.,

∑
v∈S A(v) < 360◦. I.e., the

corresponding segment S around a node popped from
the front of the priority queue is grown by adding
struts in both directions until this bound is reached.
As a heuristic to correspondingly limit maxdepth, we
consider the flattest possible concave
segment with convexity sum 360◦

and set maxdepth equal to the ex-
pected number of equilateral triangles needed to fill
it, i.e., maxdepth = 5. For depths > 5 computations
rapidly become less practicable and experiments showed
no quality improvement.

Pruning (3) is enabled by using a monotonically in-
creasing cost function and the above structured growing
strategy. Partial fillings F having a greater energy than
the currently best valid filling Cost(F) > bestCost
can be pruned, as can fillings containing panels which
intersect Z . Furthermore, unnecessary energy evalua-
tions and intersection tests can be avoided for “inward”
pointing panels by pruning these away based on their
nodes’ arrival time values. The panels in Panels(s) for

a strut s point in all different directions around the strut,
i.e., not only in the current growing direction but also
back over the already covered part of S. We utilize the
growing field G to quickly discard panels having nodes
v with smaller arrival time than the current minimum of
the segment S, i.e., G(π(v)) ≤ minu∈S G(π(u)).

The intersection handling in explained next.

3.2.2 Handling Filling Intersections

The harmonic growing strategy was devised to avoid
two distant parts of the front colliding with each other
and the intersecting handling is correspondingly re-
stricted to the local configurations which occur dur-
ing the filling of a segment. When filling a seg-
ment, a newly inserted panel p must not intersect the
rest of Z . Luckily, p needs not be tested against the
whole of Z but intersection tests can be restricted to
a local neighborhood of panels {pi} around the seg-
ment to be filled. The thickness of the neighborhood
can be derived from the maximal strut length in the
Zometool system, as the new panel p can maximally

p
p0

p1

pi

pn−1

extend so far away from
its active strut. The inset
figure shows an example
of such a local neighbor-
hood of panels (not nec-
essarily a strip in general)
for the concave segment in
Figure 5.

Locally around the nodes of p the discrete set of 62
directions of the Zometool system can be utilized to per-
form very efficient and numerically stable intersection
tests between p and the neighboring panels sharing one
(or more) of its nodes. Note that this always includes the
panels incident to the nodes on the active strut but can
also include other nodes of p mapped to existing nodes
on the front. Two neighboring panels sharing a node v
are considered intersecting (cf. Figure 8) if they are co-
planar and their interiors overlap (two 2D problems)
or if they are not co-planar and the intersection axis
of their supporting planes is contained in both panels
(two 2D problems). This works since the panels in P are
convex, i.e., only have inner angles < 180◦. For a pair of
panels p and p′ sharing a common node v the set of all
such node based intersections can be pre-computed and
parametrized over 4 direction indices d0, d1, d2, d3 ∈ D,
with d0, d1 corresponding to the struts of panel p at v
and d2, d3 corresponding to the struts of panel p′ at v.

Now, general polygon intersection tests only need
to be performed between p and the non-neighboring
panels in {pi}. The efficient tri_tri_intersect test
by Möller [40] is used for panels in general position,
while for co-planar panels CGAL [41] is used for stabil-
ity. In these tests quads are divided into two triangles.
Note that, due to numerical issues, intersections between
struts can be missed the new struts of p need to be tested
against all other struts in the strip.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 8

v v

p

p′
p

p′
d3

d2
d1

d0

d3

d2

d1

d0

Fig. 8. The two node-intersection cases between two
panels p and p′ incident to a node v. For co-planar panels
it is enough to check if a strut of one panel is contained in
the angle span of the other. If they are not co-planar, the
intersection axis (red, dashed) is checked for containment
in both angle spans. Here, the left configuration intersects
while the right doesn’t.

3.3 Panel Cost Function
The cost of an panel p ∈ P consists of a closeness and
an orientation energy: Cost(p,S) = (1 − α)Eclose(p,S) +
αEorient(p,S), both are evaluated at a regular set of sam-
ples {xi} on the panel p. The closeness energy measures
the distance between the samples and their projections
onto S:

Eclose(p,S) = 1
N ·c2

N∑
i=1

(π(xi)− xi)2,

where the normalization factor c is used to relate dis-
tances to the fixed lengths of the struts. We choose
c = b0, which keeps the energy within the range [0, 1] for
distances less than b0. The orientation energy measures
the deviation between the normal n of the panel p and
the normals at the projections of the samples:

Eorient(e,S) = 1
4N

N∑
i=1

(nπ(xi) − n)2.

