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Abstract. We present the necessary theory for the integration of sigial sur-
faces into general purpose rendering systems. The mosttampdunctionality
that has to be provided via an abstract geometry interfactharcomputation of
surface points and normals as well as the ray intersecti&in e demonstrate
how to derive the corresponding formulas and how to constight bounding
volumes for subdivision surfaces. We introduce envelopsh@g which have the
same topology as the control meshes but tightly circumedtile limit surface.
An efficient and simple algorithm is presented to trace a eayrsively through
the forest of triangles emerging from adaptive refinemeiinoénvelope mesh.

1 Introduction

The general concept of subdivision techniques for the construction aresegpation of
free-form surfaces is gaining more and more attention in computer graptdazlated
fields [19, 22]. The efficiency of subdivision algorithms and theifigity with respect
to the topology and connectivity of the control meshes makes this appsaaahle for
many applications such as surface reconstruction [2, 4] and interactiveingpfg].
The close connection to multi-resolution analysis of parametric surfaogiles access
to the combination of classical modeling paradigms with hierarchical repgegseTs of
geometric shape.

So far subdivision surfaces have been used mainly in the context of ggomet-
eling, i.e., issues like the asymptotic behavior of the scheme [Gardi the (discrete)
fairness of the resulting meshes were investigated [11, 12]. MeanWwhiftelated math-
ematical theory has reached a state of maturity which allows the programmesech
among the many schemes proposed in the literature [2, 5, 10, 13].slpdber we do
not investigate such properties but we address an important issueefmtégration of
subdivision schemes into a wider range of potential applications: é/\théd subdivi-
sion methods have become a standardurface designthe connection teendering
applicationds still based on raw triangle data exchange.

There has been a considerable amount of work on the integration of foger
basic shapes like spline surfaces into the generic setup of sophistieateting al-
gorithms [1, 7, 9, 15, 17, 20, 21]. Most of the approaches derive i@ moless tight,
preferably convex, bounding volume for each patch. The size of thisddegirolume
provides an upper bound on the spatial extent of the object such thatteageiction
tests can be implemented much more efficiently by discarding rays accordingie s
tests against the bounding volume. If the bounding volume aligtietlocal geometry
of a patch then its shape can be used as an oracle to rate the local flathess i.e., th
approximation error if the true geometry would be replaced by a planar face.

In this paper we will present the basic prerequisites which are necessaan#o t
fer the generic bounding volume technique to subdivision surfades.nfathematical
difficulties emerge from the fact that in general there is no explicit detsanifior the
limit surface and hence possible bounds have to be derived from thiece@t of the
underlying refinement equation (i.e., from the coefficients of the sididivmasks).



We start by finding points and normal vectors on the limit surface qooraging to
the initial control vertices. The triangles of the initial control méslply a decomposi-
tion of the limit surface into triangular patches with these limitrggiat their corners.
For each patch we compute a bounding prism by sweeping the chord trspsgieed
by the three corners in the (triangle-) normal direction.

Based on the individual bounding prisms, we build envelope meshésda@om-
posite surface by moving the limit points in (point-) normakdition until the bounding
prisms are completely contained. This provides a continuous polyhadtalWhen a
given ray intersects one of the envelope triangles, we perform locahgsibdito ob-
tain a better piecewise linear approximation of the limit surface. Sireagighboring
triangles in a mesh data structure can be foun@(h), we can formulate an efficient
recursive scheme that traces the ray through the hierarchy of envelopéssiahige re-
cursion stops when a local flatness criterion is met, indicating that theséction with
the chord triangle does not deviate from the true solution by rtiae a prescribeel
The algorithm has been integrated as a new geometric primitive intoeaagmurpose
ray tracing tool to compute the pictures shown in the result section.

