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Abstract. We present the necessary theory for the integration of subdivision sur-
faces into general purpose rendering systems. The most important functionality
that has to be provided via an abstract geometry interface are the computation of
surface points and normals as well as the ray intersection test. We demonstrate
how to derive the corresponding formulas and how to construct tight bounding
volumes for subdivision surfaces. We introduce envelope meshes which have the
same topology as the control meshes but tightly circumscribe the limit surface.
An efficient and simple algorithm is presented to trace a ray recursively through
the forest of triangles emerging from adaptive refinement ofan envelope mesh.

1 Introduction
The general concept of subdivision techniques for the construction and representation of
free-form surfaces is gaining more and more attention in computer graphicsand related
fields [19, 22]. The efficiency of subdivision algorithms and the flexibility with respect
to the topology and connectivity of the control meshes makes this approachsuitable for
many applications such as surface reconstruction [2, 4] and interactive modeling [23].
The close connection to multi-resolution analysis of parametric surfacesprovides access
to the combination of classical modeling paradigms with hierarchical representations of
geometric shape.

So far subdivision surfaces have been used mainly in the context of geometric mod-
eling, i.e., issues like the asymptotic behavior of the scheme [6, 24] and the (discrete)
fairness of the resulting meshes were investigated [11, 12]. Meanwhile the related math-
ematical theory has reached a state of maturity which allows the programmer to choose
among the many schemes proposed in the literature [2, 5, 10, 13]. In this paper we do
not investigate such properties but we address an important issue for the integration of
subdivision schemes into a wider range of potential applications: While the subdivi-
sion methods have become a standard insurface design, the connection torendering
applicationsis still based on raw triangle data exchange.

There has been a considerable amount of work on the integration of higherorder
basic shapes like spline surfaces into the generic setup of sophisticatedrendering al-
gorithms [1, 7, 9, 15, 17, 20, 21]. Most of the approaches derive a more or less tight,
preferably convex, bounding volume for each patch. The size of this bounding volume
provides an upper bound on the spatial extent of the object such that ray intersection
tests can be implemented much more efficiently by discarding rays according to simple
tests against the bounding volume. If the bounding volume aligns to the local geometry
of a patch then its shape can be used as an oracle to rate the local flatness, i.e., the
approximation error if the true geometry would be replaced by a planar face.

In this paper we will present the basic prerequisites which are necessary to trans-
fer the generic bounding volume technique to subdivision surfaces. The mathematical
difficulties emerge from the fact that in general there is no explicit description for the
limit surface and hence possible bounds have to be derived from the coefficients of the
underlying refinement equation (i.e., from the coefficients of the subdivision masks).



We start by finding points and normal vectors on the limit surface corresponding to
the initial control vertices. The triangles of the initial control meshimply a decomposi-
tion of the limit surface into triangular patches with these limit points at their corners.
For each patch we compute a bounding prism by sweeping the chord trianglespanned
by the three corners in the (triangle-) normal direction.

Based on the individual bounding prisms, we build envelope meshes for the com-
posite surface by moving the limit points in (point-) normal direction until the bounding
prisms are completely contained. This provides a continuous polyhedralhull. When a
given ray intersects one of the envelope triangles, we perform local subdivision to ob-
tain a better piecewise linear approximation of the limit surface. Since the neighboring
triangles in a mesh data structure can be found inO(1), we can formulate an efficient
recursive scheme that traces the ray through the hierarchy of envelope triangles. The re-
cursion stops when a local flatness criterion is met, indicating that the intersection with
the chord triangle does not deviate from the true solution by morethan a prescribedε.
The algorithm has been integrated as a new geometric primitive into a general purpose
ray tracing tool to compute the pictures shown in the result section.

Throughout the paper we will explain the theoretic concepts and general methods
in the context ofunivariatesubdivision. Transferring the results to the bivariate setting
is rather obvious but depending on the vertices’ valences several special cases have to
be considered. To make the reproduction of the results as easy as possible,we apply
the corresponding formulas explicitly to Loop’s subdivision scheme [13].

