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Figure 1: A high-level visualisation of our approach to style similarity learning using deep metric learning. To the left a triplet consisting of
a query sample (A), a dissimilar (B) and a stylistically similar sample (C) is shown, i.e. B and C are compared to A. Triplets of this type are
fed into a neural network consisting of three convolutional networks (blue boxes), which computes an embedding (right) of these samples.
The embedding space (here illustrated by multi-dimensional scaling) is such that stylistically similar samples are placed close together while
dissimilar samples are placed further apart. By using rendered images as a representation for 3D shapes we are able to incorporate photos
found online [pix]. This reduces the cost and effort to compile the training set since annotated images are broadly available while annotated

(and consistent) 3D models are more difficult to get.

Abstract

We present a method that expands on previous work in learning human perceived style similarity across objects with different
structures and functionalities. Unlike previous approaches that tackle this problem with the help of hand-crafted geometric
descriptors, we make use of recent advances in metric learning with neural networks (deep metric learning). This allows us to
train the similarity metric on a shape collection directly, since any low- or high-level features needed to discriminate between
different styles are identified by the neural network automatically. Furthermore, we avoid the issue of finding and comparing
sub-elements of the shapes. We represent the shapes as rendered images and show how image tuples can be selected, generated
and used efficiently for deep metric learning. We also tackle the problem of training our neural networks on relatively small
datasets and show that we achieve style classification accuracy competitive with the state of the art. Finally, to reduce annotation
effort we propose a method to incorporate heterogeneous data sources by adding annotated photos found online in order to
expand or supplant parts of our training data.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—

Keywords: style similarity, deep metric learning

1. Introduction

Quantifying human perception of the style of 3D shapes is key for
many applications that aim to guide and support designers. How-
ever, the conversion of a perceived style similarity to a concrete
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distance measure is not straight forward. Solving this challenge al-
lows for recommendation systems that suggest items that are rated
to be stylistically similar to a query. In the setting of interior de-
sign, applications can suggest furniture, utensils, and decorations
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that form one stylistically consistent composition without the need
for the user to have expert knowledge. Furthermore, designers can
be supported by filtering and ranking database queries for items
based on stylistic similarity.

However, identifying style in a wide range of settings automatically
is a challenging task. Often, one is interested in the stylistic simi-
larity of objects from many different categories, e.g. across items of
furniture. This means that style has to be identified and compared
for objects whose structure cannot be matched in a straight forward
manner. The semantic segmentation of a sofa greatly differs from
that of a lamp for example. It is important to note that object sim-
ilarities do not necessarily correspond with style similarities. Ob-
jects that are stylistically similar can have a strong variance in the
overall shape. Therefore, this notion of style similarity is hard to
formalize.

Recently, Liu et al. [LHLF15] and Lun et al. [LKS15] have tackled
this challenge of identifying perceptual shape style similarity. They
rely on a set of geometric feature descriptors and meaningful seg-
mentations of shapes to compare 3D models and infer the stylistic
distance. However, it is hard to find a weighted set of explicit de-
scriptors that capture the style of shapes well. Preferably, we do not
just want to learn the weights of the descriptors but the descriptors
themselves. The computation of the shape descriptors is often de-
pendent on the consistency of the input 3D models (e.g. no holes,
connected meshes). This leads to some amount of pre-processing.
We can weaken these requirements by using an image based repre-
sentation of the input, which allows us to use inconsistent and in-
complete 3D shapes. Moreover, we are able to draw additional an-
notated data from the vast image repositories found online.

Following Lun et al. who state that a deep learning approach to the
problem is of interest, we propose a method that makes use of deep
metric learning. Given shapes for which we have relative stylistic
information as input (e.g. object C is stylistically more similar to
a query object A then another object B, cf. Figure 1), we train a
neural network on rendered images of these shapes. The output are
two distance values for (B,A) and (B,C), which correlate with their
stylistic similarity. This comes with the benefit of not having to rely
on hand-crafted feature descriptors. The question of which descrip-
tors should be considered is moot, since the neural network will
automatically construct a feature representation of the input that
is fitting for the task at hand. For the same reason we also do not
have to expend any effort on ensuring that the correct parts of two
objects are compared stylistically in a meaningful manner.

