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Abstract

The flexibility coming along with the simplic-
ity of their baseprimitive and the supportby
todaysgraphicshardware, have madetriangu-
lar meshesmoreandmorepopularfor represent-
ing complex 3D objects. Due to the complex-
ity of realistic datasets,a considerableamount
of work hasbeenspentduring the last yearsto
provide meansfor the modificationof a given
meshby intuitive metaphors,i.e. largescaleed-
its underpreservation of the detail features. In
this paperwe demonstratehow a hierarchical
structureof a mesh can be derived for arbi-
trary meshesto enableintuitive modifications
without restrictionsontheunderlyingconnectiv-
ity, known fromexistingsubdivisionapproaches.
Wecombinemeshreductionalgorithmsandcon-
strainedenergy minimizationto decomposethe
givenmeshinto severalfrequency bands.There-
fore, a new stabilizing techniqueto encodethe
geometricdifferencebetweenthe levels will be
presented.

1 Introduction

Modificationof complex 3D geometricshapesis
a challengingtaskrequiredfor a wide varietyof
applications,for instanceanimationanddesign.
Usually, this is doneby editing a freeformsur-
face,which representsthe outerskin of a solid
object. Like their realworld equivalent,thesur-
facesoften carry detail information on various
scalesand it is desirableto preserve thesefea-
turesundera modificationof the global shape.

During the last years, hierarchicalrepresenta-
tionsof geometricshapehasbecomethedefacto
standardfor thosepurposes.Thebasicideais to
encodeahigh-frequency detail level relative to a
coordinateframeinducedby a coarserapproxi-
mationof theoriginal shapesuchthatmodifica-
tionson a coarserlevel canbepropagatedto the
finerones.Pioneeringwork in thisareawasdone
by Forsey andBarthelsin [6, 7], wherethey used
hierarchicalpolynomial patches(H-Splines)to
representand edit a surface. Though splines
haveastraightforwardshapecontrolmechanism
basedon controlvertices,it is well-known to be
rathercomplicatedto preserve boundarycondi-
tionswhenhandlingcomplex geometry.

This is one of the reasons,why the interrest
in surface representationsbasedon triangular
meshesincreasedover thelastyears.Generaliz-
ing thepatch-basedconcepts,thewide family of
subdivisiontechniques[1, 2, 3, 16,12] startwith
a coarsebasemeshapproximatinga geometric
shapeof arbitrary topologieand refine it itera-
tively. An exponentialnumberof verticesis in-
troducedto capturefinerdetailinformation,until
a prescribedtoleranceis reached.This bottom-
upapproachgeneratestheso-calledsubdivision-
connectivity, which means,that sub-regions of
therefinedmeshwhichcorrespondto asingletri-
anglein the basemeshhave the connectivity of
regulargrids.Whenrefiningamesh,theposition
of theinsertedcontrol-verticesis predicedby the
smoothing-ruleof a subdivision-scheme.A de-
tail vector(relative to a local coordinatesystem
inducedby the ’parent triangle’) will be added
to reducetheapproximationerror. Thatway, the



new vertex is linkedto thecoarserlevel (andfol-
lowsmodifications,if theglobalshapechanges).
Storing the basemeshand the sequenceof de-
tail vectorsfor a fixedsubdivision schemeleads
to a hierarchicalrepresentationof the original
shape[17, 21]. In pratice,one is often given a
finemeshaquiredfor examplefromalaser-range
scanandanexpensiveremeshingprocess[4, 15]
is neededto obtainsubdivision-connectivity.