2 Limit points and normals for subdivision surfaces

Let a control polygonP0 = [p0
i ] with p0

i 2 IR3 be given which represents the curve

P(t) = ∑
i

p0
i φ(t � i) with φ(t) = ∑

j

α j φ(2t � j): (1)

It is well known that the subdivision rule
p1

i := ∑
j

αi�2 j p0
j (2)

generates a new control polygonP1 = [p1
i ] such that

P(t) = ∑
i

p1
i φ(2t � i):

provides arefined representation of the same curve. Notice that (2) actually combines
two rules triggered by the parity ofi. By iterating the refinement rule we obtain a
sequence of polygonsPm = [pm

i ], m= 0; 1; : : : which — depending on the coefficients
α j — converges to a smooth limit curveP∞.

We are interested in computing points on the limit curveP∞ directly from the control
pointspm

i on some levelm without going through the iterative refinement. The follow-
ing technique has become standard in the analysis of subdivision schemes:Construct a
local subdivision matrix and transform it into its basis of (generalized) eigenvectors.

Let the coefficients[α j ]
2n
j=0 define a univariate subdivision scheme. If we rewrite

the polygonPm as avector then the subdivision stepPm ! Pm+1 corresponds to the
multiplication ofPm by a suitable matrix

eS =
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Due to the fixed bandwidth ofeS we observe that the non-zero coefficients of 2n� 1
successive rows form a square matrixS. From an algorithmic point of view this means
that the(n�1)-neighborhood ofpm+1

2i in Pm+1 is completely determined by the(n�1)-
neighborhood ofpm

i in Pm.
Since the control verticespm

i represent the functionP(t) with respect to the func-
tional basisφ(2mt � i) it is natural to associate the vertexpm

i with the parameter value
tm
i = i 2�m. Hence, through all subdivision levels, the verticespm+r

i2r correspond to the
same parameter value and this sequence of vertices converges forr ! ∞ to the point
P(tm

i ) on the limit curve.
The sub-polygons of 2n�1 successive verticespm

i andpm+1
i correspond to the nested

parameter intervalstm
i +[1�n; n�1] 2�m andtm

i +[1�n; n�1] 2�(m+1) respectively and
since the same subdivision maskS is applied in every step, it is obvious that the limit
pointP(tm

i ) is determined by the(n� 1)-neighborhood of the vertexpm
i through

P(tm
i ) [1; : : : ; 1]T = lim

r!∞
Sr

[pm
i�n+1; : : : ; pm

i+n�1]
T
:

The direct computation ofP(tm
i ) requires the decomposition ofS = V�1 DV into a

diagonal matrixD and a transformV into the basis of eigenvectors1. The convergence of
the iterative scheme implies that the dominant eigenvalue ofSbeλ1 = 1 and the affine
invariance of the subdivision operator indicates that the corresponding eigenvector is
[1; : : : ; 1]. Therefore the coefficientsl1�n; : : : ; ln�1 such that

P(tm
i ) = ∑

j

l j pm
i+ j

can be read off that row ofV which is associated with this eigenvector. This is obvious
since components of the input vector which belong to eigenspaces of smaller eigenval-
ues fade out during the iteration ofS.

If the subdivision scheme generatesC1 curves then there exists adifference scheme
eS0 which maps the divided differences4pm

i = 2m
(pm

i+1�pm
i ) of Pm to the divided differ-

ences ofPm+1 [6]. For repeated subdivision the differences converge to the derivativeof
the limit functionP0(t). The limit point analysis applied to the difference scheme hence
provides limit tangent vectors.

