
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Two-Colored Pixels

Darko Pavić and Leif Kobbelt

RWTH Aachen University, Germany

Abstract

In this paper we show how to use two-colored pixels as a generic tool for image processing. We apply two-
colored pixels as a basic operator as well as a supporting data structure for several image processing applications.
Traditionally, images are represented by a regular grid of square pixels with one constant color each. In the two-
colored pixel representation, we reduce the image resolution and replace blocks of N×N pixels by one square
that is split by a (feature) line into two regions with constant colors. We show how the conversion of standard
mono-colored pixel images into two-colored pixel images can be computed efficiently by applying a hierarchical
algorithm along with a CUDA-based implementation. Two-colored pixels overcome some of the limitations that
classical pixel representations have, and their feature lines provide minimal geometric information about the
underlying image region that can be effectively exploited for a number of applications. We show how to use
two-colored pixels as an interactive brush tool, achieving realtime performance for image abstraction and non-
photorealistic filtering. Additionally, we propose a realtime solution for image retargeting, defined as a linear
minimization problem on a regular or even adaptive two-colored pixel image. The concept of two-colored pixels
can be easily extended to a video volume, and we demonstrate this for the example of video retargeting.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

Traditionally, digital images are represented by a regular ar-
ray of mono-colored pixels (MCPs), i.e. small squares with
one constant color each. While this representation has the
decided advantage that the global regularity enables a very
efficient processing, it also has some obvious disadvantages.
The piecewise constant approximation of the continuous
color distribution has only linear approximation order and
the sampling nature of the representation leads to alias ef-
fects in regions with sharp contrast. The number of MCPs
(per row or column) not only restricts the size of the detail
that can be represented but also the locations where this de-
tail can be displayed.

In order to address these problems we can generalize the
MCP representation. We still split an image into an array
Ti, j of square pixels, but a pixel does not have a single color.
Instead, each pixel stores a feature line Li, j and two colors
C−i, j and C+

i, j for the two pixel segments on the negative and
positive side of the feature line respectively (see Fig. 1, left).
This is actually equivalent to the concept of wedgelets intro-

duced by Donoho [Don99]. In this paper we prefer to use
the term two-colored pixel (TCP), since we are not aiming
at image compression but rather at exploring TCPs for vari-
ous image processing operations. Fig. 1 shows a comparison
between the MCP and the TCP image representation. Obvi-
ously, TCPs much better capture the color discontinuities in
the image due to the fact that the feature lines are placed on
the high-contrast boundaries. Notice that the resolutions of
the shown images are chosen such that the MCP image has
three times more pixels than the shown TCP image, since
TCPs require three times more memory.

The superiority of the TCPs compared to the MCPs with
respect to the capturing capabilities of the features in the im-
ages have inspired us to explore the concept of the TCPs in
more detail. In this paper we show how to exploit this con-
cept for different image processing tasks. In particular the
main contributions are the following:

• We introduce a hierarchical algorithm for fast computa-
tion of TCPs from MCP images, which builds the basis
for all TCP-based applications. By using a CUDA imple-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

I 63×42 MCPs

T = (L,C−,C+) 36×24 TCPs

L

C−

C+

Figure 1: Left: Example of a TCP T created from a 9× 9
MCP array I and described by the two colors C− and C+

and the feature line L (green). Right: Although the MCP im-
age consists of three times more pixels than the TCP image,
the latter one still much better captures the detail.

mentation an additional speed-up of about one order of
magnitude is achieved.
• We have developed an interactive brush tool by using the

TCP concept as an edge-aware image processing opera-
tor. Besides the pure TCP generation in realtime, we also
show a number of possible operations which can be de-
rived.
• We show how to exploit the TCPs in order to define im-

age retargeting as solution of a linear minimization prob-
lem. By using the contrast of the TCP colors and the mini-
mal geometric information represented by the correspond-
ing feature lines, our method is able to protect important
(high-contrast) regions as well as line features from being
distorted during the retargeting process.
• We show how to extend the TCP concept to a two-colored

voxel (TCV) concept in a video volume, where feature
lines become feature planes by least-squares optimiza-
tion. This novel concept is demonstrated for the example
of video retargeting.

2. Related Work

The underlying concept of two-colored pixels has been ex-
plored in different contexts before. In the area of signal
processing wedgelets [Don99] or platelets [WN03] were
effectively used for image approximation, compression of
piecewise polynomial images [SDDV05] or in the context
of depth video compression [MMS∗09]. Recently, the TCP
concept was used in the context of image mosaics [PvCK09]
in order to distinguish between feature and non-feature im-
age regions.

Other works use representations similar in spirit to TCPs:
the standard pixel representation is enriched with feature

information to improve pixel-based algorithms. Bala et al.
[BWG03] use what they call edge-and-point representation
in order to capture depth discontinuities for high-quality ren-
dering. This idea was extended for feature-based textures
[RBW04] and later for encoding feature distance functions
[PZ08]. Tumblin and Choudhury [TC04] introduced bixels,
a novel image representation by storing an additional sample
feature point in each pixel, which inherits the idea of Dual
Contouring used for surface extraction [JLSW02]. Concur-
rently Pradeep [Sen04] presented an idea similar to bixels,
called silhouette maps for texture magnification.

In this paper we adapt the TCP concept and extend previ-
ous works by showing how to efficiently compute TCPs on
the GPU making them applicable in the context of realtime
applications like interactive edge-aware image processing or
realtime image retargeting. We also extend the TCP concept
to a video volume for the example of video retargeting.