Throughout the paper we will explain the theoretic concepts and generabdset
in the context ofunivariatesubdivision. Transferring the results to the bivariate setting
is rather obvious but depending on the vertices’ valences several special casés ha
be considered. To make the reproduction of the results as easy as possilieply
the corresponding formulas explicitly to Loop’s subdivisionestie [13].

2 Limit points and normals for subdivision surfaces

Let a control polygorP = [p?] with p? € R® be given which represents the curve

Pt) = S pPot—i) with ¢t) =Y aje2—j). (1)
T ]
It is well known that the subdivision rule
pi = aizp (2)
]

generates a new control polygBn= [p}] such that
P(t) = Y plo@ —i).
1

provides aefined representation of the same curve. Notice that (2) actually combines
two rules triggered by the parity df By iterating the refinement rule we obtain a
sequence of polygor, = [p{"], m= 0,1, ... which — depending on the coefficients

a; — converges to a smooth limit curis.

We are interested in computing points on the limit cuPyalirectly from the control
pointsp™ on some levein without going through the iterative refinement. The follow-
ing technigue has become standard in the analysis of subdivision scheamsdruct a
local subdivision matrix and transform it into its basis of (genera)izégenvectors.

Let the coefficientsa;]?", define a univariate subdivision scheme. If we rewrite
the polygonP,, as avectorthen the subdivision steB, — Pn.1 corresponds to the
multiplication of Py, by a suitable matrix
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Due to the fixed bandwidth d we observe that the non-zero coefficients nf-21
successive rows form a square masix-rom an algorithmic point of view this means
that the(n — 1)-neighborhood opJ in Py, 1 is completely determined by tfe — 1)-
neighborhood op™ in Py,

Since the control verticgg" represent the functioR(t) with respect to the func-
tional basisp(2™ — i) it is natural to associate the vertpX with the parameter value
t™ =i2"™. Hence, through all subdivision levels, the vertipgs" correspond to the
same parameter value and this sequence of vertices convergessfes to the point
P(t™) on the limit curve.

The sub-polygons ofr2- 1 successive verticgs' andp™* correspond to the nested
parameter interval§"+ [1—n, n—1] 2-™ andt™+[1—n, n— 1] 2~ (™Y respectively and
since the same subdivision maSks applied in every step, it is obvious that the limit
pointP(t™) is determined by thén — 1)-neighborhood of the vertep{" through

P (L., = lim S PRy, ool
The direct computation oP(t™) requires the decomposition & = V-1DV into a
diagonal matrixD and a transforry into the basis of eigenvectdrsThe convergence of
the iterative scheme implies that the dominant eigenvali&bafA; = 1 and the affine
invariance of the subdivision operator indicates that the correspgmrijenvector is
[1,...,1]. Therefore the coefficients_y, . .., In—1 such that

PE™) = z lj pmj
]

can be read off that row &f which is associated with this eigenvector. This is obvious
since components of the input vector which belong to eigenspaces of smagdiavai-
ues fade out during the iteration 8f

If the subdivision scheme genera@'scurves then there existstifference scheme
S which maps the divided differencésp™ = 2™(p" , —p") of Py to the divided differ-
ences 0Py, 1 [6]. For repeated subdivision the differences converge to the deridtive
the limit functionP/(t). The limit point analysis applied to the difference scheme hence
provides limit tangent vectors.

Due to the simple relation betwe8andS it turns out that the eigenvectdy, . . ., 1]
of S with eigenvalue\; = 1 corresponds to the eigenvecfér— n,...,n— 1] of S
with eigenvalue\, = % (constant differenc@s Hence, just as the eigenvector for the
dominanteigenvalug, = 1 allows us to compute the limit point, the eigenvector for the
subdominant eigenvalle = 1 determines the limit tangent B{t™) since it describes
the line which is asymptoticazlly approached by the sequence:

PEM[A—n....n=1" = lim 2'S" [p[y,5 = PE"),. ., a1 — PE .