A popularwayto avoid thedescribedproblem
is to build thehierarchialstructuretheotherway
aroundi.e from fine to coarse. For this, tech-
niqueswhich adaptthe mesh-complexity to the
availablehardwareresourcesemerging from an-
otherbranchin computergraphicscanbeused.
Multiple levelsof resolutionareproducedby in-
crementallydecimatingthefinemesh[8,10,14].
This is often done by applying a decomposi-
tion operator, that successively collapsesedges
and removes the redundantverticesand faces.
To capturethe detail information,which would
be lost otherwise,again,detail vectorshave to
be stored. For a hierarchicalrepresentation,a
properreconstructionhasto beensured.Hence,
we needa basepoint, where the detail vector
could be attachedto. In contrastto the subdi-
vision scheme,wherethebasepoint is predicted
by thesubdivision operator, no suchpoint exists
for the coarseto fine approach,sincethe mesh-
connectivity doesnot provide thenecessaryreg-
ular structure.For this reason,a vertex removal
is split into two steps.First, theoriginalposition
is alteredsuchthatit minimizessomeglobalen-
ergy functional. Only recently, a coupleof new
techniqueshave beenproposed[13, 11, 9]. The
secondstepremovestheoriginal vertex anden-
codesthepositionwith respectto its minimized
counterpart.

Thiswouldrequireaminimizationprocessfor
every single vertex. One could also apply the
functional to all verticesbeforestoring the de-
tail informationto lowerthecomputationalcosts.
This would lead to a two-bandrepresentation,
i.e. a smoothedversion,and the original mesh
linkedby thedetailvectors.In practice,a multi-
bandhierarchy, similar to a level of detail repre-
sentationwould bedesirable.This could reflect
the multiple scalesof featureson the surfaceto

stabilizethe modeling-processon the onehand
andkeepdown thecostson theotherhand.

Hence, to build an appropriatehierarchical
structureof a triangular mesh for our model-
ing purposes,we have to solve two problems.
First, we have to choosethe right intermedi-
atefrequency-bands,suchthata modificationof
a coarserlevel will lead to reasonablechange-
mentsof the finer ones. On the otherhand,the
detailhasto beencodedwith respectto a proper
basepoint,to ensureastablereconstruction.The
followingsectionsdiscussseveralapproachesfor
bothproblems.

2 Detail encoding

As mentionedbefore, we cannotsimply store
the detail vectorswith respectto a global coor-
dinatesystembut have to definethem with re-
spectto local frameswhich are aligned to the
low-frequency geometry[6, 7, 18, 19, 20]. This
guaranteestheintuitivedetailpreservationunder
modificationof the global shape. Usually, the
associatedlocal framefor eachvertex hasits ori-
gin at the locationpredictedby the reconstruc-
tion operatorwith suppresseddetail. However,
in many casesthis canleadto ratherlong detail
vectorswith a significantcomponentwithin the
local tangentplane. Sincewe prefer short de-
tail vectorsfor stability reasons,it makessense
to usea differentorigin for the local frame. In
fact, the optimal choiceis to find that point on
the low-frequency surfacewhosenormalvector
pointsdirectly to theoriginalvertex. In thiscase,
thedetailis notgivenbyathreedimensionalvec-
tor
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but ratherby a basepoint����� ��������
 onthelow-frequency geometryplus

a scalarvalue � for the displacementin normal
direction. If a local parameterizationof thesur-
face is available then the basepoint � can be
specifiedby a two-dimensionalparametervalue��������


.
The general setting for detail computation

is that we have given two meshes���! #" and
�%$�! #" where ���& #" is the original datawhile
� $ �! #" is reconstructedfrom the low-frequency
approximation��� with suppresseddetail, i.e.
for coarse-to-finehierachies,themesh�%$�& #" is



Figure 1: The position of a vertex in the original mesh(high-frequency geometry)is given by a
basepoint on the low-frequency geometryplusa displacementin normaldirection. Therearemany
ways to definea normal field on a triangle mesh. With piecewise constantnormals(left) we do
not cover the whole spaceandhencewe sometimeshave to usevirtual basepoints with negative
barycentriccoordinates.The sketchshows, that this canleadto non intuitive reconstrucions,if the
’basemesh’ is for exampleflattendout. The useof local quadraticpatchesandtheir normalfields
(center)somewhat improvesthe situationbut problemsstill occursincethe overall normalfield is
not globally continuous.Suchdifficulties areavoidedif we generatea Phong-typenormalfield by
blendingestimatedvertex normals(right).

generatedby applying a stationarysubdivision
schemeandfor fine-to-coarsehierarchies� $ �! #"
is optimal with respectto someglobal bending
energy functional. Encodingthe geometricdif-
ferencebetweenboth meshesrequiresto asso-
ciateeachvertex � of �%�! #" with acorrespond-
ing basepoint ' on the continuous(piecewise
linear) surface �%$�& #" such that the difference
vector betweenthe original point and the base
point is parallelto thenormalvectorat thebase
point. An arbitrary point ' on � $ �& #" can be
specifiedbyatriangleindex ( andbarycentricco-
ordinateswithin thereferredtriangle.