Edge-aware image processing is a topic often addressed in
the past [DS02,CPD07,OBBT07,FFLS08,KL08,KLC09]. A
well-known operation is edge-preserving filtering. The most
famous edge-preserving filter is probably the bilateral filter
(BLF) [TM98]. BLF is a nonlinear filter, but when approx-
imated by linear filters in high-dimensional space [PD06]
and by using the bilateral grid data structure [CPD07] it can
be applied in realtime. Adams et al. [AGDL09] proposed a
general acceleration method for non-linear filters. Farbman
et al. [FFLS08] discuss the limitations of the BLF and show
that their weighted least squares (WLS) framework creates
superior results when compared with BLF. Our TCP oper-
ator introduces a novel approach to edge-aware image pro-
cessing and edge-preserving filtering is just one possible ap-
plication (cf. Fig. 4 for comparison of our method with WLS
filtering [FFLS08]).

A number of approaches for content-aware image and
video retargeting have been presented in the past. Seam carv-
ing approaches [AS07, RSA08] remove non-significant pix-
els in images or videos. These approaches perform very well
as long as the seams do not pass through feature regions,
which is not avoidable in general. Removing pixels from the
feature regions results in visible aliasing artifacts. Warping
based approaches are able to create better results in general.
We differentiate between per-pixel warping and mesh warp-
ing approaches.

Wolf et al. [WGCO07] introduced per-pixel warping for
retargeting where for each pixel position in the source im-
age the target position in the output is computed by solving
a least-squares optimization problem. Zhang et al. [ZHM08]
improved the performance of this method by using shrink-
ability maps and a multi-grid solver. Very recently Krähen-
bühl et al. [KLHGar] embedded the per-pixel warping idea
along with a number of interactive tools in their video retar-
geting system.

Our TCP-based image retargeting falls into the group
of mesh warping approaches [GSCO06, WTSL08, KFG09,

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

... ...
...

... ...

......

...

(a) (b) (c) (d) (e)

root

L4,20

L2,18

L2,19

level 0

level 1

level 2

level 3

0 1 2 3 4 5 6 7 8
9

10
11
12
13
14
15
161718192021222324

25
26
27
28
29
30

31

Figure 2: Hierarchical approach. After enumerating all boundary pixels of the 9× 9 image (a) we set up a hierarchical data
structure for all valid lines between them. First, we choose the red boundary samples and all valid feature lines between them
are building the first level of the hierarchy (b). The children of the line L4,20 on level 2 of the hierarchy are shown in (c), where
additional blue boundary samples were chosen. Analogously we show the children of the line L2,18 on level 3 (additionally
used samples in green) (d). The tree structure is visualized in (e). In this example, the hierarchical procedure has to check
16+8+8 = 32 candidate lines while the brute force approach would have to check 352 possible feature lines.

WFS∗09]. The idea here is to use a regular quad mesh struc-
ture which is overlaid on the image. The retargeting result is
then defined as a solution of an energy minimization prob-
lem. Karni et al. [KFG09] use a simple gradient measure
and the iterative "local-global" optimization [SA07]. Wang
et al. [WTSL08] use gradient and saliency maps [IKN98]
and propose a nonlinear optimization method which was
very recently extended to videos [WFS∗09]. Our retargeting
method uses the TCP grid as the helping mesh data struc-
ture and we define the retargeting problem as a simple lin-
ear minimization problem, which is faster than previous ap-
proaches. Additionally, we apply image retargeting on adap-
tive meshes, and, by extending the TCP concept to video, we
are able to apply the same warping technique in the video
volume for video retargeting.

3. TCP Computation

The core of the TCP concept is the feature line, which di-
vides an image tile into two mono-colored segments. We
will first introduce the general concept for computing fea-
ture lines and thus creating TCPs and then present our hier-
archical approach for the efficient computation. Finally we
will show how to exploit the CUDA platform for a parallel
high-performance implementation of the algorithm.

3.1. General TCP Concept

For a given MCP image I let L(x,y) = a · x +b · y+ c be the
implicit representation of a line L in image coordinates. We
define a TCP of I to be the 3-tuple T = (L,C−,C+), where
C− and C+ are the average colors on the two sides of the
line L, computed as follows:

C− =
1

n−
· ∑

L(x,y)<0
Ix,y , n− = ∑

L(x,y)<0
1 , (1)

C+ =
1

n+ · ∑
L(x,y)≥0

Ix,y , n+ = ∑
L(x,y)≥0

1 . (2)

Here the values Ix,y,C−,C+ ∈ [0,1]3 are three-dimensional
RGB-color vectors and n− and n+ define the number of pix-

els on the negative and on the positive side of the line L
respectively. The feature line is chosen such that the fol-
lowing approximation error (energy) E(I,L) is minimized
[PvCK09]:

E(I,L) = ∑
L(x,y)<0

∥∥∥Ix,y−C−
∥∥∥+ ∑

L(x,y)≥0

∥∥∥Ix,y−C+
∥∥∥ . (3)

For T we define the contrast value K(T) to be the maximal
difference between color values in the RGB-channels of the
corresponding average colors. For C− = (r− g− b−)T and
C+ = (r+ g+ b+)T we obtain:

K(T) = max{‖r−− r+‖,‖g−−g+‖,‖b−−b+‖} . (4)

The contrast value defines the importance of the feature line
or in other words: the higher the contrast, the sharper is the
color discontinuity of the underlying image signal.

3.2. Hierarchical Approach

Let a square image I of N×N MCPs be given that should
be converted into a single TCP. The task is then to find the
optimal feature line L such that the approximation error (3)
is minimized. If we restrict the precision of the line L to pixel
precision then we can encode each line by the two boundary
pixels where it enters and leaves the image I.

