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Abstra
t

Triangle meshes are a fa
ile and e�e
tive rep-

resentation for many kinds of surfa
es. In or-

der to rate the quality of a surfa
e, the 
al-


ulation of geometri
 
urvatures as there are

de�ned for smooth surfa
es is useful and ne
-

essary for a variety of appli
ations. We in-

vestigate an approa
h to lo
ally approximate

the �rst and se
ond fundamental forms at ev-

ery (inner) vertex of a triangle mesh. We use

lo
ally isometri
 divided di�eren
e operators,

where we 
ompare two variants of parameter-

izations (tangent plane and exponential map)

by testing on elementary analyti
 surfa
es.

We further des
ribe a te
hnique for visual-

izing the resulting 
urvature data. A simple

median �lter is used to e�e
tively �lter noise

from the input data. A

ording to appli
a-

tion dependent requirements a global or a per-

vertex lo
al 
olor 
oding 
an be provided. The

user may intera
tively modify the 
olor trans-

fer fun
tion, enabling him or her to visually

evaluate the quality of triangulated surfa
es.

1 Introdu
tion

Triangle meshes are be
oming a more and

more popular representation for surfa
es of ar-

bitrary shape and topology. For many appli-


ations the approximation of geometri
 enti-

ties su
h as normals and prin
iple 
urvatures

is very useful. Typi
al appli
ations in
lude

(visual) evaluation of the surfa
e quality, fair-

ing [5, 9℄ and issues in reverse engineering, like

surfa
e segmentation and re
onstru
tion [6℄.

A triangle mesh is a pie
ewise linear rather

than a smooth surfa
e, so it is not 
lear how

to 
al
ulate any derivatives on su
h a mesh.

There are several approa
hes: In numeri
al

analysis divided di�eren
es operators [8℄ are

a 
ommon way of estimating dis
rete deriva-

tives. They often have no immediate geomet-

ri
 meaning sin
e they are de�ned for a global

parameterization. Considering the 
on
epts

from di�erential geometry of smooth surfa
es

on the other hand dire
tly leads to a variety

of methods where geometri
 primitives are lo-


ally �tted to the triangle mesh. The di�eren-

tial parameters 
an then be obtained from dif-

feren
iating those well known primitives. In

[4℄ e.g. 
ir
ular ar
s are �tted to the edges of

a triangle mesh, approximating normal 
urva-

ture and eventually prin
iple 
urvatures. In-

stead of using 
urves, one 
an lo
ally �t an

analyti
 surfa
e to a vertex and its neigh-

bors. Often se
ond order surfa
es (quadri
s)

are used, in [7℄ e.g. a paraboloid. The poly-

nomal 
oeÆ
ients of this paraboloid are ob-

tained by solving a linear system.

In the �rst part of this paper we present a

method for 
al
ulating dis
rete 
urvature on

triangle meshes. Our approa
h uses lo
ally

isometri
 divided di�eren
e operators whi
h

are derived by �tting a se
ond order Tay-

lor polynomal to a vertex and its neighbors.

Therefore it is some kind of 
ompromise be-

tween the te
hniques illustrated above. A lo-


ally isometri
 parameterization allows us to

utilize su
h a linear operator sin
e derivatives



with respe
t to su
h parameterization do have

a geometri
 interpretation. Two di�erent pa-

rameterizations are tested on simple analyti


surfa
es.

The se
ond part shows a te
hnique of how

to visualize the 
al
ulated data e.g. the dis-


rete 
urvature on a triangle mesh. A

ord-

ing to the intention of the user a global or a

per-vertex lo
al 
olor table is appropriate for


olor 
oding. Appli
ations that require abso-

lute measuring of 
urvature on the mesh e.g.

for identifying regions with a given 
urvature

use a global table. If one is mainly interested

in lo
al 
hanges of 
urvature, a lo
al 
olor ta-

ble should be used. The user may intera
-

tively 
hoose and adapt su
h a 
olor table. In

addition, noise is redu
ed from the input data.

2 Approximation of fun-

damental forms

We lo
ally estimate the �rst and se
ond fun-

damental form of the surfa
e F (u; v) in ev-

ery vertex of its triangulation. Deriving sur-

fa
e 
urvatures like Gaussian or mean 
urva-

ture from the fundamental forms is straight-

forward. An introdu
tion to the basi
 
on-


epts of di�erential geometry 
an be found e.g.

in [3℄.