If the subdivision scheme converges G'dimit then the modulus of all other eigenval-
uesiz > ... > Ayp_1isless than}. The rate by which the deviation of the sub-polygon
P i1, - - - P, 1] from a straight line fades out j&3|. As expected (by Taylor's the-
orem) the local flattening rate/3 is higher than the contraction ratéX, = 2 if the
limit curve is smooth.

In the bivariate setting, we have two partial derivatives of first oatheraccordingly
the local subdivision matri$of a refinement scheme which generatésimit surfaces

1in generalD is the Jordan normal form & but for convergent subdivision schemes with smooth limit
surfaces, the leading eigenvalues have algebraic maitiptine [16, 24].



has a double subdominant eigenvalye= A3. The components of the input mesh
which lie in the corresponding eigenspaces span the tangent plane atithpgolim
Example: Consider the three directional grid spannedby0), (0, 1), and(1,1). The
quartic box splinéM,», defined on this grid satisfies the refinement equation [3]
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Mz22(u,v) = Z i, | Ma22(2u—i,2v—j) with [(Ii,j] = — 16 10 6 1
=0 161 26 6 20

Hence, the corresponding subdivision rules are 12100

1_1t3(10p|n,1k+pln,1k—1+pln,1k+l+plnll,k+pm-l,k+plr11—l,k—l+plrr-1l-l,k+l) i=2l, j=2k
Pl 16(2 Pl 1+ 6PN+ 6PN1k + 2P 1) i=204+1, j=2k @)

" i6(2 Pk + 6P+ 6PN+ 2PN 1 ki1 i=2,  j=2k41
i6(2 Pk + 6P + 6PN 1k + 2Pk1) i=2141, j=2k+1

See Figure 1 for several generations of a recursively refined triangle mesixapat-
ing the box-spline basis function and Fig. 2 for a geometric inetgpion of the rules.

Fig. 1. Uniformly subdivided regular triangle meshes convergmthe quartic box-splin&,,.

Several authors have generalized these rules to meshes with arbitrary ogtynecti
[13, 23]. To do this we have to leave the formal setup of refinemeesafithe type (3)
since regularly indexing the vertices is no longer possible. Dubdcsmall support
of the refinement masks in Loop’s scheme (cf. Fig. 2), there is no needddyntioe
"edge”-rules: An inner edge is always adjacent to two triangles. Hence the geaerali
tion can be restricted to the definition of alternative "vertex”-rules

m . G(k) m 1 m
P = G kP A vk 2P

for verticesp™ with valencek # 6 andp" being the direct neighbors @™ in Py. A
good choice leading to overaf limit surfaces is [24]

1-B(k) 5 (3+2cog2m/k))?
“Bw - PMTE T e

Notice that this rule coincides with the original "vertex"-rule (3}hf valence op™ is

6.

Remark: Atthe boundary obpentriangle meshes, we cannot apply the above masks
since some of the neighboring vertices are missing. We avoid tbisgm by treating

the boundary of a mesh as a closed polygon and applying univariate/sidnai By
doing this we additionally guarantee that no internal control vertixénces the shape

of the boundary curve. This is important if we want to generate creasesnamwjo
separate subdivision surfaces along a common curv€thfashion [10].
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Fig. 2. Geometric notation for the refinement rules (3) and for thetliules (limit point and the
two partial derivatives).

The support of the refinement rules implies that the 1-ring neigtdmatbf a vertex
p™1 only depends on the 1-ring neighborhoodpdf (cf. Fig. 2). Hence, the local
subdivision matrixSfor a regular vertex with valence 6 is

