EUROGRAPHICS 2003 / P. Brunet and D. Fellner
(Guest Editors)

Volume 22 (2003), Number 3

Sub-Voxel Topology Control for Level-Set Surfaces

Stephan Bischoft and Leif Kobbelt

Abstract

Active contour models are an efficient, accurate, and robust tool for the segmentation of 2D and 3D image data.
In particular, geometric deformable models (GDM) that represent an active contour as the level set of an implicit
function have proven to be very effective. GDMs, however, do not provide any topology control, i.e. contours may
merge or split arbitrarily and hence change the genus of the reconstructed surface. This behavior is inadequate in
settings like the segmentation of organic tissue or other objects whose genus is known beforehand. In this paper
we describe a novel method to overcome this limitation while still preserving the favorable properties of the GDM
setup. We achieve this by adding (sparse) topological information to the volume representation at locations where
it is necessary to locally resolve topological ambiguities. Since the sparse topology information is attached to the
edges of the voxel grid, we can reconstruct the interfaces where the deformable surface touches itself at sub-voxel
accuracy. We also demonstrate the efficiency and robustness of our method.

1. Introduction

Deformable models were originally devised for feature de-
tection in two dimensional images. In particular in medical
imaging applications, like the segmentation of organic struc-
tures from MRT images, these models are ubiquitous. In
recent years however, deformable models have also widely
spread into such diverse areas as physical simulation, geo-
metric modeling, 3D reconstruction, computer vision, etc.
and can now be considered as a standard tool for computer
graphics applications.

Deformable models come in two flavors: parametric (or ex-
plicit) and geometric (or implicit) models, depending on
whether the contour is represented as the range or the ker-
nel of a function.

Parametric models represent the contour by an explicit spline
or polygonal mesh. As is usual in parametric representations,
the sampling rate has to be adapted to the contour geome-
try, i.e. in regions of high curvature, the contour has to be
represented by more patches than in flat areas. This resam-
pling has to be done over and over, which is a tedious and
error-prone process, in particular in three dimensions. Fur-
thermore, as collision detection is costly, it is hard to avoid
self-intersections of the contour. On the other hand, paramet-
ric representations automatically guarantee that the contour
does not merge or split during evolution, i.e. the contour will
neither remove nor create handles or cavities.

Geometric models on the other hand, represent the contour

(© The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

as the level set of a scalar-valued function. Geometric mod-
els are free of parameterization artifacts and will never self-
intersect. Furthermore they can be efficiently implemented
using e.g. narrow band or fast marching techniques. On the
other hand, however, geometric models provide no way to
control the topology of the contour, i.e. in general the con-
tour may merge or split.

In many applications, the deformable model has to reflect
some a priory knowledge about the topology of the object.
For example, when reconstructing a cortical surface from a
set of MRT scans, the model should reflect the anatomical
fact, that this surface is homeomorphic to a sphere. Hence,
the contour has to be prevented from forming handles or cav-
ities. Also, when two or more objects in an image are seg-
mented simultaneously, the contours should obviously not
be allowed to merge.

In this paper we devise an algorithm that combines the topol-
ogy preserving properties of parametric models with the
parameterization free, implicit representation of geometric
models. The topology control is achieved by placing “cuts”
on the edges of the voxel grid whenever the model is about
to change its topology. As the cuts can subdivide the edge in
an arbitrary ratio, this results in a sub-voxel accurate recon-
struction of the contour. We further note that our algorithm
does affect the evolution of the underlying geometric model
only along the contact surface, hence it can be implemented
as an “add-on” to existing level-set implementations.

For simplicity, we will build our exposition on the easily-

Bischoff and Kobbelt / Sub-Voxel Topology Control for Level-Set Surfaces

understandable fast marching method. However, the algo-
rithm can also be applied (with minor modifications) to other
geometric models.

After an overview of previous work in Section 2, we will
give a short introduction to deformable models and the fast
marching method in Section 3. A detailed description of
topological framework is presented in Section 4. In Section 5
we show some results and finally conclude with future work
in Section 6.