Contribution Our contribution can be summarized as fol-
lows:

e We explore deep metric learning techniques for perceived style
similarities of 3D shapes. Our training datasets are significantly
smaller than the ones typically used for computer vision tasks.

e We show that rendered images of 3D geometry from multi-
ple viewports are an appropriate representation and how salient
views can be selected.

e We propose a triplet sampling method, that does not rely on style
class labels and allows for an efficient learning procedure.

e We show how heterogeneous data sources in the form of 3D
geometry and annotated photographs found online can be inte-
grated into our deep metric learning method. This has the benefit
that we can easily extend our training set with little effort.

2. Related Work

In the following we give a brief overview of geometry based
style similarity learning and recent advances in deep metric learn-
ing.

Geometric Based Style Similarity Learning Recent investiga-
tions in style similarity learning for 3D models are based on ge-
ometric object features. The models are compared by quantifying
surface properties with various feature descriptors, which allow the
computation of a style metric between objects.

To learn this metric a supervised method is applied, which takes
as input triplets that consist of a query, a shape that is similar and
one that is dissimilar stylistically to the query shape respectively.
Lun et at. [LKS15] propose a weighted combination of feature de-
scriptor distances as a style metric for 3D models. Their compu-
tation is based on the salience and geometric similarity of patches
that are extracted from the object surface. Weights for the saliency
and similarity terms are learned by triplet based supervised learn-
ing.

Liu et al. [LHLF15] present an approach on supervised learning of
a compatibility function for 3D furniture models. They divide the
3D objects into parts on which they specify geometric descriptors,
giving feature vectors of different size for each class of models.
To define a distance metric on these features they learn an em-
bedding matrix for each class by making use of a set of labeled
triplets.

In this paper we present an approach which is independent of hand-
crafted feature descriptors, which saves both preprocessing time
and the selection of appropriate surface features. We are also not
reliant on finding good segmentations of the shapes for comparison.
Furthermore, due to the image based approach we are independent
of mesh resolution, allowing to process models of high complexity
and even include information from photos where the underlying 3D
model is not accessible.

Deep Metric Learning A large body of work exists on catego-
rization of 2D images based on deep metric learning. Usually a
deep neural network learns a lower dimensional embedding of the
2D images based on labeled data. The distance between images is
evaluated in this embedding space.

Cui et al. [CZLB15] developed an approach to classify images
using deep metric learning with humans in the loop, which de-
cide whether the images were labeled correctly. A challenging task
in neural network training is the selection of appropriate samples
(e.g. triplets). Due to the human classifier hard negatives are reli-
able, yet tedious to obtain.

Hoffer et al. [HA15] describe a triplet network architecture for deep
metric learning. They achieve competitive results on common data
sets for image classification. Wohlhart and Lepetit use a triplet
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network for pose estimation on RGB and RGB-D data [WL15].
Similar methods have also been used to describe image similarity.
Wang et al. learn an embedding of images with a neural network
architecture in order to provide fine-grained classification for ob-
jects [WSL*14]. They also use a triplet based learning approach.
Bell and Bala [BB15] present a method to learn visual similarity
of products, to find further appearances of this or a similar prod-
uct. The parts of the image where the products appear have to be
preselected.

Frequently, deep neural networks with siamese or triplet architec-
ture have also been applied to the problem of face verification,
alignment, and recognition. These methods are either based on im-
age features, e.g. [HLT14, SCWT14] or get raw image pixels as
input, e.g. [TYRW14, SKP15]. Recent results in face recognition
show very high accuracies, e.g. [SKP15], which is also based on a
triplet network.

Since neural networks have the ability to achieve high accuracies
on raw image data, we can make use of deep metric learning tech-
niques to learn the abstract notion of style similarity of 3D mod-
els.

Multi-View CNN Using rendered images of 3D shapes as input to
neural networks has been explored before. Su et al. [SMKLM15]
present a multi-view CNN architecture. 3D objects are rendered
from multiple views and given as input to a set of CNNs. Their
output is then combined into a single view via a pooling operation
and passed on to a further network. With the resulting descriptors
they are able to predict the classes of 3D objects.

Li et al. [LSQ*15] embed 3D shapes as well as 2D images of ob-
jects of the same categories into a joint embedding space. Similar to
Su et al. they render images of the 3D objects from multiple views,
compute Histogram of Gradients descriptors on these images, and
compute an embedding space based on these. Furthermore, they
train a CNN to map heterogeneous image data into this embedding
space.