0 1 1 1 1 1 1
6 6 2 0 0 0 2
6 2 6 2 0 0 O
S:1—16 6 0 2 6 2 0 O = V-ilpvVv
6 0 0 2 6 2 0
6 0 0 0 2 6 2
6 2 0 0 0 2 6
1 0 0 0 0 1 0O 16 000000 6 1 1 1 1 1 1
1 1-1 0 1 0-1 0800000 0 2 -2 -4 -2 2 4
1 0-1-1-1-3 1 0080000 0 -2 4 -2 2 4 2
=]l 1-1 0 1 0 0-1 1—16 0004000%2—6—1—1 5_.1-1 5
1-1 1 0 1 0 1 0000400 6 5-1 -1 5 -1 -1
1 0 1-1-1-3-1 0000040 6 -1 -1 -1 -1 -1 -1
1 1 0 1 0 0 1 0000002 0-2 2-2 2-2 2

The coefficients of the linear combination for the limit point and theéants are given
by the first three rows of (cf. Fig 2 for the explicit masks). The tangent masks yield
the two partial derivatives at the limit point, and the normal vector caokit@ined by
their cross product In [8] we give a complete table of the limit masiffaments for

2.

valencek = 3,.

3 Oriented bounding volumes

To derive bounding volumes for subdivision curves and surfaces wethawnow the
rangesof the basis functiong(t — i) over the considered interval. This is not straight
forward since we just know the coefficients of the refinement equation andtdwave
an explicit parameterization in terms of polynomials or such. We will &xplain how
to compute oriented bounding boxes before we present a simple ieefaticedure
which yields tight estimates for the actual bounds.

Let a curveP(t) be given by a linear combination of scalar valued basis functions
@t — i) as in (1). Its range with respect to some directiofor t € [a,b] can be
estimated by

IZ(nTIOi) min <P(t—l)+2(nTpi) maxe(t—i) < P,

< t—i "pi t—
o Z (n"pi), rr}ggcp( ) + IZ(n pi)- ng](p( i)
(nTpi), := max{n'p;,0}, (nN"pi)_ := min{n"p;,0}.
Example: For the cubic B-spline it is known that
N({0,1,2,3,4}) = {0,250}

andN is monotonic on each integer interval such that the extremal values occer at th
uniform knots. Consider the spline cur?ét) = 5; pi N(t — i) over the intervat €



[j, ] +1]. Here the curve is completely determined by the control verfiges . . . pj+2
due to the finite support df. With the limit point rule we obtain the two pointg :=
P(j) andqj;+1 = P(j + 1) on the limit curve. The chordal error of the straight line
Tj qj+1 With respect to the arB([j, j + 1]) can be estimated by computing the range
of P in the normal directiom; perpendicular to the choi@jqj;1. Due to the affine
invariance we can shift the control vertices byj; and obtain the control vertices’
normal distanceg := an (pi —qj) fori=j—1,...,j+ 2. The normal range

1 . e e L
[j,uj] = (_3{(r}-+r}—+l+rj—l+4rj+4rj+l+rj+2)’ (rj+rj+l+r}r—1+4rT+4r}r+l+r}r+2)]

defines a rectangular box which is aligned to the cligmi; 1 and completely contains
the arcP([j, j + 1]).

Be2

Fig. 3. The gray bounding box is spanned by shifts of the cliprgi 1 (hollow dots) in normal
directionn;. The actual normal range is computed by a weighted sum ofdieal distances;
of the control verticep; from the supporting line of the chord (dashed line).

In the bivariate setting the procedure to estimate the chordal appatigimerror
is exactly the same: given a submesh which defines one segment of theuifaite
(corresponding to one triangle in the control mesh) we use the firasks to obtain
points on the surface spanning a chordal triafiglés in the univariate case we derive
the normal distances of all involved control verticep; from the supporting plane df
and compute a weighted sum according to the ranges of the associated betgisifun
The result is an orthogonal triangular prism with the top and boftara being shifted
versions of the chordal triangle. The possibility that the patch might intersect the
quadrilateral sides of the prism will be addressed in Section 4.