The normalization by 4 keeps the energy in the range
[0, 1], since the squared length of two maximally dif-
ferent, opposite normals n and −n is 4. In all our
experiments we use α = 2

3 for the linear combination
of energies (cf. Section 5.1).

3.3.1 Penalizing Pointy Fillings
Even though the growing field G prescribes a contin-
uous, interference-free front, the discrete panels do not
perfectly adhere to this paradigm. The optimal filling of a
segment can include pointy panels un-
necessarily intruding into neighboring
areas or create thin slits later only fil-
lable by a corresponding pointy par-
allelogram. The inset illustrates a thin
slit where no appropriate slots or struts
exist to directly connect the two square
nodes. The slit can only be closed by a parallelogram,
guaranteed to exist by the node symmetry property.

We consider angles below 90◦ and above 270◦ in-
creasingly problematic. To keep the front of a filling
F compact, we penalize the cost depending on the
minimal (Amin) and maximal (Amax) front angle values

according to a penalty function
f : Cost(F)← Cost(F)·f(Amin)·
f(Amax). We use the empirically
determined penalty function il-
lustrated in the inset. If all angles
on the front of the new filling
are greater than 90◦ and less than
270◦ the factors are 1. If, e.g., the
smallest angle is 55◦ but the greatest is still less than
270◦ the cost is multiplied by ca. 1.2 (only) once. Simply
forbidding certain front angles would increase the risk
of not finding any solution at all in cases where more
extremal panels are necessary. This is why we choose
to just penalize them in favor of another solution where
one is available.

3.4 Panel Look-up Table
A table Panels(s) ⊂ P of all admissible triangular and
(planar) quadrilateral panels is pre-computed for each
strut. For a strut s (or equivalently a pair (d, l)) the table
returns a list of all panels having an edge parallel to the
direction of d and the corresponding strut length type l.

All triangles can be generated by simply enumerating
all pairs of directions d0 and d1 6= d0 emanating from
a node, in combination with all possible lengths and
checking if a connection between the end points exist.

The quadrilateral panels can be generated in a sim-
ilar fashion. However, here care has to be taken to (1)
ensure planarity, and avoid (2) self-intersecting and (3)
backwards growing/non-convex panels (not adhering to
the harmonic growing paradigm). Quads not fulfilling
these requirements are easily discarded by evaluating
and comparing the cross-products (normals) at each of
the four corners. To allow for efficient intersection com-
putations no adjacent edges are allowed to be parallel
(i.e., quad degenerating to triangle). On average the look-
up table for a direction d ∈ D has about 40 triangles and
370 quads. Note that, since P only consists of 29 different
triangles and 118 different quads in total, some of these
panels must be identical except for different orientations.

3.5 Implementation Details
Z is represented by a halfedge-based data structure.
This has several advantages, e.g., an efficient traversal
of ∂ Z (front nodes) and neighboring faces of a node for
intersection tests, a simple is_boundary check to see if
a node has been covered by a filling operation etc.
π(v) can be efficiently implemented using a BSP

search structure. However, when evaluating fillings a,
potentially huge, number of projections is carried out,
many on the same or similar samples which can quickly
become an unnecessary bottle-neck. By using a spatial-
hashing inspired sparse crust of octree cells surrounding
S to cache already computed projections, we were able
to reduced projection times by as much as 2 orders of
magnitude (depending on the model) compared to using
BSP only.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 9

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 9. (a) The filling of the segment (red) has grown underneath a neighboring part of Z. The neighboring segment
in (b,f) cannot be filled. This deadlock is resolved by deleting a neighborhood of panels (c,d,g) and letting the standard
growing re-fill the gap (e,h).

3.6 Repairing Deadlocks
Finally, in the vicinity of concavities or areas constrained
by symmetry (cf. next section) bad local segments can
occur on the front, which have very narrow or wide
angles. This can lead to fillings growing “underneath”
neighboring parts of Z (without actually intersecting).
Depending on the configuration, there might be no
valid, intersection-free filling for a neighboring segment,
which constitutes a deadlock, cf. Figure 9. We deal with
deadlocks by (1) deleting the panels involved in the
bad configuration together with a neighborhood of sur-
rounding panels, (2) update the priority queue according
to the new boundary and (3) let the standard growing
pipeline re-fill the gap. It is not clear how to choose
an appropriate radius for deleting the right amount of
panels. Hence, we first start by conservatively removing
only panels within a small radius (e.g., 1x longest strut)
around the nodes of the non-fillable segment, and if
a problem continues to arise at a similar location, then
a larger neighborhood (2x longest strut) is cleared and so
on. While this in theory does not guarantee a solution,
changing the local neighborhood structure also changes
the order of growing and in all our tests sufficed to
resolve deadlocks. As indicated by Table 1 such fixes
are rarely needed. To keep track of the number of times
problems have arisen, the corresponding positions in
space can be tagged using the spatial hashing mentioned
above.