2. Previous Work

Active contour models were first introduced in 1987 by Kass
et al. °. Their explicit model employed a parametric curve
whose evolution is driven by an energy-minimization pro-
cess. Since then numerous extensions and refinements have
been made for explicit models 12 5:10.3.2 Explicit models are
mostly topology preserving, i.e. the contour does not merge
or split during its evolution. For this reason they are in par-
ticular favored in medical imaging applications like the seg-
mentation of brain tissue, where the topology of the seg-
mented object is known beforehand 4. Tt is also possible to
add topology control to explicit models !2, however, this be-
comes very elaborate in three dimensions.

Implicit models as introduced by Sethian and Osher !4 in
1988 represent the contour as the level set of a scalar-valued
function. Since then level set methods have been applied
in various areas, like image segmentation '!, shape morph-
ing ¢, physical simulations 7, 3D reconstruction '8 and geo-
metric modeling 13. For a thorough overview we refer to the
books !7-15. Level set methods are in particular favored for
their ease of implementation and their lack of parameteriza-
tion artifacts.

Implicit methods do not suffer from the (re-
)parameterization problems encountered with explicit
methods (in particular in three dimensions), however, they
do not allow to control the topology of the contour, i.e. they
cannot prevent the contour from merging or splitting. Han,
Xu and Prince 3 overcome this problem by modifying the
update rule for the level set function to respect the topology.
The value of a voxel that is rejected for topological reasons
is constrained to a constant €. However, this “wrong”
value not only changes the computation of the level set
function, but may also prevent parts of the object from being

conquered: . .
Consider the configuration on the

left. The green voxels have already
been conquered, the yellow voxel,
however, cannot be conquered with-
out topology change, hence the red
part is effectively cut off from the
level set evolution. A second drawback of their method is,
that it is not sub-voxel accurate along the collision lines of
two different parts of the contour, hence aliasing-artefacts
can occur. In our case we use linear approximation and there-
fore achieve better accuracy.

3. Preliminaries
3.1. Deformable Models

Deformable models are typically used to segment objects
from their background in 2D images and 3D volume data.
For this the user places an initial (approximating) surface
S C R? into the volume. Then S is continuously deformed
such as to lock on the boundaries of the desired object.

The idea of deformable models is to track the evolution of
the surface S over time, i.e. § = S(r). This process can con-
veniently be described by a partial differential equation

DnS=f

where Dy, is the derivative in direction of the outward surface
normal and f is a user-defined force.

The force f may depend on various parameters, like time,
position in space, curvature of the surface etc. One typically
chooses f such that S(¢) strives to minimize an energy func-
tional

E(S) = Eim(S) + Eext(S)

as ¢ goes to infinity. Here, &y represents the internal en-
ergy of S. It is typically a weighted combination of stretch-
ing and bending energies and used to smooth and regularize
the shape of S. The external energy Eex: is derived from the
underlying segmentation problem. The corresponding exter-
nal forces are typically gradient forces that attract the surface
S into the direction of the image features that represent the
object’s boundary.

Although our results are valid for arbitrary forces f, we
will assume for the ease of presentation that f is strictly
positive, i.e. S moves only outward. This allows us to de-
scribe our method within the setup of the efficient and easily-
understandable fast marching method (see below). Other
than that we make no assumptions about f, hence f can be
considered as a black-box that is provided by the user and
that captures all the relevant internal and external forces.

3.2. The Fast Marching Method

Let us consider a surface S(¢) C R that evolves over time 7,
starting at an initial configuration S(0). Let us further denote
by 1(x) the time when S(¢) passes a point x € R?, see Fig-
ure 1. Note that as S(z) moves only outward it cannot pass a
point x twice, hence 1(x) is well-defined. By this definition,
S(¢) is just the level set of 1)(x) at time ¢, i.e.

S(1) = fx:m(x) =1}

The fast marching method 617 15 is an algorithm that recon-
structs an approximation of 1 (x) not on all of R? but only
on the discrete Cartesian grid 73. To be more precise, the
algorithm computes for each grid point x € 7* a value MNx
that approximates the real n(x). In order to speed up the al-
gorithm, the values Mx are computed along a front of grid

(© The Eurographics Association and Blackwell Publishers 2003.