For irregular meshes we have to consider the different special cases thatabccur
extraordinary vertices since the ranges of the basis functions do depehé tocal
connectivity of the mesh. For the sake of simplicity we assume thah#sh has been
uniformly subdivided once before the bounding boxes are to be captihis reduces
the number of special cases since each extraordinary vertex with vagte@des only
regular direct neighbors (cf. Fig. 4). Since there is no explicit paranzetion for
the limit surface of Loop’s subdivision scheme, we have to find abédi numerical
algorithm to estimate the true ranges. It turns out that this alreaal§irist application
of the bounding volume technique in itself.

The control mesh defining a triangulanop-patchis shown in Fig 4. To approx-
imate the basis function corresponding to one of the vertices, wenassig 1 to it
and zeraz-values to all other verticeDfrac-mesh. The iterative refinement of such a
mesh will approach the specific basis function as depicted in Fig. 1 buhit mmvide
a reliable bound on the actual range. Notice that we are only interested lralis
function’s range over the center triangle.

Let us start with a very coarse over-estimation of the true rangesj-elgl]. We
apply the subdivision rules to the Dirac-mesh in Fig. 4 and after sesakalivision
steps we compute the chord aligned bounding boxes for every triarigte the mesh
has become locally flat, the chord aligned boxes are also flat and provide aighieh t



Fig. 4. The mesh on the left contains all vertices that have influemcthe surface patch corre-
sponding to the center triangle. Each vertex is associattdarspecific basis function. On the
right the vertices are symmetrically labeled accordinghranges of their basis functions over
the center trianglea(= [, 3], b= [0, ], ¢ = [0, 35)).

bound for the range of the current basis function. Once we have timéot all in-
volved basis functions, we can iterate the whole procedure to obtairbetten bounds

in every step. Fig. 4 shows the exact ranges for the 12 basis functivosevsupport
covers the center triangle in the regular setting. For a complete tatiienvimn/max
range values of th& + 6 basis functions over a triangle being adjacent to a valence
k=3,...,12 vertex cf. [8].

4 Bounding envelopes

Each triangle of a subdivision surface’s control mesh correspondsatch pegment
of the limit surface. When uniformly subdividing the mesh we genaatequence of
meshes whose triangles can be grouped as a forest of quad-trees with eatiafiteg
original mesh being a root node. In Section 3 we showed how to computeraling
prism for each triangular sub-patch (on any subdivision level). Heweaysing the
individual bounding prisms directly for ray intersection tests igegcomplicated since
each is aligned to the particular normal direction of the underlying chi@naigle.

Further, when we derived the bounding prisms, we did not addregsabiem that
bounding the range in the direction perpendicular to the chordal teéamgot sufficient
since the triangular patch might intersect one of the prism’s quashdlefiaces. Hence
we would have to enlarge the prism to guarantee inclusion. More@gting whether
a ray intersects the prism is not trivial since several special confignsatiave to be
checked.

We therefore introduce a pre-processing step where we combine all cigmmddl
bounding prism to build a globdounding envelope This is a continuous triangle
mesh having the same topology and complexity as the control mesh acia tigtly
circumscribes the limit surface. Obviously for open meshes we have tputertwo
envelopes: one covering the front side and one for the back side.

Each local refinement operation of the control mesh induces a corresponding re-
finement of the envelope meshes. As the refinement proceeds the envelopeg quickl
approach the limit surface. In the next section we will explain a simgentersection
procedure which traces recursively through the forest of mesh trianglebthtesting
as few prisms as possible. By using the envelope structure to nayigatexploit the
topological coherence in the mesh, i.e., the fact that a triangle’s neighhdre found
with O(1) complexity. Thecontinuityof the hull on each subdivision level guarantees
that no intersection is missed.

