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Abstract

Triangle meshes are a facile and effective rep-
resentation for many kinds of surfaces. In or-
der to rate the quality of a surface, the cal-
culation of geometric curvatures as there are
defined for smooth surfaces is useful and nec-
essary for a variety of applications. We in-
vestigate an approach to locally approximate
the first and second fundamental forms at ev-
ery (inner) vertex of a triangle mesh. We use
locally isometric divided difference operators,
where we compare two variants of parameter-
izations (tangent plane and exponential map)
by testing on elementary analytic surfaces.
We further describe a technique for visual-
izing the resulting curvature data. A simple
median filter is used to effectively filter noise
from the input data. According to applica-
tion dependent requirements a global or a per-
vertex local color coding can be provided. The
user may interactively modify the color trans-
fer function, enabling him or her to visually
evaluate the quality of triangulated surfaces.

1 Introduction

Triangle meshes are becoming a more and
more popular representation for surfaces of ar-
bitrary shape and topology. For many appli-
cations the approximation of geometric enti-
ties such as normals and principle curvatures
is very useful. Typical applications include
(visual) evaluation of the surface quality, fair-
ing [5, 9] and issues in reverse engineering, like

surface segmentation and reconstruction [6].

A triangle mesh is a piecewise linear rather
than a smooth surface, so it is not clear how
to calculate any derivatives on such a mesh.
There are several approaches: In numerical
analysis divided differences operators [8] are
a common way of estimating discrete deriva-
tives. They often have no immediate geomet-
ric meaning since they are defined for a global
parameterization. Considering the concepts
from differential geometry of smooth surfaces
on the other hand directly leads to a variety
of methods where geometric primitives are lo-
cally fitted to the triangle mesh. The differen-
tial parameters can then be obtained from dif-
ferenciating those well known primitives. In
[4] e.g. circular arcs are fitted to the edges of
a triangle mesh, approximating normal curva-
ture and eventually principle curvatures. In-
stead of using curves, one can locally fit an
analytic surface to a vertex and its neigh-
bors. Often second order surfaces (quadrics)
are used, in [7] e.g. a paraboloid. The poly-
nomal coefficients of this paraboloid are ob-
tained by solving a linear system.

In the first part of this paper we present a
method for calculating discrete curvature on
triangle meshes. Our approach uses locally
isometric divided difference operators which
are derived by fitting a second order Tay-
lor polynomal to a vertex and its neighbors.
Therefore it is some kind of compromise be-
tween the techniques illustrated above. A lo-
cally isometric parameterization allows us to
utilize such a linear operator since derivatives



with respect to such parameterization do have
a geometric interpretation. Two different pa-
rameterizations are tested on simple analytic
surfaces.

The second part shows a technique of how
to visualize the calculated data e.g. the dis-
crete curvature on a triangle mesh. Accord-
ing to the intention of the user a global or a
per-vertex local color table is appropriate for
color coding. Applications that require abso-
lute measuring of curvature on the mesh e.g.
for identifying regions with a given curvature
use a global table. If one is mainly interested
in local changes of curvature, a local color ta-
ble should be used. The user may interac-
tively choose and adapt such a color table. In
addition, noise is reduced from the input data.

2 Approximation of fun-
damental forms

We locally estimate the first and second fun-
damental form of the surface F(u,v) in ev-
ery vertex of its triangulation. Deriving sur-
face curvatures like Gaussian or mean curva-
ture from the fundamental forms is straight-
forward. An introduction to the basic con-
cepts of differential geometry can be found e.g.
in [3].

In this section V' denotes the vertex for
which the fundamental forms are to be ap-
proximated, V; (1 < i < n, and for conve-
nience V41 := V}) are its neighbors. ) and
(; denote the positions of V and V; in 3D
space. Without loss of generality the origin is
shifted such that @ := (0,0,0). For now, we
do not handle vertices on the boundary of the
mesh.

We want to estimate geometric curvature.
The linear divided difference operator supplies
derivatives that enable us to get the funda-
mental forms, if the underlying parameteriza-
tion is isometric.

2.1 Parameterization

As we are interested in curvatures, it is enough
to estimate partial derivatives up to second
order. In order to approximate the deriva-
tives F,, F,, F,., F,, and F,, in a specific
vertex V' we need a locally isometric parame-
terization F(u;,v;) = @; of its neighborhood
with F(0,0) := (0,0,0) = Q. A parameteri-
zation is isometric if ||F,|| ~ 1, ||F,|| ~ 1 and
F.,F, ~ 0.