These multi-view approaches result in very high classification ac-
curacy. Hence, we employ a similar method in our framework to
learn style similarity.

3. Problem Statement

Given 3D shape collections with meta-data that specifies if two
shapes are stylisticly similar or dissimilar, our aim is to learn a
metric using convolutional neural networks that reflects this sim-
ilarity. This meta-data can be obtained from a user-study (as done
by Lun et al. [LKS15]) and is provided in the form of triplets
(x;,x;,x7) € X, where x is the query shape and x* and x~ are
the similar and dissimilar shapes respectively.

This gives rise to a set of challenges. Firstly, we have to choose a
representation of 3D shapes on which to train our neural network.
We chose to represent the geometric models with images rendered
from cameras positioned around the objects.

Secondly, we have to design our network architecture in such a way
that takes the much smaller training data sets for 3D shapes into
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Figure 2: Examples of siamese and triplet networks (a and b re-
spectively) for metric learning. T stands for a non-linear trans-
formation via a neural network, which can be interpreted as an
embedding of the input. Typically, these networks share their pa-
rameters, which is equivalent to applying the same T to the inputs.
The ‘Distance’ node compares the embedded input based on some
metric, e.g. the euclidean distance. x is a neutral or query sample
to which a positive or similar sample x* and a negative or dis-
similar sample x~ is compared (x° is a sample that can be either
positive or negative). Note that the siamese network compares the
embedded inputs, while the triplet network compares the relative
distances D" and D™ .

account compared to typical data set sizes in the field of computer
vision.

Thirdly, we want to restrict ourselves to training with triplets con-
sisting of one image each per element in order to allow the incor-
poration of real images. This requires selection of salient views of
the shapes and the online generation of image triplets.

4. Deep Metric Learning

A neural network with k layers can be interpreted as a succes-
sive application of a (non-)linear transformation f; to some input
X,

T(x) = (fro---ofrofi)(x). ey

For classification tasks T'(x) is then usually fed into a cross-entropy
loss function. However, T'(x) can also be viewed as an embed-
ding of the input x into some (typically lower dimensional) feature
space.

Thus, we can formulate the task of metric learning in the context
of this embedding space. Given our input (x;,x;) we would like to
learn a metric of the embedded input (T (x;),T(x;)) that correlates
with the perceived style similarity of (x;,x;), i.e. |7 (x;) — T (x;)||
is small if they are embeddings of the same style. Otherwise, the
distance between T (x;) and T (x;) should be large.

In contrast to direct classification methods with neural networks,
that aim to predict the class for each image individually, e.g. the
approach by Krizhevsky et al. [KSH12], metric learning requires a
network architecture that allows the simultaneous relative compar-
ison between multiple inputs. Typically, siamese or triplet network
architectures (see Figure 2) are used in this context.



L. Lim, A. Gehre, L. Kobbelt / Identifying Style of 3D Shapes using Deep Metric Learning

If the input tuple (x;,x;) is ordered in some manner, i.e. x; is al-
ways an image of an upper human body and x; is an image of a
lower body, then the parameters of the siamese or triplet networks
are not shared since each network is assigned an input-specific task.
However, usually this is not the case. For convolutional neural net-
works this means that the same filters are learned and applied to
each element of the input tuple.

Siamese networks (see Figure 2bluea) are typically trained by
minimizing a contrastive loss function

LF (") = |70 - 76|

2
L™ (x,x7) = max(0,m — HT(x) - T(x*)HZ)
LX) = YL (i) )+ L LT (7). @)

J

where (x,x1) and (x,x™) are pairs drawn from X and m is a ‘gap’ or
‘margin’ hyperparameter, as introduced by Hadsell et al. [HCLO6].
x is a reference (neutral) data sample, while xT and x~ are the
similar (positive) and dissimilar (negative) samples relative to the
reference respectively. LT pulls the images of the query and similar
samples together in the embedding space. L™ pushes the images of
the query and dissimilar samples apart. This effect vanishes once
a pair of samples are sufficiently far apart in the embedding space
(|T(x)=T(x7) H2 > m). Here the euclidean distance in some fea-
ture space is used to compare samples. However, other distances
such as the cosine distance can also be applied.

