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Abstract: Virtual city models become more and more important in applications like vir-

tual city guides, geographic information systems or large scale visualizations, and also play

an important role during the design of wireless networks and the simulation of noise distribu-

tion or environmental phenomena. However, generating city models of sufficient quality with

respect to different target applications is still an extremely challenging, time consuming and

costly process. To improve this situation, we present a novel system for the rapid and easy

creation of 3D city models from 2D map data and terrain information, which is available

for many cities in digital form. Our system allows to continuously vary the resulting level

of correctness, ranging from models with high-quality geometry and plausible appearance

which are generated almost completely automatic to models with correctly textured facades

and highly detailed representations of important, well known buildings which can be gener-

ated with reasonable additional effort. While our main target application is the high-quality,

real-time visualization of complex, detailed city models, the models generated with our ap-

proach have successfully been used for radio wave simulations as well. To demonstrate the

validity of our approach, we show an exemplary reconstruction of the city of Aachen.
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1 Introduction

The efficient generation and visualization of complex virtual city models plays an increasingly

important role in a variety of computer graphics applications including virtual city guides

and geographic information systems [Gis08], computer games, or large scale visualization

tools like Google Earth [Goo08]. However, the creation of these models, e.g., using 3D

modeling tools [Ble08] is a difficult problem which requires considerable manual effort and

expert knowledge.

Recently, there have been a number of significant advances in computer graphics and vision

research in order to automate the generation of complex city models. On the one hand we

find techniques for procedural [PM01, MWH+06] and grammar based modeling [WWSR03]



of cities. Similar systems have been proposed for generating pseudo infinite cities in real-

time [GPSL03] or for automatic synthesis of facade textures [LDG01, LG06, MZWG07]. The

fundamental basis for many of these techniques are shape grammars and patterns in architec-

ture [Sti75, CAS77]. Although these methods are able to produce complex and detailed city

models with considerable quality [WMV+08], they are often based on simplified models so

that it is difficult to reconstruct the visual variety and structural patterns observable in real

cities. Even more importantly, many applications such as virtual city guides or navigation

systems require the integration of real-world data including, for example, correct street maps

[Geo08, Ope08] or reconstructions of specific landmark buildings. Most automatic systems

for procedural city generation do not address these important requirements and it is often

difficult to consolidate existing automatic approaches with techniques for creating virtual

city models from real input data.

On the other hand there are a variety of attempts to digitize 3D geometry and texture of real

cities by employing computer vision techniques. A large body of work on city modeling is

based on aerial images [SV01, VD01]. Although these techniques can capture the global city

shape as well as the geometry of buildings, it is generally not possible to extract detailed and

high quality textures for visualization. With recent advances in mobile tracking and efficient

solutions for laser scanning and passive stereo reconstruction, it is now possible to build small

scale acquisition systems. For instance, in [FJZ05, CLCG06, PNF+08] the authors mount

reconstruction hardware onto a vehicle and reconstruct detailed street maps and textured

facades. A semi-automatic approach for detailed architectural models from images has been

presented in [DTM96]. These image-based approaches allow to model cities realistically at

various levels of detail by employing actual photos of real buildings. Unfortunately these

methods often focus on a particular subproblem and there is currently no single solution

for image-based city reconstruction which properly addresses all involved issues. Moreover,

image-based reconstruction techniques are not yet mature enough to support fully auto-

matic data acquisition and processing, so that a considerable amount of manual work is still

required in order to integrate data from different sources.

Hence, for creating virtual models of real cities, a certain trade-off between the correctness

and the plausibility of a model has to be considered in practice: rule-based systems provide

the tools for automatically generating the desired complexity, and image-based modeling

enables a more realistic reproduction of buildings. Moreover, there is an increasing pool

[Geo08, Ope08] of data resources of street and building maps publicly available. Given these

different data sources and approaches the main contribution of this paper is to identify and

describe the essential steps for a flexible and scalable modeling pipeline to generate virtual

city models. Our conceptual approach to city reconstruction and visualization consists of

the following main steps:

Model Generation: The geometry of the main city model is generated using a hybrid

approach consisting of 2D map data, a terrain map, and automatic rule-based systems

for creating a 3D model from the 2D data.