The coefficients of the fundamental forms
are completely defined by those derivatives.
We tested two different approaches:

Projection into tangent plane

The first way of getting a parameterization is
to project the neighborhood of the vertex into
a tangent plane at this vertex. The projection
plane P is given by averaging the triangle nor-
mals around V' resulting in the normal vec-
tor Np. By transforming the projected points
into an orthonormal basis {Up,Vp, Np} we
get a parameterization F(up;vp;) = Q.
This projection method suffers from the fact
that the ordering of neighbors around V is not
necessarily preserved. The ordering can be de-
stroyed if the triangle mesh is not sufficiently
flat [9].

Exponential map

The second parameterization considers the
lengths and the angles between adjacent edges
of the triangulated surface. The ordering of
neighbors is preserved when using the expo-
nential map [2]

xp(Q) > Q) (cos(3 ), 5in(Y )

where &Z = ﬂat(l(Qz,QHl)) with ZZ &Z =
2m. Therefore flat scales the angles between
two edges in 3D so that they sum to 27 in 2D.
We give two possible definitions for flat:

e flat(¢;) = o; % uniformly scales the
3D angle in a stlraightforward way. This
will work with any configuration of 3D
angles. [9]



o flat(¢;) = ¢; + = with e = 2 — > . ¢,
uniformly distributes the angular deficit
in 3D among all 2D angles. This defini-
tion is optimal in a sense of projecting the
vector (¢;); € R™ of 3D angles onto the
hyper plane {z € R™|(z — %Kﬁ)l) =0}
(least squares approximation of 3D angles
in 2D), where angles sum up to 27. For
rather asymmetric configurations it may
result in negative angles, though.

2.2 Surface fitting

The surface F(u,v) can locally be approxi-
mated by a biquadratic Taylor polynomal

U2 2
F(u,v) =uF, + vF, + ?Fuu +uvF,, + EFUU
Recall that we shifted the origin and chose
our parameterization so that @ = (0,0,0) =
F(0,0). Fitting a second order surface to a
vertex V' and its neighbors is straightforward:
By utilizing the parameterization F(u;,v;) =
(Q; we get a system of n linear equations

VF = Q

with V. = (u,v;, %%,Uivia %)z, F =
(FvaaFuuaFuvaFvv)T and Q = (621);r Th
(least squares resp. least norm) solution of

this linear system is
VI(VVT)'Q in<5

ViQ :n=5
VTV)'VTQ :n>5

F =

An alternative approach proposed in [9] is to
switch to another set of basis functions if the
V matrix is ill-conditioned or n < 5.

The resulting vector F contains approxima-
tions of the Taylor coefficients F,, F,, F,.,
F.,,, F,, of the surface. This enables us to es-
timate further differential parameters at the
vertex V' of the triangulation as needed.

Tests with a variety of triangle meshes
showed that this method yields {F,, F,} L
{Fuu, Fuv, Fyp} as expected for an isometric
parameterization.

3 Test Results

We use a sphere and a torus as test surfaces.
For each surface we construct a set of regu-
lar triangle meshes with increasing resolution
of the parameter grid. In addition to those
regular meshes, two variations are compared
also: first, edges in the regular mesh are ran-
domly flipped. Therefore vertices may have
less or more than six neighbors. Second, pa-
rameter points are randomly displaced in ad-
dition. This results in differently shaped tri-
angles including obtuse angled ones. The test
surfaces are defined as follows:

e Sphere:
sin u cos v
F(u,v) = | sinusinv |,
cos u
T 3T
7 Su,v <
o Torus:
(cosu + 2) cosv
F(u,v) = | (cosu+2)sinv |,
sin u
0<u,v<2r

The parameter intervals for » and v are each
uniformly divided so that 10, 13, 15, ..., 80,
100 sample points were taken from each inter-
val. Setting up a regular triangle mesh and
the randomly flipped one is straightforward.
For the second variant the parameter points
were displaced in each coordinate by %,%
times a uniformly distributed random num-
ber from the interval [—1,1]. Fig. 1 shows a
hidden line view the same part of the trian-
gulated torus with regular grid, flipped edges
and additional noise.