Bischoff and Kobbelt / Sub-Voxel Topology Control for Level-Set Surfaces

>

Figure 1: Level set representation: The arrival time of the
surface S at point X is designated as M(x). Hence S(t) is the
level set {x : M(x) =t} of N at time 1.

N S A R

[]] el

Figure 2: The fast marching methods assigns to each grid
point one of the three states conquered ¢, front o, free 0.
Note that each front point is connected to at least one con-
quered point.

points that is propagated over the entire volume until finally
all values Mx have been computed.

To each grid point x € 77 one of the three states { free, front,
conquered } is assigned.

e For conquered points x the algorithm has already com-
puted the final value 1x.

e Front points X are connected to at least one conquered
point. The value Mx of a front point is only tentative and
may be updated during the run of the algorithm.

e Points x that are neither conquered nor front are called
free, Nx = oo.

Figure 2 depicts a typical configuration of grid point states
in the two-dimensional case.

The fast marching method proceeds by successively con-
quering front points. Hence the front advances over the grid
until all grid points x are conquered and assigned a value
Nx < oo. The pseudo-code in Figure 3 illustrates the basic
structure of the algorithm.

Note that in the initialization step 1 the exact distance of a
grid point to the initial front S(0) has only to be evaluated
for the front grid points. Step 3 is efficiently implemented
using a min-heap data structure. The updating of the neigh-
bors arrival times in step S is done using a first order approx-
imation. Details on the implementation of steps 1-5 can be
found in 16:17. 15,

(© The Eurographics Association and Blackwell Publishers 2003.

Fast Marching Method
1 Initialization:

= {x:dist(x,5(0)) <0}

FO = {x: x is a face neighbor to C }

0 ifxec
ne = { dist(x,s) ifxeF°
[e%s) otherwise

2 Fork=0,1,2,3,... do
3 Select the grid point x* € F* with smallest arrival
time n],i
4 Let
N ={y :yis a free neighbor of x }
and set
Ck-H - CkU{Xk}
Fk+l - Fk \ {Xk} UN

5 Update the values My of the neighbors y € N ac-
cording to the forces f(y).

Figure 3: Fast Marching Method
4. Algorithm

4.1. Cut-edge Grids

Let us consider a set C of conquered grid points. A grid point
v is said to be simple, if C and CU {v} have the same topol-
ogy, otherwise it is called complex. The precise meaning of
the term “same topology” will be explained in the following
sections, but for now we will stick to the intuitive meaning
that the number of components, cavities and handles are the
same for C and CU {v}. During a run of the fast marching
algorithm, grid points are successively conquered resulting
in a sequence

COHCIH'“ch

where C*t1 = ck U {x*}. If all grid points x* are simple, the

topology of C" will be the same as that of . In general,
however, grid points x* cannot be guaranteed to be simple.
Adding the a grid point could connect two parts of an ob-
ject, therefore forming a handle or a hole. The original fast
marching method approach does not prevent complex grid
points from being conquered. Hence the surface S(¢) may
change its topology during the run of the algorithm.

In the following we will present a framework, that allows
to solve the aforementioned problems on a sub-voxel scale
without modifying the underlying level set computation. To
achieve sub-voxel accuracy we propose to insert information
in between the integer grid points, i.e. on the edges of the
grid. We do this by placing “cuts” on the edges in order to
separate the two adjacent grid points from each other. In our
example, placing cuts on the edges to the left and to the top
of the center voxel (see Figure 9,c,e) will conveniently keep
the two components separated.

Bischoff and Kobbelt / Sub-Voxel Topology Control for Level-Set Surfaces

Figure 4: A cut-edge grid (C,X) consists of a set C C 7> of
integer grid points ® and a set X C C X C of cuts X. Note
that cuts may only be placed in between two grid points that
belong to C and are adjacent.

To be more precise, we define a cut-edge grid to be a tuple
(C,X) where C C 73 is a set of integer grid points and

X C {(c,d) € CxC: cisadjacent to d}

are the cut edges. A cut-edge grid can conveniently be imple-
mented by assigning to each edge a “cut’-flag, see Figure 4.

Whenever the fast marching algorithm is about to conquer a
grid point X, we first check the grid point’s topological sta-
tus. If it is a simple point, the algorithm proceeds as usual.
However, if it is not a simple point, we will place some cuts
around x such as to maintain the topology of C.