In this se
tion V denotes the vertex for

whi
h the fundamental forms are to be ap-

proximated, V

i

(1 � i � n, and for 
onve-

nien
e V

n+1

:= V

1

) are its neighbors. Q and

Q

i

denote the positions of V and V

i

in 3D

spa
e. Without loss of generality the origin is

shifted su
h that Q := (0; 0; 0). For now, we

do not handle verti
es on the boundary of the

mesh.

We want to estimate geometri
 
urvature.

The linear divided di�eren
e operator supplies

derivatives that enable us to get the funda-

mental forms, if the underlying parameteriza-

tion is isometri
.

2.1 Parameterization

As we are interested in 
urvatures, it is enough

to estimate partial derivatives up to se
ond

order. In order to approximate the deriva-

tives F

u

, F

v

, F

uu

, F

uv

and F

vv

in a spe
i�


vertex V we need a lo
ally isometri
 parame-

terization F (u

i

; v

i

) = Q

i

of its neighborhood

with F (0; 0) := (0; 0; 0) = Q. A parameteri-

zation is isometri
 if kF

u

k � 1, kF

v

k � 1 and

F

u

F

v

� 0.

The 
oeÆ
ients of the fundamental forms

are 
ompletely de�ned by those derivatives.

We tested two di�erent approa
hes:

Proje
tion into tangent plane

The �rst way of getting a parameterization is

to proje
t the neighborhood of the vertex into

a tangent plane at this vertex. The proje
tion

plane P is given by averaging the triangle nor-

mals around V resulting in the normal ve
-

tor N

P

. By transforming the proje
ted points

into an orthonormal basis fU

P

; V

P

; N

P

g we

get a parameterization F (u

P;i

; v

P;i

) = Q

i

.

This proje
tion method su�ers from the fa
t

that the ordering of neighbors around V is not

ne
essarily preserved. The ordering 
an be de-

stroyed if the triangle mesh is not suÆ
iently


at [9℄.

Exponential map

The se
ond parameterization 
onsiders the

lengths and the angles between adja
ent edges

of the triangulated surfa
e. The ordering of

neighbors is preserved when using the expo-

nential map [2℄

exp(Q

i

) 7! kQ

i

k

�


os(

i�1

X

j=1

~�

j

); sin(

i�1

X

j=1

~�

j

)

�

where ~�

i

= 
at(∠(Q
i

; Q

i+1

)) with

P

i

~�

i

=

2�. Therefore 
at s
ales the angles between

two edges in 3D so that they sum to 2� in 2D.

We give two possible de�nitions for 
at:

� 
at(�

i

) = �

i

2�

P

i

�

i

uniformly s
ales the

3D angle in a straightforward way. This

will work with any 
on�guration of 3D

angles. [9℄



� 
at(�

i

) = �

i

+

"

n

with " = 2� �

P

i

�

i

uniformly distributes the angular de�
it

in 3D among all 2D angles. This de�ni-

tion is optimal in a sense of proje
ting the

ve
tor (�

i

)

i

2 R
n

of 3D angles onto the

hyper plane fx 2 R
n

jhx�

2�

p

n

j(

1

p

n

)

i

i = 0g

(least squares approximation of 3D angles

in 2D), where angles sum up to 2�. For

rather asymmetri
 
on�gurations it may

result in negative angles, though.

2.2 Surfa
e �tting

The surfa
e F (u; v) 
an lo
ally be approxi-

mated by a biquadrati
 Taylor polynomal

F (u; v) = uF

u

+ vF

v

+

u

2

2

F

uu

+ uvF

uv

+

v

2

2

F

vv

Re
all that we shifted the origin and 
hose

our parameterization so that Q = (0; 0; 0) =

F (0; 0). Fitting a se
ond order surfa
e to a

vertex V and its neighbors is straightforward:

By utilizing the parameterization F (u

i

; v

i

) =

Q

i

we get a system of n linear equations

VF = Q

with V = (u

i

; v

i

;

u

2

i

2

; u

i

v

i

;

v

2

i

2

)

i

, F =

(F

u

; F

v

; F

uu

; F

uv

; F

vv

)

>

and Q = (Q

i

)

>

i

. The

(least squares resp. least norm) solution of

this linear system is

F =

8

<

:

V

>

(VV

>

)

�1

Q : n < 5

V

�1

Q : n = 5

(V

>

V)

�1

V

>

Q : n > 5

An alternative approa
h proposed in [9℄ is to

swit
h to another set of basis fun
tions if the

V matrix is ill-
onditioned or n < 5.