Due to the simple relation betweeneSandeS0 it turns out that the eigenvector[1; : : : ; 1]
of S0 with eigenvalueλ1 = 1 corresponds to the eigenvector[1� n; : : : ; n� 1] of S
with eigenvalueλ2 =

1
2 (constant differences). Hence, just as the eigenvector for the

dominant eigenvalueλ1 = 1 allows us to compute the limit point, the eigenvector for the
subdominant eigenvalueλ2 =

1
2 determines the limit tangent atP(tm

i ) since it describes
the line which is asymptotically approached by the sequence:

P0(tm
i ) [1� n; : : : ; n� 1]T = lim

r!∞
2r Sr

�

pm
i�n+1 � P(tm

i ); : : : ; pm
i+n�1 � P(tm

i )
�

:

If the subdivision scheme converges to aC1 limit then the modulus of all other eigenval-
uesλ3 � : : : � λ2n�1 is less than1

2. The rate by which the deviation of the sub-polygon
[pm

i�n+1; : : : ; pm
i+n�1] from a straight line fades out isjλ3j. As expected (by Taylor’s the-

orem) the local flattening rate 1=λ3 is higher than the contraction rate 1=λ2 = 2 if the
limit curve is smooth.

In the bivariate setting, we have two partial derivatives of first orderand accordingly
the local subdivision matrixSof a refinement scheme which generatesC1 limit surfaces

1In generalD is the Jordan normal form ofS but for convergent subdivision schemes with smooth limit
surfaces, the leading eigenvalues have algebraic multiplicity one [16, 24].



has a double subdominant eigenvalueλ2 = λ3. The components of the input mesh
which lie in the corresponding eigenspaces span the tangent plane at the limit point.
Example: Consider the three directional grid spanned by(1; 0), (0; 1), and(1; 1). The
quartic box splineM222 defined on this grid satisfies the refinement equation [3]

M222(u; v) =

4

∑
i; j=0

αi; j M222(2u�i; 2v� j) with [αi; j ] =
1
16
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Hence, the corresponding subdivision rules are

pm+1
i; j :=

8

>

>

>

>

>

<

>

>

>

>

>

:

1
16(10pm

l ;k+pm
l ;k�1+pm

l ;k+1+pm
l�1;k+pm

l+1;k+pm
l�1;k�1+pm

l+1;k+1) i=2l ; j=2k

1
16(2pm

l ;k�1 + 6pm
l ;k + 6pm

l+1;k + 2pm
l+1;k+1) i=2l+1; j=2k

1
16(2pm

l�1;k + 6pm
l ;k + 6pm

l ;k+1 + 2pm
l+1;k+1) i=2l ; j=2k+1

1
16(2pm

l+1;k + 6pm
l ;k + 6pm

l+1;k+1 + 2pm
l ;k+1) i=2l+1; j=2k+1

(3)

See Figure 1 for several generations of a recursively refined triangle mesh approximat-
ing the box-spline basis function and Fig. 2 for a geometric interpretation of the rules.

Fig. 1. Uniformly subdivided regular triangle meshes converging to the quartic box-splineM222.

Several authors have generalized these rules to meshes with arbitrary connectivity
[13, 23]. To do this we have to leave the formal setup of refinement rules of the type (3)
since regularly indexing the vertices is no longer possible. Due to the small support
of the refinement masks in Loop’s scheme (cf. Fig. 2), there is no need to modify the
”edge”-rules: An inner edge is always adjacent to two triangles. Hence the generaliza-
tion can be restricted to the definition of alternative ”vertex”-rules

pm+1 :=
α(k)

α(k) + k
pm

+

1
α(k) + k ∑

i

pm
i

for verticespm with valencek 6= 6 andpm
i being the direct neighbors ofpm in Pm. A

good choice leading to overallC1 limit surfaces is [24]

α(k) = k
1� β(k)

β(k)
; β(k) =

5
8
�

(3+ 2 cos(2π=k))2

64
:

Notice that this rule coincides with the original ”vertex”-rule (3) ifthe valence ofpm is
6.
Remark: At the boundary ofopentriangle meshes, we cannot apply the above masks
since some of the neighboring vertices are missing. We avoid this problem by treating
the boundary of a mesh as a closed polygon and applying univariate subdivision. By
doing this we additionally guarantee that no internal control vertex influences the shape
of the boundary curve. This is important if we want to generate creases or join two
separate subdivision surfaces along a common curve in aC0 fashion [10].