Again, we explain the general envelope construction in the univariaiegéor
the sake of simplicity. So far we have derived an individual boundiog for each
segmenby estimating the limit curve’s randg;, u;] in the directionn; perpendicular
to the chordy; 1. In order to obtain continuous bounding polygons we use the limi
tangent rule to compute a (normalized) normal veétofor each limit pointq;. The
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define a minimal trapezoid containing the curve segr®ft j + 1]). Since two seg-
ments meet at each limit poig§, we define the conservative range
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for each vertex of the control polygon. Hence, for a given control polygf] we
obtain dimit polygon[q["], anupper envelopgy; +G; fii] and aower envelopéy; +; fij].

upper envelope WA
............. ' VAR

lower envelope

Fig. 5. By computing the range[ﬁj, 0;] for each vertex we find an envelope for the chord based
bounding boxes. The envelope’s boundaries have the sarpeldtyy” as the control polygon
(left). In the bivariate case we also compute normal rang#srespect to vertices instead of tri-
angles and replace the orthogonal prism (center) by morergkibounding volumes (right). Al-
though each individual bounding object becomes more caagld, the continuity of the bound-
ing envelope enables a simple recursive tracing procedure.

A closed envelope in the bivariate setting is obtained by replacing thegwohal
prisms of Section 3 by more general prisms that are generated by moving esoh ver
q; of the chord trianglél in the corresponding vertex normal direction(cf. Fig 5).

As in the univariate case we compute a normal range for each vertex by thkingn-
imum and maximum of thprojectednormal ranges of all adjacent triangles (and their
orthogonal prisms). After this procedure we end up with three tapohlly equiva-
lent meshes (derived from the original control mesh), one being a creppgedximant

to the limit surface and two meshes (outer and inner envelope) which can basised
bounding volume.

5 Efficient ray intersection

Free form surfaces are usually defined as a collection of individual patchesstdin
dard way to implement a ray intersection test with such objects is to coragineple
bounding volume for each patch. These bounding volumes can be used adla mid
layer of a bounding volume hierarchy which is propagated towards thdyoenclos-
ing neighboring bounding volumes into a circumscribed larger volantetowards the
leaves by subdividing the patches and computing bounding volumtsefeub-patches.

Tracing a ray through such a bounding volume hierarchy means traversieg
data structure with the descent being controlled by ray intersectiorféesk® current
node’s volume. If a leaf is reached, a numerical procedure like Newton dergti
applied to the explicit polynomial parameterization of the patch.

Since subdivision surfaces do not have an explicit parameterizatiomopege to
base the recursive ray tracing procedure mainly on the informationdedby the en-
velope meshes. Many techniques have been suggested to accelerate the ray artersecti



tests with a collection of triangles [1]. The most effective one is titdba hierarchi-
cal space partition (e.g., BSP-trees) for the whole mesh and incrememntaléy the
ray through this decomposition. We do use this technique in ourittigobut only to
find those triangles where the ray enters the outer envelope corresgaadhirinitial
control mesh. Once the entry triangle is found, we trace the ray thrtheghierarchy
of adaptively refined envelope triangles. The navigation is controllesitople ray—
triangle tests. The efficiency of the tracing procedure results fronfetttehat chord
aligned bounding boxes converge much faster than axis-aligned ones (cf. 8ect.
Another advantage of this strategy is that no redundancy is introdyceddslapping
bounding prisms or ambiguous assignment of bounding prismspaee partition.

To simplify the explanation we assume that all necessary local refinemerat-oper
tions have already been performed when the tracing path intersects a cegtagetri
In our actual implementation we usedazy-evaluatiormechanism which computes
the control vertices of the refined meshes on demand while keeping the aletell
structure consistent (i.e. adjacent leaf-triangles may only differ by energtion) and
caching all computed information for future requests.

The tracing algorithm has to handle all special cases of the ray intersectiaggie
of the envelope mesh (on a certain refinement level) but intersecting fheesitself at
a neighboring patch (if it intersects at all). The most important feghatewe exploit
for the tracing algorithm is that the envelopes corresponding to the salvdivision
level form a continuous surface and the ray cannot pass through withitog at least
one triangle. In one tracing step we either descend in the forest of refinetbpav
triangles or we proceed the search in a neighboring tree if no intersectidredanond
below the current one.

