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Abstract

The flexibility coming along with the simplic-
ity of their baseprimitive and the supportby
todaysgraphicshardware, have madetriangu-
lar meshesnoreandmorepopularfor represent-
ing complex 3D objects. Due to the complex-
ity of realistic datasetsa considerableamount
of work hasbeenspentduring the last yearsto
provide meansfor the modificationof a given
meshby intuitive metaphorsi.e. large scaleed-
its underpresenration of the detail features. In
this paperwe demonstratehow a hierarchical
structure of a mesh can be derived for arbi-
trary meshesto enableintuitive modifications
without restrictionsontheunderlyingconnectv-

ity, known from existing subdvisionapproaches.

We combinemeshreductionalgorithmsandcon-
strainedenegy minimizationto decomposehe
givenmeshinto severalfrequeng bands.There-
fore, a new stabilizing techniqueto encodethe
geometricdifferencebetweenthe levels will be
presented.

1 Introduction

Modificationof complex 3D geometricshapess
a challengingtaskrequiredfor awide variety of
applicationsfor instanceanimationanddesign.
Usually, this is doneby editing a freeform sur
face,which representshe outer skin of a solid
object. Like their realworld equivalent,the sur
facesoften carry detail information on various
scalesandit is desirableto presere thesefea-
turesundera modification of the global shape.

During the last years, hierarchicalrepresenta-
tionsof geometricshapenasbecomehedefacto
standardor thosepurposesThe basicideais to
encodea high-frequeng detaillevel relatve to a
coordinateframeinducedby a coarserapproxi-
mationof the original shapesuchthat modifica-
tionson a coarsetlevel canbe propagatedo the
finerones.Pioneeringvorkin thisareawasdone
by Forsey andBarthelsin [6, 7], wherethey used
hierarchicalpolynomial patches(H-Splines)to
representand edit a surface. Though splines
have a straightforwardshapecontrolmechanism
basedon controlvertices,it is well-known to be
rathercomplicatedto presere boundarycondi-
tionswhenhandlingcomple« geometry

This is one of the reasonswhy the interrest
in surface representationdasedon triangular
meshesncreasedverthelastyears.Generaliz-
ing the patch-basedonceptsthewide family of
subdvisiontechnique$l, 2, 3, 16, 12] startwith
a coarsebasemeshapproximatinga geometric
shapeof arbitrary topologieand refineit itera-
tively. An exponentialnumberof verticesis in-
troducedo capturdinerdetailinformation,until
a prescribedoleranceis reached.This bottom-
up approactgenerateshe so-calledsubdvision-
connectvity, which means,that sub-rejions of
therefinedmeshwhich correspondo asingletri-
anglein the basemeshhave the connectvity of
regulargrids. Whenrefiningamesh theposition
of theinsertedcontrol-\erticess predicedoy the
smoothing-ruleof a subdvision-scheme A de-
tail vector (relative to a local coordinatesystem
inducedby the 'parenttriangle’) will be added
to reducethe approximatiorerror. Thatway, the



new vertex is linkedto the coarsetevel (andfol-
lows modificationsjf theglobalshapechanges).
Storing the basemeshand the sequencef de-
tail vectorsfor a fixed subdvision schemdeads
to a hierarchicalrepresentatiorof the original
shape[17, 21]. In pratice,oneis often givena
fine meshaquiredfor examplefrom alaserrange
scanandanexpensveremeshingrocesg4, 15|
is neededo obtainsubdvision-connecittity.

A popularwayto avoid thedescribegroblem
is to build the hierarchialstructurethe otherway
aroundi.e from fine to coarse. For this, tech-
niqueswhich adaptthe mesh-compleity to the
availablehardwareresourcegmenging from an-
otherbranchin computergraphicscanbe used.
Multiple levelsof resolutionareproducedy in-
crementallydecimatingthefine mesh[8,10, 14].
This is often done by applying a decomposi-
tion operatoy that successiely collapsesedges
and removes the redundantverticesand faces.
To capturethe detail information, which would
be lost otherwise,again, detail vectorshave to
be stored. For a hierarchicalrepresentationa
properreconstructiorhasto be ensured.Hence,
we needa basepoint, where the detail vector
could be attachedto. In contrastto the subdi-
vision schemewherethe basepointis predicted
by the subdvision operatoy no suchpoint exists
for the coarseto fine approachsincethe mesh-
connectvity doesnot provide the necessaryeg-
ular structure.For this reasona vertex removal
is splitinto two steps.First, the original position
is alteredsuchthatit minimizessomeglobalen-
ergy functional. Only recently a coupleof new
techniquesdave beenproposed13, 11,9]. The
secondstepremovesthe original vertex anden-
codesthe positionwith respecto its minimized
counterpart.