In case growing can continue without causing a dead-
lock, still unwanted “fold-over” configurations result.
While these could be dealt with in a similar fashion,
a better approach would be a post-processing operator
to locally nicify such areas as discussed in Section 7.

4 RESPECTING REFLECTIONAL SYMMETRY

On objects having reflectional symmetries, as can be
found in characters or various man-made designs, the

randomness of a freely grown Zome mesh may look
disturbing to the eye where a symmetry is expected.
To this end we implemented a constraint to restrict the
growing to one side of a user-definable symmetry plane
Σ = (x, n), where x is a point on the plane and n its
normal. Afterwards a simple mirroring operation can be
used to obtain a Z covering the whole input surface.
However, to avoid holes when mirroring, there must ex-
ist a common, simple interface chain on Σ connecting the
two sides. This calls for a slightly modified initialization
and growing procedure in the vicinity of Σ, while Z can
be grown as usual away from the plane.

4.1 Node Orientation
To yield a symmetric output, it is important that not
only Σ is symmetrically placed on the input shape S
but that a symmetric Zome plane (cf. Figure 2) is also
properly aligned with Σ. Planes of the first three types
are guaranteed symmetric, as each of them is orthogonal
to a system direction d ∈ D, for which there always exists
the opposite direction (or slot) −d ∈ D. To guarantee
a common interface of symmetry plane nodes and struts,
we first rotate the (global) node orientation to align one
of the planes inherent in the Zometool system with Σ,
cf. Figure 10. Let D|Σ denote the set of slots (directions)
lying in Σ. Motivated by the symmetry experiment in
Section 5, to account for diverse curvature profiles and
enable highest quality approximation of the intersection
curve S ∩Σ we always use a type 1 plane. Optionally, if
the curvature profile of the S ∩Σ is simple and has only
one or a few prominent directions (e.g., a straight line),
we also rotate the node in the plane (around n) to align
its directions D|Σ (shown in green in the figure) as well
as possible with these directions.

4.2 Initialization
As above, the initial panel Z = {p} should be placed
close to the harmonic center but must now also have

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 10

S ∩Σ

n

ΣS
D|Σ

Fig. 10. For an exemplary 2d configuration (middle)
the default global node orientation (denoted by a node
with outgoing struts) is not reflective symmetric w.r.t. Σ
(pink dashed), hence symmetric meshing is not possible.
Rotating the global node orientation as indicated by the
blue arrow aligns one of its symmetry planes with Σ and
enables symmetric results by mirroring.

a strut s (two connected nodes) lying on Σ. We create
p in two steps: first, the strut direction d ∈ D|Σ and
length l with the most similar tangent to S around the
harmonic center is selected and subsequently the strut
position is optimized to minimize its distance to S ∩Σ,
this defines s and its end nodes. Then, the best fitting
panel p ∈ Panels(s) is added as the first panel of Z .

4.3 Growing
We call nodes lying on Σ symmetry nodes. At any time
during growing, only two of the symmetry nodes are
part of the priority queue, namely the two “outer” nodes
having only one incident strut in the plane. The filling
procedure detailed in Section 3.2.1 relies on the halfedge
data structure of Z and is based on covering boundary
vertices to no longer lie on ∂ Z . The symmetry nodes,
however, by definition always lie on ∂ Z , calling for
a slightly modified boundary test to only consider the
halfspace defined by Σ. The first step when growing
around a popped symmetry node is to add and connect
the best fitting strut, lying in the symmetry plane, to
the node. To fill the gap arising between this strut and
the rest of Z growing is performed, similarly to above,
by adding panels to complete the (half-)ring around the
node, i.e., so that it no longer lies on the boundary (in
that halfspace).

5 EXPERIMENTS

5.1 Relative Weighting of Energies
We tested different coefficients α ∈ [0..1] for the lin-
ear combinations of energies in Section 3.3. Figure 11
demonstrates the results on a hemisphere test object.
Naturally, the orientation error decreases with increasing
α, while the closeness error increases. Also, giving more
weight to the closeness error favors shorter edges (a finer
tessellation) than when only penalizing orientation er-
ror. Note that low values for α increase the risk for
bad/flipped configurations causing deadlocks (requiring
fixing cf. Section 3.6). Our choice of α = 2

3 is a good
trade-off, motivated by the observation that for higher
values of α the orientation error decreases only slowly
while the closeness error increases more rapidly.