In the following sections we describe this framework in more
detail. First, we will put the rather vague notion of a cut-
edge grid on solid mathematical ground by mapping our
cut-edge grids onto so-called digital sets. In the second part,
we will describe, how to resolve topological inconsistencies,
i.e. which edges to cut in order to avoid topology changes.
Thirdly, we will describe the geometric positions of the cuts,
i.e. we will determine the ratio by which an edge is subdi-
vided by the cut. Finally we describe how to extract an ex-
plicit representation, i.e. a polygonal mesh from a cut-edge
grid.

4.2. Topological Embedding

In this section we will use the concepts of digital topology to
assign a precise topological meaning to our cut-edge grids.
This is needed to properly detect topology changes as well
as to avoid inconsistencies and ambiguities when extracting
an explicit surface representation from a cut-edge grid, see
Figure 5. We do this by mapping each cut-edge grid (C,X)
onto a digital set £(C,X) C Z>. Then we define the topology
of (C,X) to be the one of £(C, X). This approach allows us to
transfer the well-known characterization theorems of simple
points from digital topology into our framework.

Remark: In the following we will deal with two kind of in-
teger vectors € Z3. Elements ¢ € C C Z* are called grid
points and are thought of as infinitely small points. Elements
veVvcZofa digital set are called voxels and are thought
of as unit cubes centered at v.

Let us first recap some definitions from digital topology. We

NE¢

Figure 5: Different topological interpretations of a cut-edge
grid.

s % Py

Figure 6: Neighborhood relations: 6,18,26-neighborhood
(from left to right)

say that a voxel w € 73 is an 6,18,26-neighbor of a voxel
veZ2if |[v—wl|l» < 1,v/2,v/3 resp. see Figure 6. A digital
set V is a subset of Z3, the so called interior voxels. The com-
plement V = VA \ V is called exterior. To avoid a topological
connectivity paradox, we assume that the interior voxels are
6-connected and that the exterior voxels are 26-connected.

Let v € Z* be a voxel and let V C Z> be a voxel set. We
say that v is simple with respect to V, if V and V U {v}
have the same number of components, handles and cavities.
Otherwise v is called a complex voxel. In the following we
will give a characterization of simple voxels in terms of con-
nected components of a neighborhood of v.

Let us denote by
Nu(v) ={w: wis an n-neighbor of v }
the n-neighborhood (n € {6,18,26}) of v and set
Ny (x) = Na(x) \ {x}.

Furthermore we define the geodesic n-neighborhood of order
k of a voxel v with respect to a voxel set V C VA recursively
by

NYV,V) = V N Na(v)
N vy = v {Nn(w) : weN,’,‘(v,V)}

The number of n-connected components of a voxel set V C
77 is denoted by ¢n (V). Furthermore, we define the ropolog-
ical numbers nj,; and ney as follows

next(v,V) = c26 (VNN3g(V))
min (V) = c6 (N3 (v,V) N3 ())

(© The Eurographics Association and Blackwell Publishers 2003.

Bischoff and Kobbelt / Sub-Voxel Topology Control for Level-Set Surfaces

a)

d)

Figure 7: Characterization of the center voxel (dashed)
with respect to its neighborhood (solid). Simple: a) nj,; =
1,nexr = 1. Complex: b) njyy = 0,00t = 1, ¢) Rjpyy = 1, 1oy =
0, d) nipt = L,next = 2, €) Ny = 2,Nexe = 1.

Roughly stated, n;, (v,V) designates the number of interior
components of V that touch v and 7y (v, V) the number of
exterior components that touch v. Now we are able to for-
mulate the characterization theorem.

Characterization Theorem Let V C Z3 be a digital set.
A voxel v is simple with respect to V if and only if

it (V, V) = next (v, V) = 1

A proof of this theorem can be found in !. Figure 7 depicts
the characterization theorem.