We base the local decision dntersection maskspecifying the seven possible
spatial configurations between a ray and a triangle (cf. Fig. 6). For ateidn =
A(A,B,C) and a ray with originO and directiorr we distinguish the configurations
according the signs of the coefficients3, andy in the unique linear combination

r=a(A-0)+B(B-0)+y(C-0).

Only the+ + +-case reports an intersection of the ray withAll other cases indicate
failure but they provide useful information about where to searclafointersection,
i.e. which neighboring triangle to check next.

7"\

Fig. 6. The bits in the intersection mask define a partition of trengie’s supporting plane. They
indicate in which direction the tracing algorithm has togaed (left). The indexing of triangle
corners and edges is inherited from the parent triangledsguve the orientation (center). A ray
passing the envelope triangle mesh without intersecti@s dlatersect the associated supporting
planes in reverse order. Translated into the intersectiasksof the corresponding triangles this
configuration would cause a loop in the tracing algorithrgH).

2
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In each step we check if one of the current node’s children is intersectedf sug. |
we proceed the search with the descendents of this child. If not, we usaelsection
masks obtained while testing the children to decide which neighb®rtoftest next.
The following pseudo code implements the algorithm



trace( T)
for child o to child 3
mask[i] = test _intersect(child i)
if mask[i] = "+++’
trace(child i)
lookup neighbor(mask[3],mask[sibling(mask[3])])
trace( T->neighbor)

Cf. Fig. 6 for our indexing convention of a triangle and its fourldtén. If none
of the child triangles is intersected by the ray the tracing is controjetio tables
neighbor andsibling . Thechild jis the center child and if the corresponding
intersection mask has two negative signs then the next neightioifiniquely de-
termined. If only one of the signs is negative, then we use the camelspg sibling’s
intersection mask to determine where to proceed. If the sibling’s maskwoasega-
tive signs then we proceed (by convention) in the counter clockwise idinsict make
the decision deterministisibling  is indexed bymask[3] andneighbor is row

indexed bymask[sibling(mask[3])] and column indexed bmask[3] .
int sibling[7] = {0,0,0,2,0,1,0 S
int neighbor[49] = {
-1, -1, -1, -1, -1, -1, -1, 210 */
-1, o0, 0O O, O O, O, - -4+ 2 1%
-1, 1, 1, 1, 1, 1, 1, s -+ - 2 %
-1, 1, O, -1, 1, 1, O, [* -+ + 3%
-1, 2, 2, 2, 2, 2, 2, * + - - 4 *
-1, 2, 0, 2, 0, -1, O, M~ + - + 5 %
-1, 2, 2, 2, 1, 1,-1 } M+ +- 1 6%

Don't-care-cases inibling  are set to zero and s inneighbor indicate configu-
rations where no intersection occurs. Notice thatthe gesk[i] = 7 cannotoccur
since in this case the algorithm descends recursively and the procedetetmithe the
next neighbor is not called.

Failure of the recursive algorithm (i.e. no intersection occurs) can leetdetas fol-
lows: The generic situation of a ray passing the object without iet¢ien is depicted
in Fig. 6. Such configurations are characterized by the fact that the intersewiik of
a triangleT; indicates the search to be continued in trianBlevhile T,’s intersection
masks suggest to te§t. Hence failure can easily be detected by avoiding loops in the
tracing path. We implemented this feature by giving each ray a unique fidatitin
(an integer) and putting a temporary stamp on each tested triangle:

trace( T)
if touched( T) exit on FAILURE
touch(T)

6 Approximation tolerance

To eventually compute an intersection point of the ray with the surfaeehave to
define a stopping criterion to determine whether a bounding prisuoffisiently small

in the sense that replacing the true surface geometry by a linear approxioesnot
lead to an error larger than some prescrisedWe approximate the location of the
true intersection point by computing the intersection of the ray witthord triangle.
For the orthogonal bounding prisms obtained by shifting theddddriangle in normal
direction the error can be estimated by

E < min{l,ﬁ} (4)



with | being the longest edge of the chord triandidaeing the height of the prismm,
the normal vector andthe direction of the ray (cf. Fig 7).