-4 -2

2

2

-2

4

2-2

6

6

2

11

1 1

1 -4

6 2

6

1

1

6

66

2

2 2

1 42

2 -2

1

11

10

1

Fig. 2. Geometric notation for the refinement rules (3) and for the limit rules (limit point and the
two partial derivatives).

The support of the refinement rules implies that the 1-ring neighborhood of a vertex
pm+1 only depends on the 1-ring neighborhood ofpm (cf. Fig. 2). Hence, the local
subdivision matrixS for a regular vertex with valence 6 is

S =

1
16
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The coefficients of the linear combination for the limit point and the tangents are given
by the first three rows ofV (cf. Fig 2 for the explicit masks). The tangent masks yield
the two partial derivatives at the limit point, and the normal vector can beobtained by
their cross product. In [8] we give a complete table of the limit mask coefficients for
valencesk = 3; : : : ; 12.

3 Oriented bounding volumes
To derive bounding volumes for subdivision curves and surfaces we have to know the
rangesof the basis functionsφ(t � i) over the considered interval. This is not straight
forward since we just know the coefficients of the refinement equation and donot have
an explicit parameterization in terms of polynomials or such. We will first explain how
to compute oriented bounding boxes before we present a simple iterative procedure
which yields tight estimates for the actual bounds.

Let a curveP(t) be given by a linear combination of scalar valued basis functions
φ(t � i) as in (1). Its range with respect to some directionn for t 2 [a; b] can be
estimated by

∑
i

(nTpi)
+

min
t2[a;b]

φ(t � i) + ∑
i

(nTpi)
�

max
t2[a;b]

φ(t � i) � P(t);

P(t) � ∑
i

(nTpi)
+

max
t2[a;b]

φ(t � i) + ∑
i

(nTpi)
�

min
t2[a;b]

φ(t � i)
where

(nTpi)
+

:= maxfnTpi ; 0g; (nTpi)
�

:= minfnTpi ; 0g:
Example: For the cubic B-spline it is known that

N(f0; 1; 2; 3; 4g) = f0; 1
6;

4
6;

1
6; 0g

andN is monotonic on each integer interval such that the extremal values occur at the
uniform knots. Consider the spline curveP(t) = ∑i pi N(t � i) over the intervalt 2



[ j; j +1]. Here the curve is completely determined by the control verticesp j�1; : : :p j+2
due to the finite support ofN. With the limit point rule we obtain the two pointsq j :=
P( j) andq j+1 := P( j + 1) on the limit curve. The chordal error of the straight line
q j q j+1 with respect to the arcP([ j; j + 1]) can be estimated by computing the range
of P in the normal directionn j perpendicular to the chordq j q j+1. Due to the affine
invariance we can shift the control vertices by�q j and obtain the control vertices’
normal distancesr i := nT

j (pi � q j) for i = j � 1; : : : ; j + 2. The normal range

[l j ; u j ] =
1
6

h

�

r+j+r+j+1+r�j�1+4 r�j+4 r�j+1+r�j+2

�

;

�

r�j+r�j+1+r+j�1+4 r+j+4 r+j+1+r+j+2

�

i

defines a rectangular box which is aligned to the chordq j q j+1 and completely contains
the arcP([ j; j + 1]).
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j+2

pp

j-1
j+1
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j

Fig. 3. The gray bounding box is spanned by shifts of the chordq j q j+1 (hollow dots) in normal
directionn j . The actual normal range is computed by a weighted sum of the normal distancesr i

of the control verticespi from the supporting line of the chord (dashed line).

In the bivariate setting the procedure to estimate the chordal approximation error
is exactly the same: given a submesh which defines one segment of the limitsurface
(corresponding to one triangle in the control mesh) we use the limit masks to obtain
points on the surface spanning a chordal triangleT. As in the univariate case we derive
the normal distancesr i of all involved control verticespi from the supporting plane ofT
and compute a weighted sum according to the ranges of the associated basis functions.
The result is an orthogonal triangular prism with the top and bottomface being shifted
versions of the chordal triangleT. The possibility that the patch might intersect the
quadrilateral sides of the prism will be addressed in Section 4.