To actuallycomputethedetailcoefficients,we
haveto defineanormalfield onthemesh� $ �! #" .
Themostsimpleway to do this is to usethenor-
mal vectorsof the triangularfacesfor the defi-
nition of a piecewiseconstantnormalfield. This
projectioncanbecomputedefficientlyandworks
fine,if theresultingcoefficient is shortcompared
to theedgesof theassignedtriangleandif �%$�! #"
is sufficiently smooth.But sincetheorthogonal
prismsspannedby a trianglemeshdo not com-
pletely cover the vicinity of the mesh,we have
to acceptnegativebarycentriccoordinatesfor the
basepointsif it doesnot lie within sucha prism.

This leadsto non-intuitive detail reconstruction
if the low-frequency geometryis modified (cf.
Fig 1).

A techniqueused in [11] is basedon the
constructionof a local quadraticinterpolant )
to the low-frequency geometry. For a vertex�+* � �! #" it is basedon the closesttriangle, * �-$�! #" andits adjacentvertices,which can
be found in linear time by a simplelocal search
procedure,startingfrom � ’s correspondingver-
tex � $ * � �& #" . Sincenow a local parameter-
ization is given, parametervalues(u,v) defin-
ing the basepoint ' can be found by Newton-
iteration. We startfrom thecenterof

,
at '/. �

) � "0 � "0 
1� '�23 #" is definedby the projectionof �
into the tangentplaneof ) at '/2 . In termsof
parametervalues

���4�5�6

, this leadsto thesimple

updaterule
��� 23 #" ��� 23 #" 
87 ��� 2 �5� 2 
19:���	�����	��
 ,

where
�;�	�����	��


is thesolutionof thelinearsys-
tem

< �= < = < �= <6>< �= <
> < �> <6>
���
�	� � < �=@?< �> ? (1)

with detail vector A � �CB '�2 , which is per-
pendicular (within a prescribedtolerance) to
) ��� 2 �5� 2 
 afterafew steps.Theabsolutevalueof



Figure2: Theoriginal shape(left) is modifiedby pushinga singlevertex while minimizing a mem-
braneenergy functional.A piecewiselinearnormalfield leadsto undesirablemeshartifacts(middle),
while storing detail information with respectto a Phongnormal field (left) performsa satisfying
modification.

the displacement-coefficient � is setto DEAFD and
hasto be multiplied by B:G if ? � ��H = ��� 2 �5� 2 
JIH > ��� 2 ��� 2 
K
ML�N . Althoughthis reducesthenum-
ber of pathologicalconfigurationswith negative
barycentriccoordinatesfor the basepoint, we
still observe artifact in the reconstructedhigh-
frequency surfacewhich arecausedby the fact
that the resulting global normal field of the
combinedlocal patchesis not continuous(cf.
Fig 1 middle).

We therefore proposea different approach
which adaptsthe basic idea of Phong-shading
[5] wherenormal vectorsare prescribedat the
verticesof a trianglemeshandacontinuousnor-
malfield for theinteriorof thetriangularfacesis
computedby linearly blendingthe normalvec-
torsat thecorners.We usethesamesearchpro-
cedureas describedabove and obtain a trian-
gle