Figure 1: Our input data consists of 2D maps of buildings (a), streets (b) and properties

(c). The close-up of the streets shows typical inconsistencies such as holes.

Texture Processing: A framework for generating and processing large texture and ma-

terial databases is used to create authentic textures for prominent city regions. The

remaining areas are textured using a rule-based system as well.

Image-based Modeling: Complex landmark buildings which cannot be reconstructed from

the 2D maps are modeled using image-based techniques.

Visualization: A highly efficient approach based on deferred shading is used to render the

resulting complex city models with global illumination effects in real-time.

The following sections describe these parts of our prototype in detail and present an exem-

plary reconstruction of the city of Aachen.

2 Model Generation

The automatic model generation is based on 2D street and building maps of Aachen which

were in our case provided by the land registration office in form of multi-layered vector maps

[Geo08]. The provided data contained separate layers with 2D line segments representing

streets, buildings, and properties (Fig. 1). In addition to that we had a height map of the

region of Aachen (Fig. 2 a).

Unfortunately the provided 2D data contained, in our case, a considerable amount of degen-

eracies such as isolated line segments, holes, redundant vertices, or undesirable intersections

between lines. For instance, the building map does not contain consistent information about

individual buildings, but consisted of a set of 1.2M unconnected edges. Hence, the first step

of the model generation requires a pre-process in order to repair the 2D data. We employ

basic graph algorithms for cycle detection to identify line loops which are part of a single

building (Fig. 2 b,c). Similar problems occur with the road map: street segments ended be-

fore crossings, contained holes, or other types of artifacts such as undesirable line crossings.



Figure 2: Height map of the region of Aachen (a). Unconnected input edges before (b) and

after loop detection (c).

We address this problem geometrically by extending disconnected line segments and com-

puting proper line intersections. Using these techniques, most of the defective data can be

repaired automatically. However, for a small number of remaining ambiguous or inconsistent

configurations it turned out that simple manual intervention for joining street segments is

more effective than trying to address all inconsistencies automatically.

Given the repaired data, the next major step is the extension of the 2D polygons representing

buildings to actual 3D geometry. Since our base data does not provide any information about

the building heights, we implemented a simple rule-based system which assigns varying

numbers of floors to each building. The height computation is additionally influenced by the

base area of each building, based on the assumption that the area and height of a building

are correlated. Finally we adjust the height of neighboring buildings to improve the visual

appearance. Given the building height, the actual 3D building is created by duplication

and extrusion of the 2D base polygon. An additional simple roof geometry is added to

rectangular buildings. Here again, neighboring houses are considered in order to align the

roofs within a single street.

The last processing step consists of an orthogonal projection of the 3D building mod-

els and the 2D streets and properties onto the terrain data in order to produce the final

mesh. To retain the edges of these input polygons in the output tesselation we compute a

Figure 3: The resulting 3D mesh.

constrained Delaunay triangulation of the

terrain and the 2D vector data. This is es-

sential in order to differentiate between the

different types of terrain such as streets or

green areas during visualization. Using this

approach we create two different types of

output models: a watertight triangle mesh

(Fig. 3) including the complete geometry for

mobile network simulations, and two sepa-

rate meshes for the buildings and the ter-

rain optimized for culling during the visual-

ization.



Figure 4: The workflow for texture processing (a). Example for image rectification (b).

Figure 5: Left: computation of texture coordinates for walls and roofs. Right: combination

scheme (a) for tile elements (b) to build complex facades (c).