More precisely, let b0, . . . ,b4N−5 be the boundary pixels
of I enumerated in clockwise order. Then the line Li, j con-
nects the two boundary pixels bi and b j and thus splits the
TCP into two regions. If we do not make any a priori as-
sumptions about the color distribution within I, then we have
to check O(N2) candidate lines Li, j in order to find the line
that minimizes the equation (3). Since this leads to an in-
feasible computation complexity, we propose a hierarchical
heuristic to find a good feature line. Even if we cannot guar-
antee that the optimal solution will be found, in practice we
will obtain a solution L̂ with E(I, L̂) close to the global op-
timum.

The basic assumption of our method is that significant
color discontinuities can be detected at rather coarse image
resolutions and that in the vicinity of the optimum, the en-
ergy (3) is convex. The second statement can be justified by

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

the observation that, in non-degenerate configurations, if we
shift the optimal feature line slightly, the energy (3) increases
monotonically. The closest local minimum can be expected
to have a safe distance to the global minimum. Otherwise the
color discontinuity would not have been significant.

Our strategy is to first compute a candidate feature line on
a coarse level and then to iteratively refine the location of
that line. Here, the coarseness of the levels is controlled by
only considering a subset of the boundary pixels bi. Coars-
ening the pixel resolution of the tile I by some low-pass filter
is not necessary since the energy (3) is based on the compu-
tation of an average color anyway.

Let bi·2k be the coarsest level boundary pixels where k+1
defines the number of hierarchy levels. In the first step
we compute the energy (3) for each possible feature line
Li·2k , j·2k

and choose the one with minimal energy. On the
next hierarchy level, we select the boundary pixels bi·2k and
b j·2k as well as their neighbors bi·2k±2k−1 and b j·2k±2k−1 .
These six boundary pixels define a set of 9 candidate lines,
among which we again look for the one with minimal en-
ergy. This recursion is continued until we reach the finest
level. See Fig. 2 for an illustration of the hierarchical refine-
ment. If we start with a coarsest level that has only 8 active
boundary pixels then we have to check 16 candidate lines in
the first step and then 8 on each hierarchy level (since one
has already been computed on the previous level).

3.3. CUDA-based Implementation

Since the evaluation of (3) is essentially accumulation of
pixel colors, it can be implemented on the GPU in a very
efficient manner. In order to avoid the recursive refinement
in the hierarchical approach, we build a pre-computed data
structure that unfolds the recursion into a tree traversal. No-
tice that this tree has to be computed only once for a given
resolution N×N and not for each TCP conversion.

The needed accumulation operation can be imple-
mented by using CUDA parallel reduction kernels [Har07,
NBGS08]. With our hierarchical data structure the execution
of these reduction kernels can be done in parallel for a num-
ber of TCPs (depending on the available GPU-memory on
the CUDA device) per level of the hierarchy.

4. Interactive Brush Tool

We have implemented an interactive edge-aware image pro-
cessing tool with a simple brush metaphor where the TCP
concept is used as a basic operator. The user can select a
shape (square or circular) and size of the brush as well as
the resolution N×N of the TCP operator and then apply it
to the input image. Moving such a brush across the input
MCP image results in generating a number of TCPs inside
the brush region (please see the accompanying video). The
TCP computation is always based on the original MCP in-
put image. Regarding the distribution of the TCPs inside the

Figure 3: Brush tool examples. From left to right: square
regular, square spraying, circular regular and circular
spraying (radial TCP distribution) brushes.

brush, the user can choose between the regular or the spray-
ing brush. For the regular brush we apply regular subdivi-
sion of the brush region in N ×N TCPs. For the spraying
brush we randomly distribute the TCPs across the brush re-
gion (see Fig. 3).

Next we will explain the different modes for applying our
TCP operator and then a number of different image opera-
tions we have implemented based on these modes.

4.1. TCP Operator Filter Modes

With our efficient procedure to convert an N×N MCP sub-
image I into a TCP T = (L,C+,C−) (Section 3), we can
now define powerful filter operations on images. In order to
be able to predict the result of an operation, we first have to
better analyse the elements and properties of TCPs.

• The feature line L provides a linear approximation to the
strongest color discontinuity in the sub-image I. Hence it
can be used for edge enhancement, e.g. by rendering it as
a line of a certain thickness.

• The two colors C+ and C− represent average, i.e. low
pass filtered, colors and hence provide noise reduced color
information. However, since the two regions are separated
by the strongest local color discontinuity, this low pass
filter does not blur over the discontinuity. This effect can
be exploited for edge-preserving filtering.

• The local contrast value K(T) can be understood as a mea-
sure of the strength of the discontinuity. This information
can be used to implement non-linear filters that adapt the
filter characteristics depending on the contrast.

The effect of an operation is controlled by the way how the
information from all TCPs overlapping a pixel is combined
to determine the pixel color of the output image. Here we
can distinguish several different modes:

• We can compute a (weighted) average of the overlapping
TCPs, or we can select just the most dominant one, e.g.,
based on the contrast value K(T).

• We can either use the entire square TCP or we can restrict
its support to a circular disc to avoid anisotropic effects,
or we can restrict its support to a strip along the feature
line to enhance discontinuities.

4.2. Edge-aware Operations using TCP Operator

Let I be the N × N input MCP image corresponding to
a specific TCP T = (L,C−,C+) and let J be the cor-
responding N × N output array. The Jx,y are 4D-vectors

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

input WLS TCP 16×16 TCP 32×32
Figure 4: Comparison of the WLS filtering [FFLS08] and
our TCP-filtering. Intuitively, the used TCP size determines
the minimal feature size to be preserved during the filtering
operation. The input synthetic image as well as the WLS so-
lution are taken from [FFLS08].