Orientation ErrorCloseness Error

0.0 0.5 1.0

� = 0.05
0◦ 45◦ 90◦

� = 9.95◦
α = 0

3
F = 744
fix = 7

0.0 0.5 1.0

� = 0.07
0◦ 45◦ 90◦

� = 8.02◦
α = 1

3
F = 558
fix = 0

0.0 0.5 1.0

� = 0.09
0◦ 45◦ 90◦

� = 7.19◦α = 2
3

F = 563
fix = 0

0.0 0.5 1.0

� = 0.16
0◦ 45◦ 90◦

� = 6.79◦
α = 3

3
F = 447
fix = 0

Fig. 11. Experiment: linear combination of energies on
a hemisphere mesh. The errors are color-coded on the
input freeform surface on a scale from dark blue (lowest)
over green to red (highest). Here, the orientation error is
the angle deviation. The Zome mesh wireframe is shown
in gray. F is the number of faces in Z. fix denotes the
number of deadlock resolves (fixes) were needed.

5.2 Choice of Starting Position
To determine an appropriate starting position for the
growing procedure we experimented with starting posi-
tions distributed at different distances from the bound-
ary. Figure 12 shows the CHILD object partitioned in
colored strips at different distances from the boundary.
In each of these strips growing was initialized at 5
different random positions and the time and number of
fixes was measured until growing was completed. The
graph on the right in Figure 12 shows the average time
and number of fixes per strip. The probability of good
values generally improves for positions closer to the
center of the object. Based on this observation, we start
growing from the harmonic center, a natural “middle-
position”, which enables minimal stretch of the growing
field and a more even growing speed along the front.

5.3 Choice of Node Orientation
The global node orientation potentially has an influence
on the resulting Zome meshes. However, the relative

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 11

Fig. 12. Experiment: Starting position of the growing pro-
cedure. The lowest and most stable distribution of com-
putation times and required number of fixes is achieved
close to the “middle” of an object.

frequencies %{r, b, y} of red, blue and yellow struts in
the final Zome meshes shown in Table 1 are gener-
ally (except for the symmetry plane experiments on
MOAI) closely distributed around the actual availabil-
ity of the respective slot directions in a system node:
(%r,%b,%y) = (20%, 48%, 32%). This suggests an al-
ready a well-balanced utilization of the available direc-
tions in D and corresponds well to the general curvature
profiles of the input surfaces. Hence, the global node
orientation is only optimized when using symmetry
plane constraints and left to its (some) default orientation
otherwise, i.e., for free growing.

5.4 Choice of Symmetry Plane
When meshing with symmetry constraints we used
a Zometool plane of type 1 in all examples as this allows
for the highest directional resolution along the intersec-
tion curve between the input surface and the symmetry
plane. Experiments showed that a higher resolution in
the plane generally also leads to better results for the rest
of Z as it is less likely for bad decisions to arise along the
plane and be propagated further. It also leads to lower
computation times as pruning is more effective when
low-energy solutions can be found. Figure 13 shows
meshing results using planes of type 1, 2 and 3 on the
MOAI mask (cf. Table 1 for run-times).

6 RESULTS

We computed Zome meshes, from a number of different
freeform surfaces, on a standard i7 PC using OpenMP
parallellization. The results are summarized in Table
1 and the therein bold-marked objects are shown in
Figure 14. A real-life assembly of DOG’s head is shown
in Figure 1. The manual assembly took 5.5h. See the
project website http://www.rwth-graphics.de/zometool
for more details and models.

The input to our method are disk topology surfaces,
hence, if closed, the mesh needs to be cut open corre-
spondingly. On standing objects (e.g. CHILD) it is natural

Fig. 13. Experiment: MOAI mask meshed using symmetry
planes of type 1, 2 and 3. A low directional resolution
(node slots) in the symmetry plane leads to bad approxi-
mation of the intersection curve S ∩Σ (black) and propa-
gation of errors into the interior of Z. High energy values
also cause longer computation times due to pruning being
less effective (cf. Table 1).