Thiswould requirea minimizationprocessor
every single vertex. One could also apply the
functionalto all verticesbefore storingthe de-
tail informationto lowerthecomputationatosts.
This would lead to a two-bandrepresentation,
i.e. a smoothedversion,andthe original mesh
linked by the detail vectors.In practice,a multi-
bandhierarchy similar to a level of detailrepre-
sentatiorwould be desirable.This could reflect
the multiple scalesof featureson the surfaceto

stabilizethe modeling-processn the one hand
andkeepdown the costson the otherhand.

Hence, to build an appropriatehierarchical
structureof a triangular meshfor our model-
ing purposeswe have to solve two problems.
First, we have to choosethe right intermedi-
atefrequeng-bands suchthata modificationof
a coarserlevel will leadto reasonablehange-
mentsof the finer ones. On the otherhand,the
detailhasto be encodedvith respecto a proper
basepoint,to ensurea stablereconstructionThe
following sectiongliscusseveralapproachefor
bothproblems.

2 Detail encoding

As mentionedbefore, we cannotsimply store
the detail vectorswith respectto a global coor

dinate systembut have to definethemwith re-

spectto local frameswhich are alignedto the

low-frequengy geometry[6, 7, 18,19, 20]. This

guaranteetheintuitive detailpreserationunder
modificationof the global shape. Usually, the

associatetbcal framefor eachvertex hasits ori-

gin at the location predictedby the reconstruc-
tion operatorwith suppressedietail. However,

in mary caseshis canleadto ratherlong detalil

vectorswith a significantcomponenwithin the

local tangentplane. Sincewe prefer short de-

tail vectorsfor stability reasonsjt makessense
to usea differentorigin for the local frame. In

fact, the optimal choiceis to find that point on

the low-frequeny surfacewhosenormalvector
pointsdirectlyto theoriginal vertex. In thiscase,
thedetailis notgivenby athreedimensionatec-
tor (Ax, Ay, Az)" but ratherby a basepoint

p = p(u, v) onthelow-frequeny geometryplus
a scalarvalue i for the displacementn normal
direction. If alocal parameterizationf the sur

faceis available then the basepoint p can be
specifiedby a two-dimensionaparametervalue
(u,v).

The general setting for detail computation
is that we have given two meshesM,,,,; and
M., where M,, ., is the original datawhile
M, ., is reconstructedrom the low-frequeny
approximationM,,, with suppressedletall, i.e.
for coarse-to-findierachiesthemeshM;, . is



Figure 1. The position of a vertex in the original mesh(high-frequeng geometry)is given by a
basepoint on the low-frequeny geometryplus a displacemenin normaldirection. Therearemary
ways to definea normalfield on a triangle mesh. With pieceavise constantnormals(left) we do
not cover the whole spaceand hencewe sometimeshave to usevirtual basepoints with negative
barycentriccoordinates.The sketchshaws, thatthis canleadto non intuitive reconstrucionsif the
'basemesh’is for exampleflattendout. The useof local quadraticpatchesandtheir normalfields
(center)somavhatimprovesthe situationbut problemsstill occursincethe overall normalfield is
not globally continuous. Suchdifficulties are avoidedif we generatea Phong-typenormalfield by

blendingestimatedrertex normals(right).

generatedoy applying a stationarysubdvision
schemandfor fine-to-coarsdierarchiesM, , ,
is optimal with respectto someglobal bending
enegy functional. Encodingthe geometricdif-
ferencebetweenboth meshegequiresto asso-
ciateeachvertex p of M,,,.; with acorrespond-
ing basepoint q on the continuous(piecavise
linear) surface M, ., suchthat the difference
vector betweenthe original point and the base
pointis parallelto the normalvectorat the base
point. An arbitrary point q on M., canbe
specifiedoy atriangleindex : andbarycentricco-
ordinateswithin thereferredtriangle.

To actuallycomputethedetailcoeficients,we
haveto defineanormalfield onthemeshM; ;.
Themostsimpleway to dothisis to usethe nor-
mal vectorsof the triangularfacesfor the defi-
nition of a piecavise constannormalfield. This
projectioncanbecomputecefficiently andworks
fine,if theresultingcoeficientis shortcompared
totheedge®f theassignedriangleandif M., _,
is sufficiently smooth. But sincethe orthogonal
prismsspannedy a triangle meshdo not com-
pletely cover the vicinity of the mesh,we have
to accephegative barycentriccoordinategor the
basepointsif it doesnotlie within sucha prism.

This leadsto non-intuitive detail reconstruction
if the low-frequeng geometryis modified (cf.
Fig 1).