For the sphere the vicinity of the poles is
ignored. For the random displacement 10
configurations were evaluated and averaged.
Fig. 2 shows the standard deviation of the ap-
proximated values from the values calculated
for a smooth surface (y-axis) over the spacing
of the parameter grid in u and v direction (x-
axis). Both parameterizations perform well.
For the sphere the projection into the tangent
plane is slightly better, for the torus the ex-
ponential map shows better results.



Figure 1: Triangulated torus with 50 x 50 parameter points. From left: regular mesh, randomly
flipped edges, flipped edges and random displacement of parameter points

For both parameterizations the resulting
curves show nicely the quadratic convergence
of the approximation errors (error= O(h?),
where h is the step width) as known from the
univariate case with central differences.

4 Visualization of curva-
ture data

For visualization of curvature data such as
Gaussian curvature or mean curvature on tri-
angulated surfaces a RGB color value is as-
signed to every vertex. The graphics subsys-
tem then does the interpolation of color values
over the triangles. Our aim in this section is
to provide a suitable and intuitive color cod-
ing of scalar curvature values.

4.1 Global color table

Assume a scalar value d; is given for every
vertex V;, e.g. d; may denote any type of cur-
vature. Now let dpax := max{d;} and dp;, :=
min{d;}. Data values are scaled by the fol-
lowing function scale : [dyin, dmax] — [—1, 1]
with

—d/dmin :d <0

scale:d|—>{ dfdae :d >0

Positive and negative values are scaled sep-
arately such that the zero level is preserved.
Notice that the value 0 is usually of special in-
terest. So dmin < 0 < dpax 1S assumed. If not

so, the origin (”green line”, see below) should
be shifted appropriately.

The red and blue color components are
used to indicate positive resp. negative data
values. All vertices and all displayed pixels
shall have equal intensity (r+g+b=1). So the
green component is used to "fill up” inten-

sity. Assume color components range from
0 t0 Cmax, €.8. Cmax = 255. The function
rgb : [—1,1] = [0, cmax)® assigns to each value

a RGB triple with intensity c¢pay.

(07 (]' + d)cmaxa _dcma,x)
(dcmaxa (1 - d)cmaxa 0)

Fig. 3 shows the RGB mapping on the right
side. Zero values are displayed pure green,
Amin and dpax result in blue and red respec-
tively.

Data values d € [duin, @max] can now be
mapped to RGB values rgb(scale(d)). Many
applications need enhanced contrast in the
vicinity of zero and less near dpin resp. dmax.
Therefore a new parameter v € (0,1] is in-
troduced that adjusts the ”contrast” of the
visualized data. Then value d is mapped to a
RGB triple by

d <0

rgb:d»—>{ d>0

rgb(scale(d)?)

For v = 1 we obtain the original mapping.
With decreasing 7, resolution increases for
values near 0, i.e. a greater range in the color
table is used for those values. Fig. 3 illus-
trates the color coding for v = 1 and v < 1
(left side).
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Figure 3: Color coding. d is mapped to [—1, 1]
by scale, resolution near 0 may be enhanced
by using v < 1 (left), the transformed value
is then coded as (r, g, b) (right).

4.2 Filtering

Filtering addresses two problems: reducing
high frequency noise and detecting outliers
that disturb the color table.

If the input data are point samples from
a real object, we have to deal with high
frequency noise. Operating directly on the
values obtained from curvature approxima-
tion might give undesirable results. There-
fore some filtering should be applied. Fig. 4.2
shows such a sampled surface with and with-
out filtering. Notice how artifacts on surface
are suppressed by the filter.

A simple median filter that considers a ver-
tex and its neighbors gives good results. Also
this task is efficiently performed, because enu-
merating the neighbors of a vertex is a simple

operation, if appropriate data structures are
used [1].

Outliers on the input data may entail an
unusable color table by significantly enlarging
the [dmin, dmax| interval. Such values should
be ignored when calculating d,;, and dp.x. So
we disregard the 5% highest and lowest values
each when setting up the color table. For the
color mapping all d > dnac are clamped to
Amax, analog for dpyin.

Figure 4: Maximal curvature on the bust
model with contrast v = 1, without (left) and
with (right) median filtering.