Model | Z | %r %b %y time mode fix

HOMER

114 0.90 25 46 29 15m U/S1 0
472 1.34 28 45 27 18m U/S1 0

1548 2.13 26 45 29 40m U/S1 0
5820 2.61 23 46 31 130m U/S1 1

DUCK

880 1.97 24 41 35 76m A/S1 0
797 2.01 20 43 37 208m A/F 0

1692 2.11 21 45 34 90m A/S1 1
1551 2.35 21 43 36 81m A/F 0

TRAINST. 442 1.10 26 42 32 4m U/S1 0

SUZANNE
1354 1.84 22 48 30 80m A/S1 0
1300 1.67 20 47 33 195m A/F 3

MOAI
2210 2.30 22 41 37 78m A/S1 0
2162 2.30 16 55 29 95m A/S2 0
2408 2.73 18 59 23 110m A/S3 0

TRADEFAIR
456 1.3 24 38 38 5m A/F 0
784 2.1 19 42 39 22m A/F 0

MAX PLANCK 1480 2.36 22 47 31 67m A/S 0

DOG
927 1.47 17 49 34 240m A/F 0

1516 1.69 21 46 33 241m A/F 0

CHILD 1849 2.08 22 45 33 139m A/F 0

BUNNY HEAD 1368 1.87 21 40 39 175m A/F 0

TABLE 1
Results of our approach. | Z | denotes the number of

faces of the resulting mesh and the second column the
ratio of quads to triangles. The three % columns give the

relativity of red, blue and yellow struts in the mesh.
“mode” is a tuple of initialization type (User-defined or
Automatic) and growing mode (F ree or Symmetric). The
x in Sx denotes the used plane type. “fix” is the number

of deadlock repairs that were necessary.

to cut open the bottom, while for masks made for
hanging against a wall (e.g. SUZANNE) the back could be
opened. Note that, while an infinitesimal hole suffices in
theory, a heavily distorted growing field is more prone
to cause problems on the front. We assume “sufficiently
smooth” input surfaces and a target panel-size corre-

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 12

TRAINSTATION 1.5m CHILD

2.
1
m

DUCK

0.5m

DOG

1
.1
m

SUZANNE

1.
2m

Fig. 14. Resulting Zome meshes of different freeform surfaces. The TRAINSTATION object (non disk-topology) was
computed by temporarily filling the hole in the middle.

sponding reasonably well to the feature granularity of
the input, still, HOMER and DOG show that also very
coarse solutions and feature-rich inputs are possible.

While our method is completely deterministic, there is
a certain randomness or variance involved in the results
with regards to both the generated output geometry
as well as the run-time. This is because slightly vary-
ing initializations (e.g., starting position or target edge
length) can cause quite different local configurations at
another point during growing. While this is less critical
for the actual approximation quality of the output, since
segments are filled in an optimal manner regardless
of the actual segment configuration, the run-times can
vary strongly depending on the local configuration and
surface smoothness. The reason lies in poor pruning
performance in certain configurations together with the
used, structured filling strategy. When filling a segment
from “left” to “right” along the active strut, expecting
a low-energy solution, in each iteration the possible
panels are first sorted by descending energy values
and recursed accordingly. This makes the pruning less
effective if for example the optimal solution requires
high energy panels to the left.

Zometool enables a huge re-usability potential as only
9 different struts are involved. This paper presented
a method to enable efficient paneling of surfaces by
defining a restricted set of panels P . As this set is not
specialized for a single shape but applicable to any input,
it can be mass produced. However, the fixed scaling of
the struts and panels calls for sets of differently sized
panels depending on the scale of the application at hand
(e.g., building-sized architecture vs. toy-sized bunnies).
The measures in Figure 14 specify the sizes of the objects
using the standard Zometool elements. It is important to
note that the relative approximation error can always be
trivially reduced by simply scaling up the input object
S, which results in a finer Zome mesh Z (cf. Figure 15).
The absolute error depends on the lengths of the struts.

6.1 Quad-to-Triangle Ratio
The output meshes are in general quad-dominant with
a ratio of around 2. Due to the flexibility of triangles
to better handle different curvature configurations and
varying resolutions, this ratio decreases for feature-rich
inputs or when computing coarse outputs.

6.2 Features
Given the finite set of angles present in the Zometool sys-
tem, the sharp features common in technical objects
can in general not be represented. However, given an
appropriate panel resolution, details on smooth freeform
surfaces can be represented as shown in Figure 15 on
a series of HOMER models at different scales. Naturally,
the preservation of small features cannot be guaranteed
in practice (although theoretically representable), as cap-
turing them would require the growing process to place
nodes precisely at the respective feature, which is hard
to achieve in general due to the arbitrary distribution of
features and nature of the growing and starting position.

7 LIMITATIONS AND OUTLOOK
The proposed method still leaves room for improvement
and we have identified a number of open questions and
limitations, which we believe should be addressed in
future work.