In the following we describe how to embed a cut-edge grid
(C,X) as a voxel set, such as to form a digital set £(C,X).
Intuitively we do that by removing from the solid volume VA
voxels that correspond to either non-grid points A \ C or to
cuts X. For this we think of Z> at double resolution, hence
each grid point v corresponds to an even-valued voxel 2v.
Note that we do not actually implement a double resolution
grid — we just use it as a convenient concept to resolve the
topology of a cut-edge grid.

We first define an auxiliary mapping
0: 72U (23 x Z3) —P(Z%)
that maps grid points and cut edges to voxels sets as follows
O(v) = Nog(2v)
¢(V7 W) = N26(V + W) N
{veZ’ : Ju—2vl> = u—2w|: }

(Here 4+ and — mean addition and subtraction of coordinates
in Z3). See Figure 8 for a depiction of this mapping.

A cut edge configuration (C, X) is then embedded as a digital

(© The Eurographics Association and Blackwell Publishers 2003.

i
.

Figure 8: The auxiliary mapping & maps grid points and
cut-edges to voxel sets C z3.

set £(C,X) C Z by
cex)=2\ Yo\ U ov,w)

cgZC (v,w)eX
see Figure 9.

We can now define the topological equivalence of two cut-
edge configurations (C,X) and (C',X’).

Definition A Two cut-edge grids (C,X) and (C’,X’) are
topologically equivalent, if there exists a sequence of dig-
ital sets

ECX)=Vy— - —=Vu=E(C,X)

such that V; and V| differ only by a simple voxel.

Direct implementation of definition A is, albeit possible,
cumbersome and inefficient as it amounts to testing each se-
quence Vy — --- — Vj, for complex voxels. The following
criterion facilitates this task.

Cut-edge Criterion Let two cut-edge grids (C,X) and
(C’,X") be given such that

¢ =cu{v} and

X' =xuy
where Y C (v,Ng(v)). Then (C,X) and (C",X”) are topo-
logically equivalent, if and only if 2v is a simple voxel
with respect to £(C’,X").

The proof of this intuitive criterion amounts to finding a se-
quence as required by Definition A and is not carried out
here. Figure 9 depicts the application of this criterion in the
two dimensional case.

Bischoff and Kobbelt / Sub-Voxel Topology Control for Level-Set Surfaces

a) b)

>_

€) N f)

Figure 9: Topological embeddings and Cut-edge Crite-
rion. The figure above depicts three cut-edge grids (C;,X;)
(Figures a,c,e) and their corresponding embeddings E; =
E(Ci,X;) (Figures b,df). (C1,X1) is not equivalent to
(Co,Xo) as the yellow voxel is not simple w.r.t. £1. This can
be remedied by introducing additional cuts as in (Cy,Xp).
Now (C2,X») is equivalent to (Cy,Xo) as the yellow voxel is
simple w.r.t. &.

4.3. Choice of Cuts

Whenever a voxel x* is about to be conquered in the k-th step
of the fast marching method (see Figure 3) we first test it for
simplicity. If it is simple, the algorithm proceeds as usual. If
not, we have to introduce some additional cuts around x¥ in
order to prevent a topology change.

To be more precise, we extend the original algorithm (see
Figure 3) by setting X —0in step 1 and altering the update
rule 4 to

i — cfupt

X xFuyk
where D' {x*} and Y* < {(x*,-)} is a set of cuts that is in-
troduced at the k-th step of the algorithm. We can distinguish
5 cases, see Figure 7, where njy; = njp (xk,E(Ck7Xk)) and

Next = Next (Xk,E(C",X")> :

1. Rip = nexs = 1: x* is simple, D¥ = {Xk},Yk =0.

2. njy = 0: The algorithm is about to create a new compo-
nent of conquered voxels. Obviously, this is not possi-
ble with the fast marching approach, hence this case will
never occur.

3. nexr = 0: The algorithm is about to close a cavity. We
could handle this by introducing an arbitrary cut on one
of x’s adjacent edges, however, for symmetry reasons,
we choose to simply reject x, and set DF = Y* = 0.