(Jr
x,y Jg

x,y Jb
x,y Ja

x,y)T , where the rgb-channels store the fi-
nal colors of the specific operation and the content in the
a-channel depends on the used filter.

Depending on the combination of the modes described in
Section 4.1 we distinguish between different filters and dif-
ferent rendering domains. We apply either a maximum filter
or an averaging filter, depending on whether the most dom-
inant value is chosen or the average is computed. For ren-
dering we use either the full or the line rendering domain,
depending on whether the full TCP area (square or circular)
is regarded or only a strip along the feature line.

Maximum filter: We use the contrast value K(T) as a prior-
ity value for the maximum filter. The a-channel of J is used
for storing the maximal contrast value and the other three
channels are used for storing the RGB output color. For each
Jx,y we check if the contrast value of the currently explored
TCP T is higher than the stored one. If K(T) > Ja

x,y then:

Jx,y =
{

(r− g− b− K)T , L(x,y) < 0
(r+ g+ b+ K)T , L(x,y)≥ 0

(5)

Averaging filter: This filter does averaging over all con-
tributing TCP colors instead of choosing only one among
them. Here the a-channel of J is used for storing the num-
ber of accumulated colors and the rgb-channels sum up the
corresponding color contribution, i.e., we get:

Jx,y +=
{

(r− g− b− 1)T , L(x,y) < 0
(r+ g+ b+ 1)T , L(x,y)≥ 0

(6)

Line rendering: Instead of updating each value Jx,y (full
rendering domain) we can choose to update only values ly-
ing inside a stripe defined by the thickness value l (given in
% of the TCP size N), i.e., Jx,y is updated only if |L(x,y)| ≤
0.5 · l ·N.

After applying one of the above operations we generate
the final output RGB-color of the pixel (x,y) on the screen

as (Jr
x,y Jg

x,y Jb
x,y)T for the maximum filter or as (

Jr
x,y

Ja
x,y

Jg
x,y

Ja
x,y

Jb
x,y

Ja
x,y

)T

for the averaging filter. Additionally we use two other imple-
mentations of the above filters: For computing grayscale im-
ages we replace the colors C− and C+ with the color vector
(1−K 1−K 1−K)T in the above computations (5) and (6).

4.3. Discussion and Results

We have tested our algorithm on an Intel 3GHz CPU with
4GB RAM and a NVIDIA GeForce GTX280 graphics card.
In Table 1 we show a comparison for TCP computation be-
tween the naive and our hierarchical approach implemented
on the CPU as well as with CUDA on the GPU. The hi-
erarchical CPU method is already very fast, but the CUDA
implementation is especially adept at handling large brush
sizes, with a speed improvement of one order of magnitude.

Using 16×16 TCP resolution
brush size naive CPU hier. CPU hier. CUDA

2 ·16 13.3 fps 422 fps 820 fps
4 ·16 3.3 fps 106 fps 488 fps
8 ·16 0.8 fps 26 fps 202 fps

16 ·16 0.2 fps 6.6 fps 66 fps
32 ·16 0.05 fps 1.7 fps 18 fps

Table 1: Comparison of different TCP implementations.

In Fig. 4 we compare our TCP-based averaging filter with
the WLS approach of Farbman et al. [FFLS08] on a synthetic
image. Although both approaches preserve the feature lines
very well there are some differences. First, WLS tends to
create piecewise constant regions, whereas with our method
piecewise linear regions are created due to the nature of the
TCP averaging process. Second, WLS creates gradual seg-
ments in the vicinity of the feature lines, which results in a
bleeding effect. Our TCP-based filtering does not produce
such artifacts, but it introduces edges not present in the in-
put, which best approximate the underlying, noisy area in
the image. We can conclude that the decision which filtering
method to use is strongly application dependent.

In Fig. 5 we show several examples for different effects
which can be achieved with our interactive brush tool. Ap-
plying our averaging filter results in edge-preserving filter-
ing (Fig. 5 (b)). Line rendering with the averaging filter can
be used for edge-enhancement (Fig. 5 (i)) or for creating
grey-valued drawings which expose the structural informa-
tion in the images (if wished on different scales by using
different TCP sizes) (Fig. 5 (c)). By using the maximum fil-
ter we create nice painterly image abstractions (Fig. 5 (e),
(f)). Finally, by combining the averaging and the maximum
filter we can achieve the "structure highlighting" effect (see
Fig. 5 (l), (j)).

When using line rendering it may happen that some pix-
els of the output do not receive any color contribution from
any TCP (see Fig. 5 (e)). Such pixels belong to low contrast
regions. We can fill in smooth color information into those
"holes" by using a simple color diffusion technique known
from image inpainting [BSCB00] (see Fig. 5 (f)).

The presented variety of effects shows that the TCP oper-
ator can be applied very effectively in the context of edge-
aware image processing. In the next section we will show
how to exploit the TCP concept in order to provide a novel,

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(k)

(l)

(j)
Figure 5: Examples created with our interactive TCP brush tool (unless otherwise noted 32×32 TCPs are used): Input images
(a), (d), (g), (k). Averaging filter (b). Averaging filter with grey-valued line rendering and different TCP sizes (2k×2k,k = 2, ...,5)
for capturing edge features on different scales (c). Line rendering with maximum filter before (e) and after image inpainting (f).
In (h): visualization of brushes with different line thickness values l ∈ {25 + i · 15%|i = 0, ...,5}) used. For edge enhancement
in (i) we use, e.g., l = 25% and l = 100% and our averaging filter. The images in (j) and (l) show two different examples where
we combine grey-valued line rendering and averaging filter in order to create "structure highlighting" in the final output.

fast solution to the image retargeting problem and then ex-
tend the concept for the example of video retargeting.