For irregular meshes we have to consider the different special cases that occurat
extraordinary vertices since the ranges of the basis functions do depend on the local
connectivity of the mesh. For the sake of simplicity we assume that themesh has been
uniformly subdivided once before the bounding boxes are to be computed. This reduces
the number of special cases since each extraordinary vertex with valence6= 6 has only
regular direct neighbors (cf. Fig. 4). Since there is no explicit parameterization for
the limit surface of Loop’s subdivision scheme, we have to find a reliable numerical
algorithm to estimate the true ranges. It turns out that this already isa first application
of the bounding volume technique in itself.

The control mesh defining a triangularLoop-patchis shown in Fig 4. To approx-
imate the basis function corresponding to one of the vertices, we assign z = 1 to it
and zeroz-values to all other vertices (Dirac-mesh). The iterative refinement of such a
mesh will approach the specific basis function as depicted in Fig. 1 but it won’t provide
a reliable bound on the actual range. Notice that we are only interested in the basis
function’s range over the center triangle.

Let us start with a very coarse over-estimation of the true ranges, e.g.[�1; 1]. We
apply the subdivision rules to the Dirac-mesh in Fig. 4 and after severalsubdivision
steps we compute the chord aligned bounding boxes for every triangle. Since the mesh
has become locally flat, the chord aligned boxes are also flat and provide a much tighter
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Fig. 4. The mesh on the left contains all vertices that have influenceon the surface patch corre-
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bound for the range of the current basis function. Once we have done this for all in-
volved basis functions, we can iterate the whole procedure to obtain evenbetter bounds
in every step. Fig. 4 shows the exact ranges for the 12 basis functions whose support
covers the center triangle in the regular setting. For a complete table with min/max
range values of thek + 6 basis functions over a triangle being adjacent to a valence
k = 3; : : : ; 12 vertex cf. [8].

4 Bounding envelopes
Each triangle of a subdivision surface’s control mesh corresponds to a patch segment
of the limit surface. When uniformly subdividing the mesh we generatea sequence of
meshes whose triangles can be grouped as a forest of quad-trees with each triangle of the
original mesh being a root node. In Section 3 we showed how to compute a bounding
prism for each triangular sub-patch (on any subdivision level). However, using the
individual bounding prisms directly for ray intersection tests is quite complicated since
each is aligned to the particular normal direction of the underlying chord triangle.

Further, when we derived the bounding prisms, we did not address theproblem that
bounding the range in the direction perpendicular to the chordal triangle is not sufficient
since the triangular patch might intersect one of the prism’s quadrilateral faces. Hence
we would have to enlarge the prism to guarantee inclusion. Moreover, testing whether
a ray intersects the prism is not trivial since several special configurations have to be
checked.

We therefore introduce a pre-processing step where we combine all chord aligned
bounding prism to build a globalbounding envelope. This is a continuous triangle
mesh having the same topology and complexity as the control mesh and which tightly
circumscribes the limit surface. Obviously for open meshes we have to computetwo
envelopes: one covering the front side and one for the back side.

Each local refinement operation of the control mesh induces a corresponding re-
finement of the envelope meshes. As the refinement proceeds the envelopes quickly
approach the limit surface. In the next section we will explain a simpleray intersection
procedure which traces recursively through the forest of mesh triangles thereby testing
as few prisms as possible. By using the envelope structure to navigate, we exploit the
topological coherence in the mesh, i.e., the fact that a triangle’s neighborcan be found
with O(1) complexity. Thecontinuityof the hull on each subdivision level guarantees
that no intersection is missed.