7.1 Topology Optimization
A high distortion of the growing field front panels
intruding too much into neighboring regions can cause
ugly fold-over configurations. Such distortions are more
prone to arise in concave areas or around surface fea-
tures, e.g., back of SUZANNE’s chin. Instead of utiliz-
ing the, rather brute-force deadlock fixing procedure, it
could be possible to develop a local remeshing operator
by investigating the topological region of influence of
nodes located in the interior of a Zome mesh. If such an
operator can be found and pre-computed for different
neighborhood sizes even a kind of direct, Laplacian
modeling inspired, freeform Zometool modeling is imag-
inable.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 13

Fig. 15. Different scale quad-dominant Zometool meshings of a HOMER mask, having 0.1k, 0.5k, 1.5k and 6k faces.
The real-life heights of the models are ca. 0.7m, 1.4m, 2.6m and 5.5m.

7.2 Closed Surfaces of Higher Genus
We believe a generalization of the presented growing
approach to non-disk topologies to be very hard. Al-
though it is imaginable to timely identify colliding parts
of the front and applying the same exhaustive filling
(used for filling local segments above), to the enclosed
areas, this could ultimately mean computing an optimal
tessellation for the whole input, which is not tractable.
The presented approach starts the growing from the
center of a surface towards the boundary, which can
naturally lead to a frayed boundary of the Zome mesh.
However, if alternatively starting from the boundary
towards the middle one could have more control over
quality of the boundary, however, a closure problem
similar to that of closed surfaces would result. While [31]
presents an approach for closed surfaces based on locally,
incrementally updating an initial solution, it, does not
handle the case where one must be able to guarantee
that no intersections occur and that panels are planar.

7.3 Admissible Panels
The triangles and convex, planar quads used in this work
corresponded well to the harmonic growing strategy
and enabled efficient intersection tests. However, with
a limited set of directions and panels in the system
comes a limited fairness of the results. More detailed
evaluations of the obtainable fairness would be required
for architectural applications. Extending the set of panels
by introducing planar, convex n-gons should be straight
forward, but at the cost of further increasing the expo-
nentially growing branching possibilities of Algorithm 1.
A generalization to concave panels could be possible
but would require extra care in the prioritization. It is
unclear how to handle the intersection tests for non-
planar panels.

8 CONCLUSION

To the best of our knowledge, the approach presented in
this paper is the first attempt at rationalizing freeform
surface patches by a polygonal Zome mesh consisting

only of planar, convex panels. The devised front growing
strategy is guided by a harmonic field of arrival times,
designed to minimize the number of problematic cases
on the front, and the front itself is advanced by adding
locally optimal strips of Zometool panels. By a simple,
but effective, extension the method is also capable of
reproducing reflectional symmetries often found in man-
made characters and designs. To demonstrate the perfor-
mance of our method we computed Zometool meshes
for a wide range of input surfaces with different smooth-
ness and complexities. Although finding a solution is not
theoretically guaranteed, the rarely encountered prob-
lems were all solvable by our repair strategy.

The Zometool system has a huge potential for re-
usability and efficient realization in modern freeform
architecture. We hope our work can serve as a first step
towards extending the application area of Zometool to
a new class of recreational and architectural applications.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
helpful and extensive feedback. Furthermore, we are
grateful to David Bommes for introducing us to Zome-
tool, Marcel Campen for the many technical discussions,
Jan Möbius for OpenFlipper [42] and Dominik Sibbing
for the spatial hashing code. This work was funded by
the DFG Cluster of Excellence UMIC (DFG EXC 89).

REFERENCES
[1] H. Pottmann, S. Brell-Cokcan, and J. Wallner, “Discrete surfaces

for architectural design,” in Curves and Surface Design: Avignon
2006, P. Chenin, T. Lyche, and L. L. Schumaker, Eds. Nashboro
Press, 2007, pp. 213–234.

[2] H. Pottmann, Y. Liu, J. Wallner, A. Bobenko, and W. Wang,
“Geometry of multi-layer freeform structures for architecture,”
ACM Trans. Graph., vol. 26, no. 3, pp. 65:1–65:11, 2007.

[3] Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, “Geo-
metric modeling with conical meshes and developable surfaces,”
ACM Trans. Graph., vol. 25, no. 3, pp. 681–689, ’06.