5. TCP-based Image Retargeting

For content-aware image retargeting, we allow for arbitrary
retargeting of an input image. In the "regions of interest" the
aspect ratios should be preserved as well as possible, which
means that these regions are only allowed to scale (nearly)
uniformly. The distortion in the rest of the image can be arbi-
trary, but it should be equally distributed. We adapt the idea
used in some previous works [GSCO06, WTSL08, KFG09]
and overlay a mesh on the image. Hence, image retargeting
becomes mesh deformation.

We first compute a regular TCP representation of the input
image which defines the quad mesh M = (V,E,T), where
V = {vi ∈ R2|i = 0, ...,n− 1} is the set of grid vertices,
E ⊆ {(i, j)|vi,v j ∈V} is the set of grid edges and T = {Tk}
is the set of TCP 3-tuples which correspond to the quad mesh
faces. In order to deform the mesh we have to move the ver-
tices vi to some new positions v′i . This mapping will be de-
fined as a solution of a linear minimization problem, derived
from the feature-aware structure of the TCPs.

5.1. Deformation Energy

Our approach is inspired by the method of Wang et al.
[WTSL08] who define the distortion energy per quad. In-
stead we define the distortion energy per edge, which simpli-

fies the following computations. We measure the distortion
of an edge by the deviation from being uniformly scaled af-
ter the retargeting. For an edge e = (i, j) ∈ E the rotational
deformation energy is:

D(e) = ‖(v′i− v′j)− se · (vi− v j)‖2 (7)

The optimal scaling factors se can be computed with the fol-
lowing simple partial derivative computation:

∂D(e)
∂se

=−2 · (vi− v j)
T [

(v′i− v′j)− se · (vi− v j)
]

(8)

∂D(e)
∂se

!= 0 ⇒ se =
(vi− v j)T · (v′i− v′j)
‖(vi− v j)‖2 (9)

Now, in contrast to Wang et al. [WTSL08], we insert the
scaling factor (9) into (7) and get the final formulation for
the deformation energy of the given edge e:

D(e) = ‖(v′i−v′j)−
(vi− v j)T · (v′i− v′j)
‖(vi− v j)‖2 · (vi−v j)‖2 (10)

which is quadratic in the unknown target locations v′i . How-
ever, this energy can be minimized by solving a sparse linear
system. The total deformation energy for all grid edges is
simply the sum over all edge deformation energies, namely:

Dgrid = ∑
e∈E

D(e) (11)

By only using the energy in equation (11) the mesh would
always scale uniformly. Previous retargeting approaches de-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

fine an importance function, which is used for weighting of
the individual energy terms. The higher the importance is,
the higher the weight, and thus less deformation will be al-
lowed in areas of high importance. Often gradient magnitude
is used as an importance measure [AS07, RSA08, KFG09].
Wang et al. [WTSL08] use a more sophisticated measure
which combines gradient and saliency maps. In our method
the importance is defined by the TCPs in two different ways.
Similar to previous works we also use a scalar weighting
factor, which is in our case the contrast K of the TCP. Ad-
ditionally, in our formulation we also exploit the directional
information stored in the feature lines of the TCPs.

In order to embed the TCP information into the problem
formulation the idea is to add feature lines of the TCPs as
additional (virtual) edges in our mesh. The vertices of the
feature lines do not introduce new unknowns in our problem,
but instead they additionally constrain the grid vertices.

Let the feature line Lk of the TCP Tk be defined by
the vertices wk

0 and wk
1. These vertices are lying per con-

struction on two different grid edges ek
0 = (ik0, jk0) ∈ E and

ek
1 = (ik1, jk1) ∈ E. Hence, the feature line vertices can be ex-

pressed through linear combinations of grid vertices:

wk
m = α

k
m·vikm

+(1−α
k
m)·v jk

m
, α

k
m ∈ [0,1], m∈ {0,1} (12)

We can define the deformation energy of the feature line
D(Lk) analogously to how we have defined the deformation
energy for the grid edges in equation (10). The total energy
of all feature lines is defined by the following equation:

D f eature = ∑
Tk∈T

K(Tk) ·D(Lk) (13)

The deformation energy per feature line is weighted with
the contrast of the corresponding TCP, which is our scalar
importance measure.

5.2. Relaxation Energy

In order to give the user more control over the retargeting
process we also introduce a relaxation energy term. Intu-
itively the relaxation should push the mesh towards the lin-
early scaled solution. Let v̄i be the vertex positions of the
uniformly scaled mesh. For the edge e = (i, j)∈ E we define
the deviation of the edge scaling factor se from the uniform
scaling ‖v̄i− v̄ j‖/‖vi− v j‖ to be the relaxation energy per
edge. Therefore we define the total relaxation energy for grid
edges and feature lines to be:

Drelax,grid = ∑
e=(i, j)∈E

∥∥∥∥se−
‖v̄i− v̄ j‖
‖vi−v j‖

∥∥∥∥2

(14)

Drelax, f eature = ∑
Tk∈T

∥∥∥∥∥sLk −
‖w̄0

k − w̄1
k‖

‖w0
k −w1

k‖

∥∥∥∥∥
2

(15)

Finally, the total relaxation energy is simply the sum:

Drelax = Drelax,grid +Drelax, f eature (16)

Rubinstein
et al. Wang et al. TCP

Wang et al. TCP
Figure 6: Comparison of our image retargeting solution
with previous works (images taken from [WTSL08]). In the
top row seam carving of Rubinstein et al. [RSA08] destroys
the vase and the approach of Wang et al. [WTSL08] removes
the girl from the focus of the image. In our case we preserve
the girl in the focus as well as the vase. In the bottom row
we show that our approach is able to preserve line features
much better than the approach of Wang et al. due to the ex-
ploited feature line information in the TCP representation.