The resulting ve
tor F 
ontains approxima-

tions of the Taylor 
oeÆ
ients F

u

, F

v

, F

uu

,

F

uv

, F

vv

of the surfa
e. This enables us to es-

timate further di�erential parameters at the

vertex V of the triangulation as needed.

Tests with a variety of triangle meshes

showed that this method yields fF

u

; F

v

g ?

fF

uu

; F

uv

; F

vv

g as expe
ted for an isometri


parameterization.

3 Test Results

We use a sphere and a torus as test surfa
es.

For ea
h surfa
e we 
onstru
t a set of regu-

lar triangle meshes with in
reasing resolution

of the parameter grid. In addition to those

regular meshes, two variations are 
ompared

also: �rst, edges in the regular mesh are ran-

domly 
ipped. Therefore verti
es may have

less or more than six neighbors. Se
ond, pa-

rameter points are randomly displa
ed in ad-

dition. This results in di�erently shaped tri-

angles in
luding obtuse angled ones. The test

surfa
es are de�ned as follows:

� Sphere:

F (u; v) =

0

�

sinu 
os v

sinu sin v


os u

1

A

,

�

4

� u; v �

3�

4

� Torus:

F (u; v) =

0

�

(
os u+ 2) 
os v

(
os u+ 2) sin v

sinu

1

A

,

0 � u; v � 2�

The parameter intervals for u and v are ea
h

uniformly divided so that 10, 13, 15, : : : , 80,

100 sample points were taken from ea
h inter-

val. Setting up a regular triangle mesh and

the randomly 
ipped one is straightforward.

For the se
ond variant the parameter points

were displa
ed in ea
h 
oordinate by

�u

8

,

�v

8

times a uniformly distributed random num-

ber from the interval [�1; 1℄. Fig. 1 shows a

hidden line view the same part of the trian-

gulated torus with regular grid, 
ipped edges

and additional noise.

For the sphere the vi
inity of the poles is

ignored. For the random displa
ement 10


on�gurations were evaluated and averaged.

Fig. 2 shows the standard deviation of the ap-

proximated values from the values 
al
ulated

for a smooth surfa
e (y-axis) over the spa
ing

of the parameter grid in u and v dire
tion (x-

axis). Both parameterizations perform well.

For the sphere the proje
tion into the tangent

plane is slightly better, for the torus the ex-

ponential map shows better results.



Figure 1: Triangulated torus with 50�50 parameter points. From left: regular mesh, randomly


ipped edges, 
ipped edges and random displa
ement of parameter points

For both parameterizations the resulting


urves show ni
ely the quadrati
 
onvergen
e

of the approximation errors (error= O(h

2

),

where h is the step width) as known from the

univariate 
ase with 
entral di�eren
es.

4 Visualization of 
urva-

ture data

For visualization of 
urvature data su
h as

Gaussian 
urvature or mean 
urvature on tri-

angulated surfa
es a RGB 
olor value is as-

signed to every vertex. The graphi
s subsys-

tem then does the interpolation of 
olor values

over the triangles. Our aim in this se
tion is

to provide a suitable and intuitive 
olor 
od-

ing of s
alar 
urvature values.

4.1 Global 
olor table

Assume a s
alar value d

i

is given for every

vertex V

i

, e.g. d

i

may denote any type of 
ur-

vature. Now let d

max

:= maxfd

i

g and d

min

:=

minfd

i

g. Data values are s
aled by the fol-

lowing fun
tion s
ale : [d

min

; d

max

℄ ! [�1; 1℄

with

s
ale : d 7!

�

�d=d

min

: d < 0

d=d

max

: d � 0

Positive and negative values are s
aled sep-

arately su
h that the zero level is preserved.

Noti
e that the value 0 is usually of spe
ial in-

terest. So d

min

� 0 � d

max

is assumed. If not

so, the origin ("green line", see below) should

be shifted appropriately.