A techniqueusedin [11] is basedon the
constructionof a local quadraticinterpolantF
to the low-frequeny geometry For a vertex
p € M,,., it is basedon the closesttriangle
T € M,,,, andits adjacentertices which can
befoundin lineartime by a simplelocal search
procedure startingfrom p’s correspondinger-
tex p’ € M, ;. Sincenow a local parameter
ization is given, parametervalues (u,v) defin-
ing the basepoint q canbe found by Newton-
iteration. We startfrom the centerof T atqy =
F(3,3),dn+1 is definedby the projectionof p
into the tangentplaneof F at q,,. In termsof
parameteralues(u, v), this leadsto the simple
updateaule (u, 1, V1) — (U, v,)+(Au, Av),
where(Au, Av) is thesolutionof thelinearsys-

tem
Au Frd
J(ar)- (i) o
with detail vectord = p — q,, which is per

pendicular (within a prescribedtolerance)to
F(u,,v,) afterafew steps.Theabsolutevalueof

Fy/F, F[F,
F/F, FJF,



Figure2: Theoriginal shapg(left) is modifiedby pushinga singlevertex while minimizing a mem-
braneenepy functional. A piecaviselinearnormalfield leadsto undesirablaneshartifacts(middle),
while storing detail information with respectto a Phongnormalfield (left) performsa satisfying

modification.

the displacement-coétient  is setto ||d|| and
hasto be multiplied by —1 if d”(f,(u,,v,) x
fo(un, v,)) < 0. Althoughthis reduceghenum-
ber of pathologicalconfigurationsvith negative
barycentriccoordinatesfor the basepoint, we
still obsene artifact in the reconstructecigh-
frequeng surfacewhich are causedby the fact
that the resulting global normal field of the
combinedlocal patchesis not continuous(cf.
Fig 1 middle).

We therefore proposea different approach
which adaptsthe basicidea of Phong-shading
[5] wherenormal vectorsare prescribedat the
verticesof atrianglemeshanda continuousor-
malfield for theinterior of thetriangularfacess
computedby linearly blendingthe normal vec-
torsat the corners.We usethe samesearchpro-
cedureas describedabore and obtain a trian-
gle A(a, b, c) with theassociatedormalvectors
Na, Ny, andN,. For eachinterior point

q = aa+Bb+yc
with a+ 5+~ = 1 wefind theassociatedormal
vector Ny by
Nq = aNy+ BNp+7Ne.
When computing the detail coeficients for a
given point p we have to find the basepoint q
suchthat

(P—a) x Ng

hasall threecoordinatevanishing.By plugging
in thedefinitionof g and N, andeliminatingy =
1—a— [ weobtainabivariatequadratidunction

F : (u,v) — R?

andwe have to find the parametewalue («, 3)

suchthat F(a,3) = (0,0,0). Again, this
canbeaccomplishedby performingseveralsteps
of Newton-iteration. Notice that F' can be in-

terpretedas a quadratic surface patch in R?

which passeghroughthe origin. The Taylor-

coeficientsof F' canexplicitly begivenby

F(0,0) = W+WW
F.(0,0) = U4+UW-W —=2WW
F,(0,0) = V4+VW-W=2WW
Fu.(0,0) = UU-UW+WW
F,(0,0) = UV —-UW =VW +2WW
Fp(0,0) = VV VW +WW
where

U = pXDN,

\%4 = pXNb

w = p X N,

UU N, x a

4% NbXb

WW = Ng;Xc

UV = (Npxa)+ (Nyxb)

UW = (N¢xa)+ (Nyxc)

VW = (Nexb)+ (N xc)

Thisleadsto asimilarupdaterule asdescribedn

1. Startingwith (a, 6y) = (3. 1), thedifference



(Aa, AB) betweertwo consecutie stepscanbe
denotedasfollows.

Na =
NG =

(FTR, - FTF — FTE, - FTF)/s

withs = FI'F, - FTF, — (F,F,)?.

In caseone of the barycentriccoordinatesof

the resulting point q is negative, we continue
the searchfor a basepoint in the correspond-
ing neighboringtriangle. Sincethe Phongnor-

malfield is globally continuousve alwaysfind a

basepoint with positive barycentriccoordinates.
Fig. 1 depictsthe situation schematicallyand

Fig. 2 shavs an exampleedit wherethe piece-
wise constanihormalfield causesneshartifacts
which do not occurif the Phongnormalfield is

used.

3 Hierarchy levels

For coarse-to-findierarchieghelevelsof detall
aredeterminedoy the uniform refinementoper
ator Startingwith the basemesh.M,, the mth
refinementevel is reachedafterapplyingthere-
finementoperatom times. For fine-to-coarséi-
erarchiesthereis no suchcanonicalchoicefor
thelevelsof resolution.Hencewe have to figure
outsomeheuristicsto definesuchlevels.