4. nexr > 2: The algorithm tries to close a handle. Here again
we just reject X, Df = Y* =,

5. njy > 2: The algorithm tries to merge two interior com-
ponents. This is the standard case when two parts of
the front or two different fronts collide. To resolve this
case we search the nearest (in terms of arrival time 1)
6-component A C N3g(x*) N CF that is adjacent to x*.
Then we introduce cuts to all other adjacent components,
DF = {xF}, Yk = {(x*, w) : w e CK NN (xF) \ A}

4.4. Cut Positioning

In order to resolve the topology of a cut-edge configuration
it is sufficient to know for all edges, whether they are cut or
not. However, if we want to actually extract the surface, we
also have to know, where the cuts are placed, i.e. in which
ratio the edge is subdivided by the cut. For this, we proceed
as follows. Let e = (v, V1) be a cut edge and d = v| — v
the direction of the edge. We approximate the slopes mg, m;
of the arrival time function 1 in vq, v| by letting

my=n(vo) —M(vo—d) and m; =n(vi)-n(vi+d)

Then we extrapolate the contact point (1 — s)v(+ sv; where
s is given by

_ N(v1) =n(vo) +mo
mo +m

4.5. Surface Extraction

In order to extract an explicit representation, i.e. a polygonal
mesh, from a cut-edge grid (C,X), we proceed as follows
(conf. Figure 10).

1. Map (C,X) onto its embedding £(C,X). Note that this
can be done locally for each voxel, hence there is no need
to actually use a voxel grid of double resolution.

2. £(C,X) is viewed as a grid, and the ordinary marching
cubes algorithm is applied.

3. Vertices that do lie on the original grid edges are removed
by collapsing one of their adjacent edges.

4. The remaining vertices are moved to their final positions
as described in the previous section.

Note that depending on the underlying representation of
polygonal meshes under certain circumstances not all ver-
tices can be collapsed. In this case we move them to the po-
sition of one of their neighbors.

(© The Eurographics Association and Blackwell Publishers 2003.

Bischoff and Kobbelt / Sub-Voxel Topology Control for Level-Set Surfaces

a) b)

C)_(l_

d) e) f)

7

Figure 10: Extracting a polygonal mesh from a cut-edge
grid: The cut-edge configuration (a) is mapped to its corre-
sponding digital set (b). This digital set is then viewed as a
grid (c) and the original marching cubes algorithm is ap-
plied (d). Vertices that do not correspond to edges of the
original configuration are removed (e) and the remaining
vertices are moved into the final position of the contact sur-
face (double vertices) (f).

5. Results

We have implemented and tested our framework on various
datasets. In all Figures, the contact area is shown in green,
while the remaining surface is shown in red.

Figure 11 shows a trefoil knot as an example of a genus zero
initial surface. Expanding this knot at unit speed leads to a
self-contact and to a halt of the corresponding part of the
surface.

Figure 12 shows some spheres as an example of a surface
consisting of multiple components. Expanding these spheres
at unit speed within a bounding box results in a Voronoi-like
decomposition of the box. Note again, the the surfaces do
not self-intersect but come to a halt as soon as they touch
each other.

Figure 13 shows the reconstruction of a human brain from an
MRT dataset. For this we set a small sphere into the interior
of the brain and let it grow with speed proportional to the
image intensity, i.e.

Jf(x) = max(ix —1,0)

where we iteratively lower the threshold # in order to succes-
sively conquer the brain. It is elaborate to implement such a
strategy for the fast-marching framework, hence we created
these images using a narrow-band implementation of the
standard level-set framework. The topological framework,
however, remained the same.

Note that the detection of simple points and the placement
of cuts is only a local process and hence very efficient. The
running times for our examples range from a few seconds to
some minutes. Adding topology control slows down the run-
ning time of the fast marching method by a factor of about 6.
This is not astonishing, as the fast marching method is very

(© The Eurographics Association and Blackwell Publishers 2003.

Figure 11: A genus zero trefoil knot is expanded at unit
speed. Original knot (top), expanded knot hiddenline (left)
and colored, smoothed (right). The green color designates
the area where the surface has touched itself. The resolution
of the cut-edge grid is 643,

Figure 13: Reconstruction of the cortex of a brain. Upper
image: The green color signifies areas where the surface has
touched itself. Without topology control, these areas would
have merged together resulting in a reconstruction of wrong
genus. Lower image: Interior of the brain cortex. The reso-
lution of the cut-edge grid is 95 X 256 x 88

efficient in itself, hence even a small computational overhead
will have a strong impact on the running time. Adding topol-
ogy control to other, computationally more involved level-
set implementations, like narrow-band implementations, re-
sults in a more moderate slow-down of about 10%, see also 8.