The red and blue 
olor 
omponents are

used to indi
ate positive resp. negative data

values. All verti
es and all displayed pixels

shall have equal intensity (r+g+b=1). So the

green 
omponent is used to "�ll up" inten-

sity. Assume 
olor 
omponents range from

0 to 


max

, e.g. 


max

= 255. The fun
tion

rgb : [�1; 1℄! [0; 


max

℄

3

assigns to ea
h value

a RGB triple with intensity 


max

.

rgb : d 7!

�

(0; (1 + d)


max

;�d


max

) : d < 0

(d


max

; (1� d)


max

; 0) : d � 0

Fig. 3 shows the RGB mapping on the right

side. Zero values are displayed pure green,

d

min

and d

max

result in blue and red respe
-

tively.

Data values d 2 [d

min

; d

max

℄ 
an now be

mapped to RGB values rgb(s
ale(d)). Many

appli
ations need enhan
ed 
ontrast in the

vi
inity of zero and less near d

min

resp. d

max

.

Therefore a new parameter 
 2 (0; 1℄ is in-

trodu
ed that adjusts the "
ontrast" of the

visualized data. Then value d is mapped to a

RGB triple by

rgb(s
ale(d)




)

For 
 = 1 we obtain the original mapping.

With de
reasing 
, resolution in
reases for

values near 0, i.e. a greater range in the 
olor

table is used for those values. Fig. 3 illus-

trates the 
olor 
oding for 
 = 1 and 
 < 1

(left side).
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Figure 2: Approximization errors. First row: Sphere. Gaussian (large) and mean 
urvature

(small); se
ond row: Torus. Gaussian (large) and mean 
urvature (small)
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Figure 3: Color 
oding. d is mapped to [�1; 1℄

by s
ale, resolution near 0 may be enhan
ed

by using 
 < 1 (left), the transformed value

is then 
oded as (r; g; b) (right).

4.2 Filtering

Filtering addresses two problems: redu
ing

high frequen
y noise and dete
ting outliers

that disturb the 
olor table.

If the input data are point samples from

a real obje
t, we have to deal with high

frequen
y noise. Operating dire
tly on the

values obtained from 
urvature approxima-

tion might give undesirable results. There-

fore some �ltering should be applied. Fig. 4.2

shows su
h a sampled surfa
e with and with-

out �ltering. Noti
e how artifa
ts on surfa
e

are suppressed by the �lter.

A simple median �lter that 
onsiders a ver-

tex and its neighbors gives good results. Also

this task is eÆ
iently performed, be
ause enu-

merating the neighbors of a vertex is a simple

operation, if appropriate data stru
tures are

used [1℄.

Outliers on the input data may entail an

unusable 
olor table by signi�
antly enlarging

the [d

min

; d

max

℄ interval. Su
h values should

be ignored when 
al
ulating d

min

and d

max

. So

we disregard the 5% highest and lowest values

ea
h when setting up the 
olor table. For the


olor mapping all d > d

max

are 
lamped to

d

max

, analog for d

min

.

Figure 4: Maximal 
urvature on the bust

model with 
ontrast 
 =

1

2

, without (left) and

with (right) median �ltering.

4.3 Lo
al 
olor table

If a user is not interested in absolute 
urva-

ture values but more in the lo
al 
hanges of


urvature it might be better to in
rease the


ontrast in the 
olor 
oding s
heme. If the lo-


al data values lie in a small interval 
ompared

to [d

min

; d

max

℄, the only way of getting a usable

view is to shift the "green-line" as needed and

to de
rease the 
ontrast parameter 
.

It is more 
onvenient to provide a lo
ally

adapted 
olor table for every vertex. There-

fore the 
onsidered interval of 
urvature values

should not be globally de�ned but determined

lo
ally for every vertex.