5.3. Linear Minimization

In order to find the optimally deformed mesh we solve the
minimization problem for the following quadratic, deforma-
tion energy functional:

D = Dgrid +λ f eature ·D f eature +λrelax ·Drelax (17)

We usually set λ f eature = 10 and λrelax = 1. The solution of
the minimization problem is found by solving a sparse linear
system A ·X = b in the least squares sense, where the vector
of unknowns X = (...v′i,x...v

′
i,y...)

T consists of the x- and y-
components of the target vertex positions v′i = (v′i,x v′i,y)

T ,
and each row of the matrix A corresponds to a partial deriva-
tive of the function D.

Let w× h be the input image resolution and w′× h′ the
target image resolution after the retargeting. We want to pre-
serve the rectangular form of the image during the retarget-
ing step. Therefore we solve our linear system subject to the
following boundary constraints:

v′i,x =
{

0, i f vi,x = 0
w′, i f vi,x = w

, v′i,y =
{

0, i f vi,y = 0
h′, i f vi,y = h

(18)

For solving the system we use the constrained solver pro-
posed recently by Bommes et al. [BZK09]. In contrast to the
method of Wang et al. [WTSL08] the unknowns in x- and y-
direction are coupled in our case due to equation (10). This
means that we have to solve a system with twice as many
unknowns, but: 1) our system is only linear and 2) we have
to factorize the matrix only once and for the rest of the re-
targeting procedure we only have to adjust the constraints
(18) and the right-hand side of the system. This makes our
method applicable for interactive deformation of very fine

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

Figure 7: Adaptive TCP grid for image retargeting. Black
vertices represent the unknowns. Green vertices are addi-
tional constraints to our system, represented as linear com-
binations of the end vertices of the corresponding long edges
(depicted as green arcs for better illustration).

meshes (please see the accompanying video), whereas Wang
et al. [WTSL08] have to use rather coarse meshes for inter-
active deformation.

In Fig. 6 we show a comparison of our method and ap-
proaches of Rubinstein et al. [RSA08] and Wang et al.
[WTSL08]. In the "girl and vase" example we see that our
approach nicely distributes the deformation so that the im-
portant objects like the vase are preserved, but also the focus
on the girl is not lost. The "building" example shows that our
approach is better in preserving line features which is one of
the main advantages of our TCP based image retargeting.

Decreasing the TCP size results in decreasing feature
awareness of our method. In the limit case where only one
pixel is used for computing the corresponding TCP imagine
that we have one arbitrary feature line and two equal average
colors. In this case we get uniform scaling of the image. Also
for this reason we introduce an adaptive retargeting method
in the following section.

5.4. Adaptivity

Using a regular TCP grid as discussed so far makes the
method easy to describe and to implement. But with an adap-
tive TCP grid we could use more samples (grid vertices) in
regions of higher importance and thus control deformations
in these regions on a finer scale allowing for stronger distor-
tions in the more sparsely sampled, homogeneous regions.
For this reason we propose an adaptive approach for image
retargeting.

We start with a regular TCP grid; then by using a given
error threshold θ we create a quadtree hierarchy by recursive
1-4 subdivision of each TCP for which the approximation
error (3) lies above θ. The subdivision is continued until we
reach the finest TCP level.

Once we have the adaptive TCP representation we can
easily create an adaptive mesh Ma = (Va,Ea,Ta) from it.
Each TCP T ∈ Ta is spanned by four vertices in Va (we write
vi ∈ T for such a vertex). Note that Ma is not a quad mesh

input image linear regular adaptive

Figure 8: Comparison of the regular and adaptive retarget-
ing approach for extreme retargeting to less than a third of
the width of the input image. In the top left image we visu-
alize the used adaptive TCP grid, where the grey shading
represents the contrast values.

in general (see Fig. 7). Still, all its faces are by construction
quad-shaped polygons and we want to force them to stay
quad-shaped also after the deformation. For this reason we
first construct the set Elong of so-called long edges (green
arcs in Fig. 7). These are edges which connect two vertices
of a TCP, but are not topological edges of the mesh. For-
mally:

Elong = {e = (i, j) | ∃T ∈ Ta : vi,v j ∈ T, e /∈ Ea} (19)

A vertex ṽ ∈Va which lies in the interior of a long edge el =
(il , jl) ∈ Elong can be represented by a linear combination of
the vertices vil ,v jl ∈ Va with a β ∈ [0,1] (green vertices in
Fig. 7). This linear combination is an additional constraint to
our system:

ṽ = β ·vil +(1−β) ·v jl (20)

Finally, the grid energy (equations (11) and (14)) consists of
energy terms of all valid edges. An edge e is said to be valid
if it is either a long edge (e ∈ Elong), or if it is an edge of
the adaptive mesh (e ∈ Ea) that is incident to equally sized
TCPs. In other words, the mesh edges which lie on the long
edges are called invalid. For the feature energy (equations
(13) and (15)) the end vertices of the feature lines are de-
fined as linear combinations of the end vertices of the inci-
dent valid edges.

Additionally, we want to treat all edges in the same way,
i.e. similar rotational distortions should have similar impact
on the energy no matter which length the edges have. There-
fore we rescale the energy terms of the "longer" edges. If
Nmin×Nmin is the minimal TCP size used, then the energy
terms corresponding to edges having the length N are scaled
by N2

min/N2. Notice that by the definition of valid edges
above, this scaling factor is unambiguous.