Bischoff and Kobbelt / Sub-Voxel Topology Control for Level-Set Surfaces

Figure 12: A number of spheres with different radii are expanded at unit speed within a bounding box. The result is a Voronoi-
like decomposition of the box. The resolution of the underlying cut-edge grid is 643,

6. Conclusion and Future Work

We have presented a novel framework for controlling the
topology of geometric deformable models. The topology
constraints of the initial surface are preserved by introduc-
ing cuts on the grid edges during the deformation process.
The main features of our cut-edge framework are its

e cfficiency,
e sub-voxel accuracy and
e compatibility to existing level-set frameworks.

In all our experiments, the cut-edge framework produced
valid meshes of correct topology. However, we have to point
out that in our present implementation small oscillations on
the contact surfaces may occur. This problem is of geomet-
ric rather than of topological nature. We plan to address it
by using higher-order approximation methods for the fast
marching method as well as for the computation of the cut
positions (conf. Section 4.4).

References

1. G. Bertrand. Simple points, topological numbers and
geodesic neighborhoods in cubic grids. Pattern recog-
nition letters, 15:1003-1011, 1994.

2. I Cohen, L. Cohen, and N. Ayache. Using deformable
surfaces to segment 3-d images and infer differential
structures. Computer Vision, Graphics and Image Pro-
cessing: Image Understanding, 56(2):242-263, 1992.

3. L. Cohen. On active contour models and balloons.
Computer Vision, Graphics and Image Processing: Im-
age Understanding, 53(2):211-218, 1991.

4. C. A. Davatzikos and J. L. Prince. An active contour
model for mapping the cortex. IEEE Trans. on Medical
Imaging, 14(1):112-115, 1995.

5. H. Delingette and J. Montagnat. Shape and topology
constraints on parametric active contours. Computer
Vision and Image Understanding, 83:140-171, 2001.

6. M. Desbrun and M.-P. Cani. Active implicit surface
for animation. In Graphics Interface, pages 143-150,
1998.

7. N.Foster and R. Fedkiw. Practical animation of liquids.
In SIGGRAPH 01 proceedings, pages 23-30, 2001.

8.

10.

11.

12.

14.

15.

16.

17.

18.

X. Han, C. Xu, and J. L. Prince. A topology preserving
deformable model using level sets. In Computer Vision
and Pattern Recognition Proceedings, pages 765-770,
2001.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Ac-
tive contour models. Internation Journal of Computer
Vision, 1:321-331, 1988.

J.-O. Lachaud and A. Montanvert. Deformable meshes
with automatic topology changes for coarse-to-fine
three-dimensional surface extraction. Medical Image
Analysis, 3(2):187-207, 1999.

R. Malladi, J. A. Sethian, and B. Vemuri. Shape model-
ing with front propagation: A level set approach. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 17(2):158-174, 1995.

T. Mclnerney and D. Terzopoulos. Topologically adapt-
able snakes. In International Conference on Computer

Vision, pages 840-845, 1995.

K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr.
Level set surface editing operators. In SIGGRAPH 02
proceedings, volume 21, pages 330-338, 2002.

S. Osher and J. A. Sethian. Fronts propagating
with curvature-dependent speed: Algorithms based
on hamilton-jacobi formulations. J. Comput. Phys.,
79(1):12-49, 1988.

S. J. Osher and R. P. Fedkiw. Level Set Methods and
Dynamic Implicit Surfaces. Springer, 2002.

J. A. Sethian. A fast marching level set method for
monotonically advancing fronts. Proc. Nat. Acad. Sci.,
93(4):1591-1595, 1996.

J. A. Sethian. Level Set Methods and Fast Marching
Methods. Cambridge University Press, 1999.

R. Whitaker. A level-set approach to 3d reconstruction
from range data. In International Journal of Computer
Vision, volume 29, pages 203-231, 1998.

(© The Eurographics Association and Blackwell Publishers 2003.