Triplet networks (see Figure 2b) are a more recent neural network
architecture used for deep metric learning. Hoffer et al. [HA15]
showed that the notion of context when learning (dis-)similarity
is vital. An input sample might be similar to another sample only
when compared to yet other samples. For example two pieces of
furniture might be considered stylistically similar only in compar-
ison to another piece of furniture with a different style. In contrast
to siamese networks, triplet networks can capture this context by
being trained on triplets (x,x™,x™) and not pairs.

Wang et al. [WSL*14] proposed the following loss function for
triplets

D' (xx") = HT(x) —T(x+)H2

D (xx )= HT(x) —T(x*)H2
Lx,x",x7) =max(0,m+D" (x,x") =D~ (x,x7))

LX) = %ZL(xi,xf ), 3)

where X is the training data consisting of n triplets. Here the gap
parameter m has the effect that if the distance from an embedded
dissimilar sample to the embedded query D™ compared to the dis-
tance of an embedded similar sample to the embedded query D™
is smaller than m, the embedding of the similar sample will be
‘pulled’ closer to the query and the embedding of the dissimilar
sample will be ‘pushed’ further away (see Figure 3). If this margin
is not violated, i.e. D~ — DT > m, no forces act on the embedding
of this specific triplet and it remains unchanged.

Figure 3: The black, blue and red dots represent the embedding of
elements of two triplets t; = (x,x;r,xi_) andt; = (x,x;r,xj_ ). For t;
the difference of the distance of the dissimilar and similar sample to
the query is greater than the margin m. Therefore, their embedding
is not further changed. This is not the case for tj. By minimizing
the loss function (3) the embedding of the positive sample will be
pulled closer and the one of the negative sample will be pushed

further away.
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Figure 4: Our triplet network architecture consists of three convo-
lutional neural networks T with shared parameters. Their outputs
are then clamped such that ||T (x)||, < 1 for any query, positive or
negative sample, such that the embedding space is confined to a
hyper-sphere. The embeddings of the similar and dissimilar sam-
ple are compared to the query in DV and D™ respectively. These
relative distances are then compared in the triplet loss function (3).

4.1. 3D Shape Style Similarity Learning via Triplet
Networks

In our case the training data originally consists of triplets of 3D
shapes and due to advantages stated above we opt for a triplet net-
work architecture. However, we choose to train our triplet network
on images of the shapes. This has the advantage is that this rep-
resentation has weaker consistency requirements compared to 3D
shapes. Here, we do not have to ensure that the correct segments
of models are matched and compared correctly. This representation
of the 3D geometry also makes it possible to make use of the rich
annotated databases of real-life images found online. By making
use of this heterogeneous data (photos and 3D shapes) we can fur-
ther expand our training data, leading to better generalization of our
network.

Network Architecture In order to learn a metric based on style
similarity we make use of such a triplet network architecture. Our
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architecture for each network (see Figure 4) is inspired by the VG-
GNet architecture proposed by Simonyan and Zisserman [SZ14].
The construction is such that for an input image with 112 x 112
pixels the resulting embedding vector will be 512 dimensional. The
architecture is defined as: Conv 3@32, Max 2, Conv 3@64, Max
2, Conv 3@128, Max 2, Conv 3@256, Max 2, Conv 1@512, Flat-
ten. Conv f@n stands for a convolutional layer with bias with n
filters of size f. Padding is applied to the feature maps so that no
size reduction is performed with the convolutional layers. Max are
max pooling layers with window size 2 and stride 3. Furthermore,
we apply increasing dropout of (0.1, 0.2, 0.3, 0.4) after each pool-
ing layer. Finally, we flatten the output of the last convolutional
layer into a vector. We achieved the best results during training
with the exponential linear units (ELUs) proposed by Clevert et
al. [CUH15] as our non-linear activation function for the convolu-
tion layers. Contrary to the results presented by Clevert et al. we
found that applying batch normalization, as introduced by loffe et
al [IS15], after every convolution layer with non-linear activation
improved training performance in our case.