Again, we explain the general envelope construction in the univariate setting for
the sake of simplicity. So far we have derived an individual boundingbox for each
segmentby estimating the limit curve’s range[l j ; u j ] in the directionn j perpendicular
to the chordq j q j+1. In order to obtain continuous bounding polygons we use the limit
tangent rule to compute a (normalized) normal vectorñ j for each limit pointq j . The
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ñ j ; q j+1 +
l j

nT
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define a minimal trapezoid containing the curve segmentP([ j; j + 1]). Since two seg-
ments meet at each limit pointq j , we define the conservative range

[l̃ j ; ũ j ] =

h

minf
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nT
j�1ñ j

;
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j ñ j

g; maxf
u j�1

nT
j�1ñ j

;
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j ñ j

g
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for each vertex of the control polygon. Hence, for a given control polygon [pm
i ] we

obtain alimit polygon[qm
i ], anupper envelope[qi+ũi ñi ] and alower envelope[qi+l̃ i ñi ].

upper envelope

lower envelope

Fig. 5. By computing the ranges[l̃ j ; ũj ] for each vertex we find an envelope for the chord based
bounding boxes. The envelope’s boundaries have the same ”topology” as the control polygon
(left). In the bivariate case we also compute normal ranges with respect to vertices instead of tri-
angles and replace the orthogonal prism (center) by more general bounding volumes (right). Al-
though each individual bounding object becomes more complicated, the continuity of the bound-
ing envelope enables a simple recursive tracing procedure.

A closed envelope in the bivariate setting is obtained by replacing the orthogonal
prisms of Section 3 by more general prisms that are generated by moving each vertex
q j of the chord triangleT in the corresponding vertex normal directionñ j (cf. Fig 5).
As in the univariate case we compute a normal range for each vertex by takingthe min-
imum and maximum of theprojectednormal ranges of all adjacent triangles (and their
orthogonal prisms). After this procedure we end up with three topologically equiva-
lent meshes (derived from the original control mesh), one being a chordalapproximant
to the limit surface and two meshes (outer and inner envelope) which can be usedas
bounding volume.

5 Efficient ray intersection
Free form surfaces are usually defined as a collection of individual patches. The stan-
dard way to implement a ray intersection test with such objects is to computea simple
bounding volume for each patch. These bounding volumes can be used as a middle
layer of a bounding volume hierarchy which is propagated towards the root by enclos-
ing neighboring bounding volumes into a circumscribed larger volumeand towards the
leaves by subdividing the patches and computing bounding volumes forthe sub-patches.

Tracing a ray through such a bounding volume hierarchy means traversinga tree
data structure with the descent being controlled by ray intersection testsfor the current
node’s volume. If a leaf is reached, a numerical procedure like Newton iteration is
applied to the explicit polynomial parameterization of the patch.

Since subdivision surfaces do not have an explicit parameterization, we propose to
base the recursive ray tracing procedure mainly on the information provided by the en-
velope meshes. Many techniques have been suggested to accelerate the ray intersection



tests with a collection of triangles [1]. The most effective one is to build a hierarchi-
cal space partition (e.g., BSP-trees) for the whole mesh and incrementally trace the
ray through this decomposition. We do use this technique in our algorithm but only to
find those triangles where the ray enters the outer envelope corresponding to theinitial
control mesh. Once the entry triangle is found, we trace the ray through the hierarchy
of adaptively refined envelope triangles. The navigation is controlled bysimple ray–
triangle tests. The efficiency of the tracing procedure results from thefact that chord
aligned bounding boxes converge much faster than axis-aligned ones (cf. Sect.6).
Another advantage of this strategy is that no redundancy is introduced by overlapping
bounding prisms or ambiguous assignment of bounding prisms to aspace partition.

To simplify the explanation we assume that all necessary local refinement opera-
tions have already been performed when the tracing path intersects a certain triangle.
In our actual implementation we used alazy-evaluationmechanism which computes
the control vertices of the refined meshes on demand while keeping the overalldata
structure consistent (i.e. adjacent leaf-triangles may only differ by one generation) and
caching all computed information for future requests.