�O�QP��SRT�SUV

with theassociatednormalvectorsWJX

,
WZY

, and
WJ[

. For eachinteriorpoint

' � \ PJ9�]	R^9�_JU

with \ 9`]@9`_ �aG wefind theassociatednormal
vector

WJb
by

WZb � \ WJX 9+] WJY 9+_ WJ[Ec

When computing the detail coefficients for a
given point � we have to find the basepoint '
suchthat � �^B ' 
&I WJb

hasall threecoordinatesvanishing.By plugging
in thedefinitionof ' and

WJb
andeliminating

_ �
G3B:\dB ] weobtainabivariatequadraticfunction

< e ��������
:f g 0
andwe have to find the parametervalue

� \ ��]8

such that

< � \ ��]8
 � �hNi�jNi�kN3
 �
. Again, this

canbeaccomplishedby performingseveralsteps
of Newton-iteration. Notice that

<
can be in-

terpretedas a quadratic surface patch in
g 0

which passesthrough the origin. The Taylor-
coefficientsof

<
canexplicitly begivenby

< �;N3�jN3
 � l 9 lml< = �;Ni�kN3
 � n 9 nZl Bol Bqp8lml<6> �;Ni�jN�
 � r 9 rsl Bql Bqp8lml< =E= �;Ni�jN�
 � ntnqBontl 9 lml< = > �;Ni�jN�
 � ntruBontl Bor`l 9 p8lvl<6>w> �hNi�jN3
 � r`rxBor`l 9 lml
where

n � � I WZX
r � � I WZY
l � � I WZ[
ntn � WZX IyP
rsr � WZY IyR
lml � WZ[ IyU
ntr � � WJY IyP/
z9{� WJX IyR4

ntl � � WJ[ IyP/
z9{� WJX IyUV

rsl � � WJ[ IyRT
z9|� WJY I}UV


Thisleadsto asimilarupdateruleasdescribedin
1. Startingwith

� \ . �5] . 
 � � "0 � "0 
 , thedifference



��� \ ���	]8
 betweentwo consecutivestepscanbe
denotedasfollows.
� \ � � < �= <
>&~i< �> < B < �> <6>!~i< �= < 
1�3��	] � � < �= <
>&~i< �= < B < �= < = ~i< �> < 
1�3�

with
� � < �= < = ~3< �> <
> B � < = <
> 
�� .

In caseone of the barycentriccoordinatesof
the resulting point ' is negative, we continue
the searchfor a basepoint in the correspond-
ing neighboringtriangle. Sincethe Phongnor-
malfield is globallycontinuouswealwaysfind a
basepoint with positivebarycentriccoordinates.
Fig. 1 depicts the situation schematicallyand
Fig. 2 shows an exampleedit wherethe piece-
wiseconstantnormalfield causesmeshartifacts
which do not occurif thePhongnormalfield is
used.

3 Hierarchy levels

For coarse-to-finehierarchiesthelevelsof detail
aredeterminedby the uniform refinementoper-
ator. Startingwith the basemesh�%. , the � th
refinementlevel is reachedafterapplyingthere-
finementoperator� times.For fine-to-coarsehi-
erarchiesthereis no suchcanonicalchoicefor
thelevelsof resolution.Hencewehave to figure
out someheuristicsto definesuchlevels.

In [11] a simpletwo-banddecompositionhas
beenproposedfor themodeling,i.e. thehighfre-
quency geometryis given by the original mesh
andthe low-frequency geometryis the solution
of someconstrainedoptimizationproblem.This
simpledecompositionperformswell if theorig-
inal geometrycan be projectedonto the low-
frequency geometrywithout self-intersections.
Fig 3 schematicallyshowsaconfigurationwhere
this is not satisfiedand consequentlythe de-
tail featuredoesnot deformintuitively with the
changeof the global shape. This effect canbe
avoidedby introducingseveral intermediatelev-
elsof detail, i.e., by usinga truemulti-bandde-
composition. The definition of the Phong-type
normal field introducedin the last sectionpro-
videsthemeansto guaranteeastablereconstruc-
tion. The numberof hierarchylevels hasto be
chosensuchthat the

� ( 9 G 
 st level canbe pro-

Figure3: If thehigh-frequency detail cannotbe
projectedonto the successive level (top), inter-
mediatelevelshave tos be insertedto quarantee
a feasibledetailreconstruction(bottom).

jectedontolevel ( without self-intersection.De-
tail informationhasto becomputedfor every in-
termediatelevel.