Embedding Space Applying each triplet network 7 to some in-
put image x (of size 112 x 112 pixels) yields a 512 dimensional
embedding T (x). T(x) is often normalized (cf. [BB15]) such that
the embedding space is the surface of a hyper-sphere. Ensuring
that ||T(x)||, = 1 prevents unbounded expansion in the embed-
ding space. However, we found that relaxing this constraint such
that |7 (x)||, < 1 (only vectors with length greater than 1 are nor-
malized) and using the euclidean distance performed even better,
resulting in a larger embedding space that consists of the whole
hyper-sphere.

Training and Regularization For training we minimize the
loss function (3) using the ADADELTA method proposed by
Zeiler [Zeil2], which adapts the learning rate during gradient de-
scent based on first order information.

Since we are mainly interested in learning the style similarity of
3D objects, we have much smaller training data sets when com-
pared to typical data sets for pure image analysis tasks (e.g. Ima-
geNet [RDS*15]). This emphasizes the need for regularization of
the neural network in order to avoid overfitting. We address this
issue by applying several established techniques.

First, we generate the data by rendering images of the same 3D
shape from multiple camera positions on a sphere around the ob-
ject. This forces the network to capture the variance of stylistically
relevant features from multiple views. These views are captured in
128x 128 pixel images. Following Krizhevsky et al. [KSH12] we
then randomly crop the images to 112x 112 pixels and randomly
mirror them along each image axis during training. These trans-
formations (data augmentations) artificially expand the dataset and
thereby combat overfitting.

Furthermore, we limit the number of parameters in the network by
only using filters of at most 3x3 pixels as proposed by Simonyan
and Zisserman [SZ14]. In addition to these steps we also apply
dropout after the max-pooling layers as proposed by Srivastava et
al. [SHK* 14].
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Figure 5: Here we illustrate our salient view selection. The dots
represent camera positioned on a sphere around the shape. The
red dots symbolize 3 of the most salient views, estimated with the
entropy of the image intensities. The views are shown on the right.
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Figure 6: The blue and red dots represent the embedding of two
style clusters A and B. Dots with a red underlay show embedded
samples that have maximal distance to each other, while those with
a blue underlay have minimal distance to each other. By retaining
the underlayed samples for training, we approximately capture the
learned boundary and shape of the style clusters in the embedding
space.

We implemented our network with the help of the lasagne library
provided by Dieleman et al. [DSR*15].

4.2. Salient View Selection

Ideally, we would like to avoid unnecessary assumptions about
the alignment or upright orientation of the input data. However,
by capturing images from camera positioned on a sphere around
the shapes, we cannot guarantee that every image captures the
stylistic details necessary to differentiate between them (see Fig-
ure 5).

In order to solve this issue, we take an information theoretic in-
spired approach. For this we apply an entropy filter to each image,
which computes the entropy (over the intensity values) of an image
patch, and integrate it over the image. For images with only one in-
tensity value the entropy will be minimal, while it will be maximal
if the distribution of the intensity values is uniform. We then se-
lect the k (5 in our case) images with the highest entropy, capturing
those views which hold the most information.
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4.3. Triplet Sampling

While the triplet training data provided by Lun et al. [LKS15] is
compact in terms of memory, we have to generate several image
triplets for each object triplet. In essence we have to generate tuples
of the form ((x,v;(x)), (x*,v;(xT)), (x7,ve(x ™)), where v;(x) cor-
responds to the i-th view of the shape x. A naive triplet generation
strategy based on the training data would create data that grows
with cubic complexity with the size of the original training data.
This is also an issue if triplets have to be generated automatically
from multiple categories (elements of the same category are labeled
as similar) instead of obtaining them from user studies.

In order to keep training efficient, we have to restrict ourselves
in terms of the number of generated triplets. Simultaneously, the
triplets should capture the similarity and dissimilarity information
as good as possible.

We start out by randomly sampling views for each triplet in the
training set until we have reached some specified limit (10000 in
our case). Ideally, we would regenerate the triplet training set for
each new training epoch. For performance reasons this is not fea-
sible. We have found that regenerating the training set every 10
epochs is good trade-off between exploration of the training set and
training time.