The tracing algorithm has to handle all special cases of the ray intersecting a triangle
of the envelope mesh (on a certain refinement level) but intersecting the surface itself at
a neighboring patch (if it intersects at all). The most important featurethat we exploit
for the tracing algorithm is that the envelopes corresponding to the same subdivision
level form a continuous surface and the ray cannot pass through withouthitting at least
one triangle. In one tracing step we either descend in the forest of refined envelope
triangles or we proceed the search in a neighboring tree if no intersection canbe found
below the current one.

We base the local decision onintersection masksspecifying the seven possible
spatial configurations between a ray and a triangle (cf. Fig. 6). For a triangle T =

4(A; B;C) and a ray with originO and directionr we distinguish the configurations
according the signs of the coefficientsα, β, andγ in the unique linear combination

r = α (A�O) + β (B�O) + γ (C�O):

Only the+++-case reports an intersection of the ray withT. All other cases indicate
failure but they provide useful information about where to search foran intersection,
i.e. which neighboring triangle to check next.
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Fig. 6. The bits in the intersection mask define a partition of the triangle’s supporting plane. They
indicate in which direction the tracing algorithm has to proceed (left). The indexing of triangle
corners and edges is inherited from the parent triangle to preserve the orientation (center). A ray
passing the envelope triangle mesh without intersection does intersect the associated supporting
planes in reverse order. Translated into the intersection masks of the corresponding triangles this
configuration would cause a loop in the tracing algorithm (right).

In each step we check if one of the current node’s children is intersected, too. If so,
we proceed the search with the descendents of this child. If not, we use theintersection
masks obtained while testing the children to decide which neighbor ofT to test next.
The following pseudo code implements the algorithm



trace( T)
for child 0 to child 3

mask[i] = test intersect(child i)
if mask[i] = ’+++’

trace(child i)
lookup neighbor(mask[3],mask[sibling(mask[3])])
trace( T->neighbor)

Cf. Fig. 6 for our indexing convention of a triangle and its four children. If none
of the child triangles is intersected by the ray the tracing is controlled by two tables
neighbor andsibling . Thechild 3 is the center child and if the corresponding
intersection mask has two negative signs then the next neighbor ofT is uniquely de-
termined. If only one of the signs is negative, then we use the corresponding sibling’s
intersection mask to determine where to proceed. If the sibling’s mask hastwo nega-
tive signs then we proceed (by convention) in the counter clockwise direction to make
the decision deterministic.sibling is indexed bymask[3] andneighbor is row
indexed bymask[sibling(mask[3])] and column indexed bymask[3] .

int sibling[7] = f0,0,0,2,0,1,0 g;
int neighbor[49] = f

-1, -1, -1, -1, -1, -1, -1, /* 2 1 0 */
-1, 0, 0, 0, 0, 0, 0, /* - - + : 1 */
-1, 1, 1, 1, 1, 1, 1, /* - + - : 2 */
-1, 1, 0, -1, 1, 1, 0, /* - + + : 3 */
-1, 2, 2, 2, 2, 2, 2, /* + - - : 4 */
-1, 2, 0, 2, 0, -1, 0, /* + - + : 5 */
-1, 2, 2, 2, 1, 1, -1 g; /* + + - : 6 */

Don’t-care-cases insibling are set to zero and-1 s in neighbor indicate configu-
rations where no intersection occurs. Notice that the casemask[i] = 7 cannot occur
since in this case the algorithm descends recursively and the procedure to determine the
next neighbor is not called.

Failure of the recursive algorithm (i.e. no intersection occurs) can be detected as fol-
lows: The generic situation of a ray passing the object without intersection is depicted
in Fig. 6. Such configurations are characterized by the fact that the intersection mask of
a triangleT1 indicates the search to be continued in triangleT2 while T2’s intersection
masks suggest to testT1. Hence failure can easily be detected by avoiding loops in the
tracing path. We implemented this feature by giving each ray a unique identification
(an integer) and putting a temporary stamp on each tested triangle:

trace( T)
if touched( T) exit on FAILURE
touch(T)
...