In Fig. 8 a comparison of our regular and our adaptive im-
age retargeting approach is shown. In the adaptive case more

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

}
y

x

t
Vi, j,k

(2 ·D−1) frames

Figure 9: Video retargeting process by moving a block of
two volume slices with TCVs Vi, j,k of depth D along the time
axis. The TCP grids on the three keyframes of this block de-
fine the unknowns of a linear system to be solved. The solu-
tion of the inner keyframe (red) is used for retargeting.

deformation is pushed into the homogenous regions leading
to a more uniform resizing of the person in the image.

6. Two-Colored Voxels

In this section we will extend the TCP concept to a video
volume and apply it for the example of video retargeting.
We will describe only the regular setting, but the extension
to an adaptive one is straight-forward.

Let F = { f0, ..., ft−1} be the input image sequence con-
sisting of t frames. We split this video volume in volumetric
elements Vi, j,k, having the spatial size N×N and the tem-
poral depth D. In this notation (i, j) are the spatial TCP co-
ordinates of Vi, j,k and k is the coordinate of the first frame
covered by Vi, j,k. Analogously to the TCP concept we define
each Vi, j,k to be a 3-tuple (Ni, j,k,C−i, j,k,C

+
i, j,k), where Ni, j,k

is the feature plane which splits Vi, j,k in two parts and C−i, j,k
and C+

i, j,k define the average colors on the negative and on
the positive side of the feature plane, respectively. We call
Vi, j,k two-colored voxels (TCVs).

Like a feature line of a TCP, the feature plane of a TCV
should provide a linear approximation to the strongest color
discontinuity inside the volume covered by the TCV. Ex-
haustive computation of such a plane by using similar hi-
erarchical structure as done for feature lines in Section 3.2
would be too expensive. Hence, an alternative method is to
approximate the best feature plane by defining a finite num-
ber of directions and offsets to be tested. Since we already
have a very efficient method for computing TCPs, we choose
a different approach.

Each frame fm is split into TCPs Ti, j,m. The TCV Vi, j,k
covers all TCPs in the set {Ti, j,m|m = k, ...,k + D− 1}. We
compute the feature plane Ni, j,k as the least-squares plane of
the feature lines from the set {Li, j,m|m = k, ...,k +D−1}.

6.1. TCV-based Video Retargeting

Applying TCP-based image retargeting to each input frame
fm results in strong flickering because time coherence is

(a)

(b) (c)

(d)

(e)

(f)

(g) (h)

(i)

(j)

Figure 10: Video Retargeting example visualized for two in-
put frames (a) and (f). Linear scalings (b), (d), (g), (i) com-
pared with our solutions (c), (e), (h), (j), respectively.

completely ignored. In order to get smooth transitions be-
tween the consecutive frames in the retargeted video, we ex-
ploit our TCV concept.

We compute a regular TCV representation Vi, j,k for F by
using a fixed depth D, which divides F in volume slices.
Each two consecutive volume slices share a keyframe in
the sequence. The computed TCVs implicitly define TCP
grids and corresponding quad meshes on the keyframes. All
keyframe meshes together define the set of unknowns in
our video retargeting problem. Solving this problem on the
whole volume is too expensive. Therefore we propose to use
a window that is two volume slices wide, and for each posi-
tion of this window only the solution of the inner keyframe
mesh is used later for retargeting (see Fig. 9). The retarget-
ing solutions for other frames are computed by linear inter-
polation between the keyframes. Notice that the keyframes
f0 and ft−1 are special cases since they never become in-
ner keyframes of a volume slice, thus they are computed to-
gether with keyframes fD−1 and ft−D, respectively.

In order to set up the linear system, we follow the method
for image retargeting and define the deformation energy for
the grid edges in the same manner as for the image case. In-
cluding the deformation energy of a feature plane Ni, j,k is
done by computing the feature lines for each TCP included
in the corresponding TCV as lines on the plane Ni, j,k. Notice
that in this setting feature planes are parametrized by the 8
corners of the TCV (in the image case 4 corners of the cor-
responding TCP were used (see Section 5.1)). In Fig. 10 we
show two frames from a car image sequence retargeted with
our method (please see also the accompanying video for a
better impression of the quality of our results).

Discussion and Future Work The computation of feature
lines from feature planes within volume slices guarantees
smooth transitions between keyframes, but the smoothness
property cannot be guaranteed across the keyframes. Nev-
ertheless, the results we have achieved with our method are
very satisfying and by using additional temporal constraints
we could achieve smoothness property for the whole retar-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Darko Pavić & Leif Kobbelt / Two-Colored Pixels

geted sequence. This is one of the main issues we would like
to address in the future work.

7. Conclusion

In this paper we have shown how to efficiently compute a
TCP representation of an image using our hierarchical al-
gorithm on the GPU. This allowed us to use the TCP con-
cept as a basic operator in the context of an interactive
brush tool. We have implemented a number of operations
like painterly image abstraction or edge-preserving filtering
and have demonstrated the effectiveness of the TCP opera-
tor in the context of edge-aware image processing. Further,
we have exploited the TCP grid as a main data structure
for mesh warping based image retargeting. In this context
we have also introduced image retargeting on adaptive grids
which provides more control over the retargeting process. Fi-
nally, we have extended the TCP concept to a video volume
creating the two-colored voxel representation and demon-
strated its application to video retargeting.

References
[AGDL09] ADAMS A., GELFAND N., DOLSON J., LEVOY M.:

Gaussian kd-trees for fast high-dimensional filtering. ACM
Trans. Graph. 28, 3 (2009), 1–12.

[AS07] AVIDAN S., SHAMIR A.: Seam carving for content-aware
image resizing. In Proc. of ACM SIGGRAPH (2007).