[4] H. Zimmer, M. Campen, R. Herkrath, and L. Kobbelt, “Vari-
ational tangent plane intersection for planar polygonal mesh-
ing,” in Advances in Architectural Geometry 2012, L. Hesselgren,
S. Sharma, J. Wallner, N. Baldassini, P. Bompas, and J. Raynaud,
Eds. Springer Vienna, 2013, pp. 319–332.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2307885, IEEE Transactions on Visualization and Computer Graphics

TRANSACTIONS ON VISUALIZATION AND GRAPHICS, VOL. XXX, NO. YYY, LLLLLLLL 20XX 14

[5] M. Eigensatz, M. Kilian, A. Schiftner, N. J. Mitra, H. Pottmann,
and M. Pauly, “Paneling architectural freeform surfaces,” ACM
Trans. Graph., vol. 29, pp. 45:1–45:10, July 2010.

[6] C.-W. Fu, C.-F. Lai, Y. He, and D. Cohen-Or, “K-set tilable sur-
faces,” ACM Trans. Graph., vol. 29, pp. 44:1–44:6, ’10.

[7] M. Singh and S. Schaefer, “Triangle surfaces with discrete equiv-
alence classes,” ACM Trans. Graph., vol. 29, no. 4, pp. 46:1–46:7,
2010.

[8] H. Zimmer, M. Campen, D. Bommes, and L. Kobbelt, “Rational-
ization of Triangle-Based Point-Folding Structures,” Comp. Graph.
Forum, vol. 31, no. 2, pp. 611–620, 2012.

[9] K.-Y. Lo, C.-W. Fu, and H. Li, “3d polyomino puzzle,” ACM Trans.
Graph., vol. 28, no. 5, pp. 157:1–157:8, Dec. 2009.

[10] S. Xin, C.-F. Lai, C.-W. Fu, T.-T. Wong, Y. He, and D. Cohen-
Or, “Making burr puzzles from 3d models,” ACM Trans. Graph.,
vol. 30, no. 4, pp. 97:1–97:8, Jul. 2011.

[11] P. Song, C.-W. Fu, and D. Cohen-Or, “Recursive interlocking
puzzles,” ACM Trans. Graph., vol. 31, no. 6, pp. 128:1–128:10, Nov.
2012.

[12] K. Hildebrand, B. Bickel, and M. Alexa, “crdbrd: Shape fabrication
by sliding planar slices,” Comp. Graph. Forum, vol. 31, no. 2pt3,
pp. 583–592, May 2012.

[13] Y. Schwartzburg and M. Pauly, “Fabrication-aware design with
intersecting planar pieces,” Comp. Graph. Forum, vol. 32, no. 2pt3,
pp. 317–326, 2013.

[14] L. Luo, I. Baran, S. Rusinkiewicz, and W. Matusik, “Chopper:
partitioning models into 3d-printable parts,” ACM Trans. Graph.,
vol. 31, no. 6, pp. 129:1–129:9, Nov. 2012.

[15] R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung,
“Make It Stand: Balancing shapes for 3D fabrication,” ACM Trans.
Graph., vol. 32, no. 4, pp. 81:1–81:10, 2013.

[16] S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R. W.
Sumner, W. Matusik, and B. Bickel, “Computational design of
mechanical characters,” ACM Trans. Graph., vol. 32, no. 4, pp.
83:1–83:12, Jul. 2013.

[17] D. Ceylan, W. Li, N. J. Mitra, M. Agrawala, and M. Pauly,
“Designing and fabricating mechanical automata from mocap
sequences,” ACM Trans. Graph., vol. 32, no. 6, 2013.

[18] L. Zhu, W. Xu, J. Snyder, Y. Liu, G. Wang, and B. Guo, “Motion-
guided mechanical toy modeling,” ACM Trans. Graph., vol. 31,
no. 6, pp. 127:1–127:10, Nov. 2012.

[19] M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross, “Compu-
tational design of rubber balloons,” Comp. Graph. Forum, vol. 31,
no. 2pt4, pp. 835–844, May 2012.

[20] J. Mitani and H. Suzuki, “Making papercraft toys from meshes
using strip-based approximate unfolding,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 259–263, Aug. 2004.

[21] S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin, and H.-C. Yen,
“Optimized topological surgery for unfolding 3d meshes,” Comp.
Graph. Forum, vol. 30, no. 7, pp. 2077–2086, 2011.

[22] D. Chen, P. Sitthi-amorn, J. T. Lan, and W. Matusik, “Computing
and fabricating multiplanar models,” Comp. Graph. Forum, vol. 32,
no. 2pt3, pp. 305–315, 2013.

[23] M. Kilian, S. Flöry, Z. Chen, N. J. Mitra, A. Sheffer, and
H. Pottmann, “Curved folding,” ACM Trans. Graph., vol. 27, no. 3,
pp. 75:1–75:9, Aug. 2008.