In [11] a simpletwo-banddecompositiorhas
beenproposedor themodeling,i.e. thehighfre-
gueny geometryis given by the original mesh
andthe low-frequeny geometryis the solution
of someconstrainedptimizationproblem.This
simpledecompositiorperformswell if the orig-
inal geometrycan be projectedonto the low-

frequeny geometrywithout self-intersections.

Fig 3 schematicallyshavs a configurationwhere
this is not satisfiedand consequentlythe de-
tail featuredoesnot deformintuitively with the
changeof the global shape. This effect canbe
avoidedby introducingseveralintermediatdev-
els of detail,i.e., by usinga true multi-bandde-
composition. The definition of the Phong-type
normal field introducedin the last sectionpro-
videsthemeando guarantea stablereconstruc-
tion. The numberof hierarchylevels hasto be
chosensuchthatthe (¢ + 1)st level canbe pro-

Figure 3: If the high-frequeng detail cannotbe
projectedonto the successie level (top), inter-
mediatelevels have tos be insertedto quarantee
afeasibledetailreconstructior{bottom).

jectedontolevel : without self-intersectionDe-
tail informationhasto be computedor everyin-
termediatdevel.

Intermediatelevels can be generatedoy the
following algorithm. We start with the origi-
nal meshand apply an incrementalmeshdeci-
mationalgorithmwhich performsa sequencef
edgecollapseoperations.Whena certainmesh
compleity is reached,we perform the reverse
sequencef vertex split operationsvhich recon-
structsthe original meshconnectvity. The posi-
tion of the re-insertedverticesis found by solv-
ing a globalbendingenegy minimizationprob-
lem[13, 11, 9]. The meshthatresultsfrom this
procedures a smoothedversionof the original
meshwhere the degree by which detail infor-
mationhasbeenremoved dependson the target
comple«ity of thedecimationalgorithm.

Supposethe original meshhasn,, vertices,
where m is the numberof intermediatelevels
that we wantto generate.We can computethe
meshesM,,, ..., M, with fewer detail by ap-
plying the above procedurewherethe decima-
tion algorithm stops at a target resolution of
Nm, - - -, N FEMAainingverticesrespectrely. The
resultingmeshegield a multi-banddecomposi-
tion of the orignal data. Whena modelingoper
ation changeghe shapeof M, we first recon-
struct the next level M by addingthe stored
detail vectorsandthen proceedby successiely
reconstructing\;,, from M.

The remainingquestionis how to determine
the numbersn;. A simple way to do this is
to build a geometricsequencewith n;/n; =



Figure4: Startingfrom the original shapgleft), atwo-banddecompositior{imiddle) canleadto long
detail-vectorsand henceto exaggeratednodificationsor even self-intersectiongor relatively small
edits. Multiple levels of detailavoid theseartifactsandthe modificationsbehae in a naturalfashion

(right).

const This mimics the exponential compleity

growth of thecoarse-to-findierarchiesAnother
approachs to stopthe decimationevery time a
certainaverageedgelength; in the remaining
meshis reached.

A more complicatedheuristictries to equal-
ize the sizesof the differencesbetweenlevels,
i.e., the sizesof the detail vectors.We first com-
pute a multi-banddecompositiorwith, say 100
levels of detail wherewe choose\/n; = const..
For every pair of successie levelswe cancom-
putethe averagdengthof thedetailvectors(dis-
placementvalues). From this information we
can easily chooseappropriatevaluesn; = n;,
suchthatthe geometricdifferenceis distributed
evenly amongthedetaillevels.

In practiceit turnedout that aboutfive inter-

mediatelevels is usually enoughto guarantee

correctdetailreconstructionFig. 4 compareshe
resultsof a modelingoperationbasedon a two-
bandanda multi-banddecomposition.

4 Conclusion and Future re-
search

We have presente@nev methodto encodehigh-
frequencealetail with respecto a low-frequeng
basemesh.Now, we areableto performarobust
true multi-band decompositiorfor a given fine
triangularmeshof arbitrary connectvity. This
leadsto intuitive modificationsof global shapes
underpresenration of detail features. However,

the usercan still apply particular edits, where
undesirableffectslik e self intersectiorof detall

vectorsduring the reconstructionprocesshap-
pen,or, dueto the fixed mesh-conneatity, ex-

treme stretchesof trianglescanoccur We are
currently developing a system, which handles
changesof the meshduring the modeling pro-

cessj.e. insertionof vertices wherethe meshis

locally stretchedandvertex removal, wherethe

triangle size undegoesa given threshold. We

are also keepingtrack of a promisingapproach
to avoid self intersectionwithout changingthe

mesh-conneatity.
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Figure5: Somesnapshotsf a modelingsessiorbasedn the new multi-bandhierarchy The noseof
theoriginal bustmodelwastransformedn variouswayse.g.scaledtop,right)andtranslatedbottom
row). Notice,how naturallythe featuresof the facearechanged.