6 Approximation tolerance
To eventually compute an intersection point of the ray with the surface, we have to
define a stopping criterion to determine whether a bounding prism is sufficiently small
in the sense that replacing the true surface geometry by a linear approximant does not
lead to an error larger than some prescribedε. We approximate the location of the
true intersection point by computing the intersection of the ray witha chord triangle.
For the orthogonal bounding prisms obtained by shifting the chordal triangle in normal
direction the error can be estimated by

E � min
n

l ;
h

jnT r j

o

(4)



with l being the longest edge of the chord triangle,h being the height of the prism,n
the normal vector andr the direction of the ray (cf. Fig 7).
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h

Fig. 7. The maximum distance between the true intersection point and its approximation depends
on the heighth of the bounding prismand the relative direction of the ray. For very steep angles
the maximum edge length of the supporting chord triangle becomes the dominant bound (left).
Since the stopping criterion for the subdivision depends onthe direction of the ray, the refinement
tends to be much finer close to the contour (right).

This reveals the significant advantage of geometry aligned boxes over axis-aligned
ones: Subdivision of axis-aligned bounding boxes approximately halves the size of the
box in every step, hence going down one level in the bounding volumehierarchy pro-
vides one more bit in the precision of the result. In our case however,the heightof
the boxes shrinks much faster than the length of the triangle edges. This behavior can
easily be explained by looking at the eigenstructure of the subdivision matrixS. The
first eigenvalueλ1 = 1 and the associated eigenvector is responsible for the local con-
vergence to a point on the limit surface. The second and third subdominant eigenvalues
λ2 = λ3 and the associated (two dimensional) eigenspace define the tangent plane.
The fourth eigenvalueλ4 controls the flattening rate by which the deviation of the local
sub-mesh from a plane configuration reduces.

In the above example of Loop’s scheme in the vicinity of a regular vertex, we have
λ4 =

1
4 and hence one subdivision step approximately bisects the edges of the chord

triangles but their height is reduced by the factor 4. As a consequence the tracing
algorithm turns out to be significantly faster, especially if high precision is required.

The reciprocal factorjnT r j implies a certain degree of view dependency in the re-
finement during ray tracing. If the ray intersects almost perpendicularly, the refinement
can stop as soon as the height of the bounding prism is smaller than the prescribed tol-
eranceε. The bounding prisms for triangles close to the visual contour of the object
have to be refined much further. Fig. 7 shows the adaptive refinement resulting from
rendering a simple convex object by a ray tracing algorithm with fixed tolerance for
the intersection tests. To avoid numerical instabilities, we consider intersection tests
with sufficiently small bounding prisms (according to (4)) where theray does not hit
the interior of the associated chord triangle as failure.

7 Results and conclusions
Loop subdivision surfaces were integrated as a new geometric primitive into a generic
architecture for rendering algorithms [18]. The color plates show several pictures ren-
dered with a simple ray tracer. We chose one very simple example (the initial control
mesh being an octahedron) to demonstrate that intersection tests at the contours can
be evaluated in a stable manner (upper left). The reflectivity of the materialwas set
to a high value, making the surrounding room’s striped wallpaper fully visible on the
resulting surface. The smooth reflection lines demonstrate the surface’sC2-continuity.

The initial triangle mesh defining the cat model in the lower right imageconsists of
728 faces. As in the image of the reflecting octahedron the material propertieswere set
to full reflection to obtain clearly visible reflection lines. The image on the right shows



a raytraced subdivision surface with a control mesh consisting of 1374triangles. A
texture was added to define the head’s color. Again the smooth shape of the highlights
indicate curvature continuity of the surface.

In practice we found subdivision surfaces a good extension to our rendering system,
as the control meshes are easy to manipulate without having to worry about continuity
issues. Even meshes only roughly outlining an object’s shape produce good looking
surfaces. We presented the necessary theory for the derivation of tight chord aligned
bounding volumes for subdivision surfaces which allow us to effectively handle ray
intersection inquiries due to their fast convergence under subdivision. The introduction
of continuous envelope meshes completely containing the limit surface gives rise to an
efficient algorithm that enumerates all potentially intersected envelope triangles.
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