4.3 Local color table

If a user is not interested in absolute curva-
ture values but more in the local changes of
curvature it might be better to increase the
contrast in the color coding scheme. If the lo-
cal data values lie in a small interval compared
t0 [dmin, dmax], the only way of getting a usable
view is to shift the ”green-line” as needed and
to decrease the contrast parameter +.

It is more convenient to provide a locally
adapted color table for every vertex. There-
fore the considered interval of curvature values
should not be globally defined but determined
locally for every vertex.

Let [di i dmayi] e that interval for ev-
ery vertex V;. Then dp; . is the minimal d;
in a n-neighborhood of V;, analog df,,. ;. A

n-neighborhood of V; is defined as nhd"{V;},

where

nhd{V;} = {Vi} U{Vj[Tedge(V;, V})}
nhd{V;,,...,Vix} = U<, nhd{Vi .}
nhd""'{V;} = nhd(nhd"{V;})

Given a triangle mesh with N vertices and
six neighbors per vertex on average, it is
rather expensive (O(6"N)) to compute a n-



neighborhood for every vertex using the above
definition. Finding a minimum and/or max-
imum value in nhd"{V;} is fortunately much
cheaper: one can get all extrema by iterat-
ing n times over all vertices (O(nN)). The
following algorithm collects di;, . and df,. ;
from d; (1 <i < N):

1. for all vertices V;,i=1,...,n:
(a) initialize dp, ;= d;, dp,, ;= d;
2. fork=1,....,n:
(a) fori=1,...,N: copy
i. trnln = d&in,i’ tmax = d&ax,i
(b) fori=1,...,N:
i. for j =1,...,#neighbors(V;):
A. tnin = min{tmim &in,j}
B. tmax = ma’x{tmaX7 d&ax,j}

(c) fori=1,...,N: copy
i. d&ln,z = tmin, dﬁmx,i = tmax

It is easy to realize that the algorithm
works if you recall that max{A U B} =
max{max A, max B}. Initially all vertices
take d%. . = d” = d;. In the first round

min,; max,i
(k = 1) every vertex V; collects the extrema
of nhd{V;} and sets its dl, , and d?..,; ac-

min,i max,i
cordingly. Therefore V; collects the extrema

of nhd(nhd{V;}) in the second iteration (k =
2), and so on.

The algorithm terminates with di; ; and

dr ... as the extreme values of all vertices in

nhd"{V;}. Color coding for vertex V; is then
done with the RGB triple

rgb(scale] (d)")
where
n . d/d&in,i :d <0
scale; .d»—){ d/d&ax,i L d>0

Fig. 5 shows the maximal curvature on a tech-
nical model with about 18000 vertices. For
the global color table two different contrast
levels are displayed. The local color table uses
a 3- and and a 6-neighborhood. The median
filter is applied to all images of the technical
model.

We implemented a software tool that allows
the user to view a histogram of the data val-
ues d;. This histogram is color coded in the

Figure 5: Median filtered maximal curvature
on a technical model. From upper left to lower
right: global color table with v =1, v = %; lo-
cal color table with v = 1 and 3-neighborhood
resp. 6-neighborhood.



same way as the surface. The user may inter-
actively chose a data set and global or n-local
color table, apply noise filtering, control the
contrast parameter -y, shift the green origin-
line in the histogram as well as restrict the
[dF .., dr ] interval. Fig. 6 shows a snapshot
of a histogram window.

Mean Curvature j| Filter: Median Filter j| Display: Viewer 0 ¢
0.2931

-0.3002

Close | Apply |Contrast: Help |

Figure 6: Snapshot of a histogram window.
Median filtered mean curvature is selected,
contrast is set to about 0.3, the interesting
interval has been refined to about [—0.3,0.3],
and the zero/green level has slightly been
moved to about —0.02.

5 Conclusion

We presented a method for approximating
discrete curvature on triangle meshes. Two
different locally isometric parameterizations
were tested. Both produce good result with
the approximation error decreasing quadrati-
cally for higher grid resolution in the param-
eter domain.

The calculated curvature data can be visu-
alized on the surface by the described meth-
ods. According to the application one can use
a global or a locally adapted color table. Noise
is effectively reduced by a simple median fil-
ter. The user is allowed to interactively vary
the color coding function. With this kind of
visualization technique a very helpful tool for
investigation and exploration of triangulated
surfaces is available.
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