Let [d

n

min;i

; d

n

max;i

℄ be that interval for ev-

ery vertex V

i

. Then d

n

min;i

is the minimal d

j

in a n-neighborhood of V

i

, analog d

n

max;i

. A

n-neighborhood of V

i

is de�ned as nhd

n

fV

i

g,

where

nhdfV

i

g = fV

i

g [ fV

j

j9 edge(V

i

; V

j

)g

nhdfV

i;1

; : : : ; V

i;k

g =

S

1���k

nhdfV

i;�

g

nhd

n+1

fV

i

g = nhd(nhd

n

fV

i

g)

Given a triangle mesh with N verti
es and

six neighbors per vertex on average, it is

rather expensive (O(6

n

N)) to 
ompute a n-



neighborhood for every vertex using the above

de�nition. Finding a minimum and/or max-

imum value in nhd

n

fV

i

g is fortunately mu
h


heaper: one 
an get all extrema by iterat-

ing n times over all verti
es (O(nN)). The

following algorithm 
olle
ts d

n

min;i

and d

n

max;i

from d

i

(1 � i � N):

1. for all verti
es V

i

, i = 1; : : : ; n:

(a) initialize d

n

min;i

:= d

i

; d

n

max;i

:= d

i

2. for k = 1; : : : ; n:

(a) for i = 1; : : : ; N : 
opy

i. t

min

:= d

n

min;i

, t

max

:= d

n

max;i

(b) for i = 1; : : : ; N :

i. for j = 1; : : : ;#neighbors(V

i

):

A. t

min

= minft

min

; d

n

min;j

g

B. t

max

= maxft

max

; d

n

max;j

g

(
) for i = 1; : : : ; N : 
opy

i. d

n

min;i

:= t

min

, d

n

max;i

:= t

max

It is easy to realize that the algorithm

works if you re
all that maxfA [ Bg =

maxfmaxA;maxBg. Initially all verti
es

take d

n

min;i

= d

n

max;i

= d

i

. In the �rst round

(k = 1) every vertex V

i


olle
ts the extrema

of nhdfV

i

g and sets its d

n

min;i

and d

n

max;i

a
-


ordingly. Therefore V

i


olle
ts the extrema

of nhd(nhdfV

i

g) in the se
ond iteration (k =

2), and so on.

The algorithm terminates with d

n

min;i

and

d

n

max;i

as the extreme values of all verti
es in

nhd

n

fV

i

g. Color 
oding for vertex V

i

is then

done with the RGB triple

rgb(s
ale

n

i

(d)




)

where

s
ale

n

i

: d 7!

�

d=d

n

min;i

: d < 0

d=d

n

max;i

: d � 0

Fig. 5 shows the maximal 
urvature on a te
h-

ni
al model with about 18000 verti
es. For

the global 
olor table two di�erent 
ontrast

levels are displayed. The lo
al 
olor table uses

a 3- and and a 6-neighborhood. The median

�lter is applied to all images of the te
hni
al

model.

We implemented a software tool that allows

the user to view a histogram of the data val-

ues d

i

. This histogram is 
olor 
oded in the

Figure 5: Median �ltered maximal 
urvature

on a te
hni
al model. From upper left to lower

right: global 
olor table with 
 = 1, 
 =

1

2

; lo-


al 
olor table with 
 = 1 and 3-neighborhood

resp. 6-neighborhood.



same way as the surfa
e. The user may inter-

a
tively 
hose a data set and global or n-lo
al


olor table, apply noise �ltering, 
ontrol the


ontrast parameter 
, shift the green origin-

line in the histogram as well as restri
t the

[d

�

min

; d

�

max

℄ interval. Fig. 6 shows a snapshot

of a histogram window.

Figure 6: Snapshot of a histogram window.

Median �ltered mean 
urvature is sele
ted,


ontrast is set to about 0:3, the interesting

interval has been re�ned to about [�0:3; 0:3℄,

and the zero/green level has slightly been

moved to about �0:02.

5 Con
lusion

We presented a method for approximating

dis
rete 
urvature on triangle meshes. Two

di�erent lo
ally isometri
 parameterizations

were tested. Both produ
e good result with

the approximation error de
reasing quadrati-


ally for higher grid resolution in the param-

eter domain.

The 
al
ulated 
urvature data 
an be visu-

alized on the surfa
e by the des
ribed meth-

ods. A

ording to the appli
ation one 
an use

a global or a lo
ally adapted 
olor table. Noise

is e�e
tively redu
ed by a simple median �l-

ter. The user is allowed to intera
tively vary

the 
olor 
oding fun
tion. With this kind of

visualization te
hnique a very helpful tool for

investigation and exploration of triangulated

surfa
es is available.
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