3 Texture Processing

Real world photos are generally subject to a number of undesirable effects such as illumina-

tion changes or image distortion. These effects prevent a straight forward generation of high

quality textures. We developed an image processing pipeline based on a set of image process-

ing filters or modules which address these issues. The input is a library of images taken from

within the city which we acquired with a standard digital camera. Besides standard color

filters for adjusting brightness, contrast and gamma of an image, our two most important

filters address the pincushion distortion caused by the camera lenses and perspective effects

[HZ04] in cases where it is not possible to take pictures with an orthogonal view onto the

respective facade, e.g., due to occlusions (Fig. 4). Some processing modules might use more

than one input image, so that we actually employ an acyclic processing graph instead of a

simple linear pipeline. The module for merging images, for example, takes two input images

in which the user can define a planar region that covers the same part of a facade. The

system will merge those images automatically by rectification and blending.

After this pre-process, the raw images contained in the database are augmented with ad-

ditional material parameters in order to simulate different surface types. These attributes

include, for instance, color settings for ambient lighting, and different maps for the diffuse

color or the specular intensity. Texture coordinates (U, V ) of a polygon are computed au-

tomatically using the direction of greatest ascent in Y direction as the V axis in parameter



Figure 6: The image based tool for modeling landmark buildings. Input image of the com-

puter science department (a). 3D model and estimated camera position (b). Input view of

the theater (c) and the generated 3D model (d).

space. The orthogonal U axis is then computed from the normal N and V (Fig. 5, left).

The mapping of materials from this database to the 3D model is done in two different ways:

For prominent buildings or areas such as the market place in Aachen we assign materials

and the corresponding textures manually. The remaining buildings are textured using an

automatic procedural approach similar to [WWSR03] and [MWH+06] using tile elements.

We distinguish four kinds of tiles: doors, ground windows, upper windows and walls. The

procedural system splits the facades (Fig. 5, right) and assigns texture elements from the

material database. In order to maintain the polygon count we do not explicitly split the

geometry for window tiles but assign texture coordinates greater than one in order to create

repeating texture patterns. The number of tiles is calculated by the real size of the seamless

texture defined by the attributes of its corresponding material. Remaining small patches are

simply textured using wall backgrounds.

Our material editor provides two layers of randomization for the procedural texturing. First

the system selects a random library that covers the same architectural style so that the

different walls of a single house get a similar look. Then the algorithm chooses a particular

material in each category in order to make all tiles of the same kind look equal for the whole

building. The probabilities for each library and material can be adjusted in order to control

the stochastic distribution and variety of the different styles.

4 Image-based Modeling

Although the automatic model generation and the procedural texturing result in quite plau-

sible city models, it is obviously not possible to use these approaches to model more complex

landmark buildings such as the city hall or cathedral of Aachen which cannot be extruded

from their corresponding 2D base polygons.

To create these models we implemented a semi-automatic approach for modeling architecture

from images [DTM96]. The user captures a number of photos of a building from different

viewing positions, and creates a coarse model using simple base elements such as cubes or

cylinders. In a second step, edges of the base model are linked to their corresponding edge



Figure 7: The depth, albedo, specular, and normal component of each pixel for deferred

shading (a). Cascaded shadow maps (b) and additional soft shadows and ambient occlusion

effects (c). Final output image combining all shader effects (d).

in the input images. These links are used as input to an optimization process which adapts

the shape of the building and the camera parameters in order to refine the coarse base model

to a more faithful representation of the building. This model can then be textured using the

original images as input (Fig. 6).

5 Visualization

The major challenge in visualizing the resulting huge city model in OpenGL [SA06] is the

amount of data. Our final mesh consists of over 6 million unique vertices and 2.2 million

triangles, textured using over 400 different materials. To render this amount of data at

realtime framerates, one has to reduce the batch-count as much as possible [Wlo03]. We

achieve this using a heavily optimized memory layout for the data and an Octree [JR00]

that allows to cull nodes but still render all data in strictly sequential order with a minimum

of drawcalls. Since most of the 400+ materials are combinations of background (wall) and

foreground (windows) textures we dynamically combine multiple textures in a shader which

reduces the texture count to 80. Reducing the memory footprint of the diffuse textures

allows us to add additional visual effects using normal-maps and gloss-maps.