[BSCB00] BERTALMIO M., SAPIRO G., CASELLES V.,
BALLESTER C.: Image inpainting. In Proc. of ACM SIGGRAPH
(2000).

[BWG03] BALA K., WALTER B., GREENBERG D. P.: Combin-
ing edges and points for interactive high-quality rendering. ACM
Trans. Graph. 22, 3 (2003), 631–640.

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-
integer quadrangulation. In Proc. of ACM SIGGRAPH (2009).

[CPD07] CHEN J., PARIS S., DURAND F.: Real-time edge-aware
image processing with the bilateral grid. In Proc. of ACM SIG-
GRAPH (2007).

[Don99] DONOHO D. L.: Wedgelets: nearly minimax estimation
of edges. Annals of Statistics 27, 3 (1999), 859–897.

[DS02] DECARLO D., SANTELLA A.: Stylization and abstrac-
tion of photographs. In Proc. SIGGRAPH (2002), pp. 769–776.

[FFLS08] FARBMAN Z., FATTAL R., LISCHINSKI D., SZELISKI
R.: Edge-preserving decompositions for multi-scale tone and de-
tail manipulation. In Proc. of ACM SIGGRAPH (2008).

[GSCO06] GAL R., SORKINE O., COHEN-OR D.: Feature-
aware texturing. In Proc. of EGSR (2006).

[Har07] HARRIS M.: Optimizing CUDA. Online Tutorial: Super
Computing 2007 on http://www.gpgpu.org/static/sc2007/, 2007.

[IKN98] ITTI L., KOCH C., NIEBUR E.: A model of saliency-
based visual attention for rapid scene analysis. PAMI ’98 (1998).

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN J.: Dual
contouring of hermite data. In Proc. of ACM SIGGRAPH (2002).

[KFG09] KARNI Z., FREEDMAN D., GOTSMAN C.: Energy-
based image deformation. Computer Graphics Forum (2009).

[KL08] KANG H., LEE S.: Shape-simplifying image abstraction.
Computer Graphics Forum 27, 7 (2008), 1773–1780.

[KLC09] KANG H., LEE S., CHUI C. K.: Flow-based image
abstraction. IEEE Transactions on Visualization and Computer
Graphics 15, 1 (2009), 62–76.

[KLHGar] KRÄHENBÜHL P., LANG M., HORNUNG A., GROSS
M.: A system for retargeting of streaming video. In Proc. of
ACM SIGGRAPH ASIA (to appear).

[MMS∗09] MERKLE P., MORVAN Y., SMOLIC A., FARIN D.,
MÜLLER K., DE WITH P. H. N., WIEGAND T.: The effects
of multiview depth video compression on multiview rendering.
Image Commun. 24, 1-2 (2009), 73–88.

[NBGS08] NICKOLLS J., BUCK I., GARLAND M., SKADRON
K.: Scalable parallel programming with cuda. In ACM SIG-
GRAPH classes (2008).

[OBBT07] ORZAN A., BOUSSEAU A., BARLA P., THOLLOT J.:
Structure-preserving manipulation of photographs. In Proc. of
ACM NPAR (2007).

[PD06] PARIS S., DURAND F.: A fast approximation of the bilat-
eral filter using a signal processing approach. In Proc. of ECCV
(2006).

[PvCK09] PAVIC D., V. CEUMERN U., KOBBELT L.: GIzMOs:
Genuine image mosaics with adaptive tiling. Computer Graphics
Forum 28, 8 (2009), 2244–2254.

[PZ08] PARILOV E., ZORIN D.: Real-time rendering of textures
with feature curves. ACM Trans. Graph. 27, 1 (2008), 1–15.

[RBW04] RAMANARAYANAN G., BALA K., WALTER B.:
Feature-based textures. In Rendering Techniques (2004).

[RSA08] RUBINSTEIN M., SHAMIR A., AVIDAN S.: Improved
seam carving for video retargeting. In Proc. of ACM SIGGRAPH
(2008).

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface
modeling. In Proc. of Eurographics Symposium on Geometry
Processing (2007).

[SDDV05] SHUKLA R., DRAGOTTI P. L., DO M. N., VETTERLI
M.: Rate-Distortion Optimized Tree-Structured Compression
Algorithms for Piecewise Polynomial Images. IEEE Transac-
tions on Image Processing 14, 3 (2005), 343–359.

[Sen04] SEN P.: Silhouette maps for improved texture magnifica-
tion. In Proc. HWWS ’04 (2004), pp. 65–73.

[TC04] TUMBLIN J., CHOUDHURY P.: Bixels: Picture sam-
ples with sharp embedded boundaries. In Rendering Techniques
(2004).

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In Proc. of ICCV (1998).

[WFS∗09] WANG Y.-S., FU H., SORKINE O., LEE T.-Y., SEI-
DEL H.-P.: Motion-aware temporal coherence for video resizing.
Proc. of ACM SIGGRAPH ASIA 28, 5 (2009).

[WGCO07] WOLF L., GUTTMANN M., COHEN-OR D.: Non-
homogeneous content-driven video-retargeting. In Proc. of ICCV
(2007).

[WN03] WILLETT R., NOWAK R.: Platelets: a multiscale ap-
proach for recovering edges and surfaces in photon-limited med-
ical imaging. Medical Imaging, IEEE Transactions on (2003).

[WTSL08] WANG Y.-S., TAI C.-L., SORKINE O., LEE T.-Y.:
Optimized scale-and-stretch for image resizing. In Proc. of SIG-
GRAPH Asia (2008).

[ZHM08] ZHANG Y.-F., HU S.-M., MARTIN R. R.: Shrinka-
bility maps for content-aware video resizing. In Proc. of Pacific
Graphics (2008).

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