Intermediatelevels can be generatedby the
following algorithm. We start with the origi-
nal meshand apply an incrementalmeshdeci-
mationalgorithmwhich performsa sequenceof
edgecollapseoperations.Whena certainmesh
complexity is reached,we perform the reverse
sequenceof vertex split operationswhich recon-
structstheoriginal meshconnectivity. Theposi-
tion of the re-insertedverticesis foundby solv-
ing a globalbendingenergy minimizationprob-
lem [13, 11, 9]. Themeshthat resultsfrom this
procedureis a smoothedversionof the original
meshwhere the degree by which detail infor-
mationhasbeenremoveddependson the target
complexity of thedecimationalgorithm.

Supposethe original meshhas �z� vertices,
where � is the numberof intermediatelevels
that we want to generate.We cancomputethe
meshes�-� � cjc�c � �%. with fewer detail by ap-
plying the above procedurewherethe decima-
tion algorithm stops at a target resolution of
�z� � c�c�c � ��. remainingverticesrespectively. The
resultingmeshesyield a multi-banddecomposi-
tion of theorignaldata.Whena modelingoper-
ation changesthe shapeof �%. we first recon-
struct the next level � $ " by adding the stored
detail vectorsandthenproceedby successively
reconstructing� $ �  #" from �%$� .

The remainingquestionis how to determine
the numbers� � . A simple way to do this is
to build a geometricsequencewith � �  #" � � � �



Figure4: Startingfrom theoriginal shape(left), a two-banddecomposition(middle)canleadto long
detail-vectorsandhenceto exaggeratedmodificationsor even self-intersectionsfor relatively small
edits.Multiple levelsof detailavoid theseartifactsandthemodificationsbehave in a naturalfashion
(right).

const This mimics the exponentialcomplexity
growth of thecoarse-to-finehierarchies.Another
approachis to stopthe decimationevery time a
certainaverageedgelength � � � in the remaining
meshis reached.

A more complicatedheuristic tries to equal-
ize the sizesof the differencesbetweenlevels,
i.e., thesizesof thedetailvectors.We first com-
putea multi-banddecompositionwith, say, 100
levelsof detailwherewe choose �� �� � � const..
For every pair of successive levelswe cancom-
putetheaveragelengthof thedetailvectors(dis-
placementvalues). From this information we
can easily chooseappropriatevalues�z� � �� ���
suchthat the geometricdifferenceis distributed
evenlyamongthedetail levels.

In practiceit turnedout that aboutfive inter-
mediatelevels is usually enoughto guarantee
correctdetailreconstruction.Fig.4comparesthe
resultsof a modelingoperationbasedon a two-
bandandamulti-banddecomposition.

4 Conclusion and Future re-
search

Wehavepresentedanew methodto encodehigh-
frequencedetailwith respectto a low-frequency
basemesh.Now, weareableto performarobust
true multi-banddecompositionfor a given fine
triangularmeshof arbitrary connectivity. This
leadsto intuitive modificationsof global shapes
underpreservation of detail features.However,

the usercan still apply particular edits, where
undesirableeffectslikeself intersectionof detail
vectorsduring the reconstructionprocesshap-
pen,or, dueto the fixed mesh-connectivity, ex-
tremestretchesof trianglescan occur. We are
currently developing a system,which handles
changesof the meshduring the modelingpro-
cess,i.e. insertionof vertices,wherethemeshis
locally stretchedandvertex removal, wherethe
triangle size undergoesa given threshold. We
arealsokeepingtrack of a promisingapproach
to avoid self intersectionwithout changingthe
mesh-connectivity.
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Figure5: Somesnapshotsof amodelingsessionbasedon thenew multi-bandhierarchy. Thenoseof
theoriginalbustmodelwastransformedin variouswayse.g.scaled(top,right)andtranslated(bottom
row). Notice,how naturallythefeaturesof thefacearechanged.