A further issue is the significant overdraw caused by the large number of occlusions which

are inevitable in large city models. For overdrawn pixels, the complex shaders we utilize to

enhance the visual quality are evaluated multiple times, leading to a significant performance

reduction of the rendering system. We hence implemented the whole rendering pipeline

using a deferred shading approach [Shi05]. In a first pass we render the scene into multiple

framebuffers without complex lighting calculations or other visual effects. We end up with

three framebuffers containing the depth, the albedo and specular level, and the normal

direction of each pixel (Fig. 7 a).

In a second rendering pass these buffers are evaluated for each output pixel in order to

restore the pixel’s depth value and position for computing per-pixel lighting. This approach



Figure 8: Different views of the city of Aachen generated with our system.

guarantees that all computational expensive shader operations like multiple shadow look-

ups, environment mapping and specular highlights are only computed at most once for each

pixel on the screen. As a side note, however, it is important to take particular care of the

reduced numerical precision during the rendering process. We solve this problem by using

an adaptively computed near plane distance for different viewing situations, e.g., walking on

the ground vs. flying over the city.

For the shadow generation we use multiple shadow maps [Ura05, For05]: two traditional

shadow maps for high resolution shadows close to the viewer and low resolution shadows

in the far distance (Fig. 7 b). These two shadow maps and the sky are separated on the

screen using the stencil buffer. This prevents unnecessary shader computation in the sky

and reduces branching in the shader on the ground, as for each stencil value the appropriate

shadow map is constant [Per05]. Additionally we use a third shadow map which employs

unsharp masking [LCD06] to simulate diffuse shadowing (Fig. 7 c). Additional basic ef-

fects like a simple animated sky and fog contribute greatly to a more realistic look, while

environmental mapping, specular highlights and bloom give the scene a warmer appearance

and lead to the final image of the scene [JR04] (Fig. 7 d). Despite the complexity of the

overall scene and the different visual effects the render engine runs at more than 60 FPS on

a standard PC with a NVIDIA Geforce 8800 graphics card.

Besides simple mouse and keyboard navigation, we implemented interaction metaphors for

stereo visualization with optical head and motion tracking. In addition to standard fly- and

walking-modes, we included a “giant”-mode where the user is enlarged with respect to the

model. This allows to explore the city on a global level similar to scaled architectural models.



6 Conclusions

Figure 9: Simulation of GSM net-

work field strength with the method

of [SK06] using a watertight model of

the city of Aachen reconstructed by

our system.

In this paper we have presented a complete, flexi-

ble and scalable pipeline for the efficient generation

and real-time, high quality visualization of large-scale

city models. We have identified four major sub-

problems (model generation from 2D map data, tex-

ture processing, image-based modeling for landmark

buildings, and visualization of the resulting model)

and developed efficient tools to solve each of them.

The resulting system enables even non-expert users

to rapidly create city models of high quality. While

our main target application is the visualization of city

models, the watertight models reconstructed with our

method are well-suited for other applications like, e.g.,

simulations of radio wave propagation (Fig. 9).

One of the main advantages of our approach is the

seamless transition from plausible city visualizations

to fully correct city reconstructions: A plausible,

high-quality model can be generated mostly automatic with only very little manual in-

teraction and from quite rudimentary 2D base data. Our pipeline then allows for the easy

generation and integration of correct textures for facades and detailed landmark buildings.

While this is mostly relevant to applications targeting at a plausible visualization, the geo-

metrical level of detail and correctness of the automatically generated model parts could be

improved arbitrarily by integrating base data of higher quality for simulation purposes (e.g.,

using cadastral data including the number of floors for each building).

An interesting area for future work is the automation of the texture generation process.

Currently the creation of textures and assignment to building facades requires a certain

amount of manual interaction. With cameras mounted on a moving vehicle and a GPS

system as well as image-based techniques for its localization, we aim at the rapid creation

of large, correctly textured parts of the city model.
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