Fig. 7. The maximum distance between the true intersection pothitampproximation depends
on the height of the bounding prisnandthe relative direction of the ray. For very steep angles
the maximum edge length of the supporting chord triangl®irexs the dominant bound (left).
Since the stopping criterion for the subdivision dependtherdirection of the ray, the refinement
tends to be much finer close to the contour (right).

This reveals the significant advantage of geometry aligned boxes over igxiseal
ones: Subdivision of axis-aligned bounding boxes approximatelyhdhe size of the
box in every step, hence going down one level in the bounding vohierarchy pro-
vides one more bit in the precision of the result. In our case how#weheight of
the boxes shrinks much faster than the length of the triangle edgesb@&havior can
easily be explained by looking at the eigenstructure of the subdivisiatrixS. The
first eigenvalué\; = 1 and the associated eigenvector is responsible for the local con-
vergence to a point on the limit surface. The second and third subdoreiganvalues
A2 = Az and the associated (two dimensional) eigenspace define the tangent plane.
The fourth eigenvalug, controls the flattening rate by which the deviation of the local
sub-mesh from a plane configuration reduces.

In the above example of Loop’s scheme in the vicinity of a regulaexere have
A = ;11 and hence one subdivision step approximately bisects the edges of tlde chor
triangles but their height is reduced by the factor 4. As a consequenceattiegtr
algorithm turns out to be significantly faster, especially if high piienigs required.

The reciprocal facton™r| implies a certain degree of view dependency in the re-
finement during ray tracing. If the ray intersects almost perpendiculadygfinement
can stop as soon as the height of the bounding prism is smaller tharegwiped tol-
erancee. The bounding prisms for triangles close to the visual contouhefdabject
have to be refined much further. Fig. 7 shows the adaptive refinemeningfubm
rendering a simple convex object by a ray tracing algorithm with fixegramice for
the intersection tests. To avoid numerical instabilities, we considersection tests
with sufficiently small bounding prisms (according to (4)) where iténg does not hit
the interior of the associated chord triangle as failure.

7 Results and conclusions

Loop subdivision surfaces were integrated as a new geometric penitiv a generic
architecture for rendering algorithms [18]. The color plates show akpétures ren-
dered with a simple ray tracer. We chose one very simple example (tfe¢ gaintrol
mesh being an octahedron) to demonstrate that intersection tests at thersaato
be evaluated in a stable manner (upper left). The reflectivity of the matesmlset
to a high value, making the surrounding room’s striped wallpapéy fisible on the
resulting surface. The smooth reflection lines demonstrate the sur@teentinuity.
The initial triangle mesh defining the cat model in the lower right imemesists of
728 faces. As in the image of the reflecting octahedron the material propeetieset
to full reflection to obtain clearly visible reflection lines. The imagelmmight shows



a raytraced subdivision surface with a control mesh consisting of frl&garles. A
texture was added to define the head’s color. Again the smooth shapetagtiights
indicate curvature continuity of the surface.

In practice we found subdivision surfaces a good extension to oueriegdsystem,
as the control meshes are easy to manipulate without having to worry erainuity
issues. Even meshes only roughly outlining an object's shape prodwacklgoking
surfaces. We presented the necessary theory for the derivation of tiglit aligmed
bounding volumes for subdivision surfaces which allow us to effegtiteindle ray
intersection inquiries due to their fast convergence under subdiviStenintroduction
of continuous envelope meshes completely containing the limit surfaes gse to an
efficient algorithm that enumerates all potentially intersected envelopelggng
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