[24] Y. Igarashi, T. Igarashi, and J. Mitani, “Beady: interactive bead-
work design and construction,” ACM Trans. Graph., vol. 31, no. 4,
pp. 49:1–49:9, Jul. 2012.

[25] C. Yuksel, J. M. Kaldor, D. L. James, and S. Marschner, “Stitch
meshes for modeling knitted clothing with yarn-level detail,”
ACM Trans. Graph., vol. 31, no. 4, pp. 37:1–37:12, Jul. 2012.

[26] Zometool Inc. [Online]. Available: http://zometool.com
[27] T. Davis. (2007) The mathematics of zome. [Online]. Available:

http://geometer.org/mathcircles/zome.pdf
[28] X. Ni, M. Garland, and J. C. Hart, “Fair morse functions for

extracting the topological structure of a surface mesh,” ACM
Trans. Graph., vol. 23, no. 3, pp. 613–622, Aug. 2004.

[29] S. Vorthmann. vZome. [Online]. Available: http://vzome.com
[30] E. Schlapp. ZomeCAD. [Online]. Available: http://www.

softpedia.com/get/Science-CAD/ZomeCAD.shtml
[31] H. Zimmer, F. Lafarge, P. Alliez, and L. Kobbelt, “Efficient explo-

ration of the zometool model space,” Preprint, 2014.
[32] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene, “Recent advances

in remeshing of surfaces,” in Shape Analysis and Structuring,
Mathematics and Visualization. Springer, 2008.

[33] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon
Mesh Processing. AK Peters, 2010.

[34] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini,
and D. Zorin, “Quad-mesh generation and processing: A survey,”
Comp. Graph. Forum, 2013.

[35] P. J. Frey, H. Borouchaki, and P.-L. George, “Delaunay tetrahedral-
ization using an advancing-front approach,” in 5th Int. Meshing
Roundtable, Sandia Nat. Lab., 1996, pp. 31–46.

[36] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G. Taubin, and
S. Member, “The ball-pivoting algorithm for surface reconstruc-
tion,” IEEE TVCG, vol. 5, pp. 349–359, 1999.

[37] C. T. Silva and J. S. Mitchell, “Greedy cuts: An advancing front
terrain triangulation algorithm,” 1998.

[38] J. Schreiner, C. Scheiclegger, and C. Silva, “High-quality extraction
of isosurfaces from regular and irregular grids,” IEEE TVCG,
vol. 12, no. 5, pp. 1205–1212, 2006.

[39] P. Liepa, “Filling holes in meshes,” in Proc. SGP, 2003, pp. 200–205.
[40] T. Möller, “A fast triangle-triangle intersection test,” Journal of

Graphics Tools, vol. 2, pp. 25–30, 1997.
[41] Computational Geometry Algorithms Library. [Online]. Available:

http://www.cgal.org
[42] J. Möbius and L. Kobbelt, “Openflipper: An open source geometry

processing and rendering framework,” in Curves and Surfaces, ser.
Lecture Notes in Computer Science, J.-D. Boissonnat, P. Chenin,
A. Cohen, C. Gout, T. Lyche, M.-L. Mazure, and L. Schumaker,
Eds. Springer Berlin / Heidelberg, 2012, vol. 6920, pp. 488–500.

Henrik Zimmer is a Ph.D. student in Computer
Science at the RWTH Aachen University, Ger-
many, where he completed his Diploma in 2008
with specialization on Computer Graphics and
Geometry Processing. His research interests
include Geometry Processing in general and
Quad Remeshing and Architectural Geometry in
particular.

Leif Kobbelt is a professor of Computer Graph-
ics & Multimedia at RWTH Aachen University
in Germany. He studied Computer Science and
completed his PhD at the University of Karlsruhe
in 1994. After a postdoc stay at the University of
Wisconsin in Madison he joined the Computer
Graphics Group at the University of Erlangen
in 1996 and completed his Habilitation there in
1999. Shortly after being appointed an asso-
ciate professor at MPI Informatik in Saarbrücken
(1999), he received an offer for a full profes-

sorship from RWTH Aachen University and moved to Aachen in 2001
where he is now the head of the Computer Graphics Group. His
research interests cover many areas of Computer Graphics and Com-
puter Vision with a focus on Geometry Processing, 3D Reconstruction,
Multiresolution- and Freeform-Modeling, 3D Model Optimization, and the
efficient handling of polygonal meshes in interactive applications.