At each re-sampling step we retain 50% of the previous training
set since we want to ensure that the network does not ‘forget’
about previously seen data and does not overfit on only a subset
of the whole training data. Ideally, we would like to retain those
triplets that contain the information about the shape of the different
style clusters in the embedding space. However, in our case we do
not have any style class labels but only information regarding the
relative (dis-)similarity of the data. Therefore, we aim to approx-
imate the style cluster boundaries and thereby retain the regions
in the embedding space they cover. Thus, we retain those triplets
(x,x",x7) where d* = ||T(x*) = T(x7) |2 is either very small or
very large (see Figure 6). Concretely, we compute d_ for our previ-
ous training set and then partition the data accordingly. Our retained
triplets for the current training set are made up of the partitions with
the 25% of triplets with the smallest 4 and the 25% of triplets with
the largest d of the previous set.

In order to efficiently train our network we pick the remaining 50%
as follows. We randomly sample views for triplets in our training
data and keep them if they are not already included in our current
set. Furthermore, we try to only select those samples that violate
the gap criteria of our loss function (3) (we allow 10 tries in our
experiments), i.e.

HT(X) - T(x_)H2 - HT(x) - T(x+)H2 <m.

This can lead to generated triplets that favour one stylistic class,
where dissimilar samples never appear as a query or similar ele-
ments of a triplet. During training this can lead to a meaningless
embedding of these dissimilar samples that is bereft of any con-
text. In order to counteract this effect, we add a triplet for each
generated triplet where the negative sample is either neutral or pos-
itive.
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Figure 7: The results of 10-fold crossvalidation on the building
data set with varying training set sizes are shown here. The green
bar shows the accuracy obtained by throwing away 50% of all
training shapes. The red bar visualizes the results obtained by
adding photos to the training data consisting of 50% of the shapes.
Similarly, the purple and beige bars show the results obtained with
100% of the training shapes without and with photos respectively.
Note, that the test set sizes remained unchanged.

4.4. Heterogeneous Training Data

In order to expand our training data we want to incorporate data
from heterogeneous sources. In our case, we want to make use of
the vast image repositories found online that often contain stylisti-
cally relevant annotations.

A simple search query, e.g. ‘gothic church exterior’, often suf-
fices in finding extra annotated data. With relatively small effort
we can then specify which 3D shapes are stylistically similar to the
found image style classes (Gothic architecture for example). Fur-
thermore, we also have the information that images from different
style classes, e.g. Romanesque and Baroque architecture, are stylis-
tically dissimilar.

Making use of this information we extend our online triplet sam-
pling approach as follows. In addition to the generated triplets of
rendered images of the shapes, we generate triplets of photos based
on their style classes. For this we randomly draw two images from
one class as the query and similar sample and a third image from
any other class as the dissimilar sample. In order to ensure a good
coverage of the training data we generated triplets such that every
class is compared to every other class. Finally, we put the 3D shapes
and photos into relation with each other by generating triplets that
contain both photos and shapes based on a pre-determined similar-
ity of some of the shapes to the photo style classes.

For our triplet sampling we also apply the previously described step
of preferring triplets that violate the gap criteria. In this way we ex-
pand our training set such that one half consists of rendered images
and the other half incorporates photos.

(© 2016 The Author(s)
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Category our (salient views) | our (upright views) | our (heterogeneous) | Lun et al. [LKS15]
building 86.4% 88.8% 90.0% 81.4%
coffee set 86.2% 89.2% - 90.6 %
column 97.7% 98.0 % - 90.2%
cutlery 81.2% 81.2% - 85.8%
dish 90.4% 90.8 % - 89.5%
furniture 82.3% 86.2% - 91.4%
lamp 86.5% 88.5% - 95.0%
average 87.2% 89.0% - 89.1%

Table 1: The results of the 10-fold crossvalidation on the data set provided by Lun et al. [LKS15]. Our results are shown in the first three
columns. The first column presents the results obtained with the salient view selection presented in Section 4.2. For the second column we
assume a given upright orientation and render images only from camera positions that ‘look down’ on the shapes. The third column shows
our results when we add photos found online to the building data set (upright views).

Figure 8: Some examples of stylistically similar shapes from the coffeeset and furniture data sets are shown here (3 groups each). We
constructed these groups by selecting a query object and then finding shapes of a different category (e.g. table and sofa) that are located

close by in the learned embedding space.

5. Evaluation

We evaluated our method on the dataset of shapes from many dif-
ferent categories with triplets acquired via a user study provided
by Lun et al. [LKS15]. For this we measured the accuracy of our
network correctly identifying the similar and dissimilar elements in
the set of test triplets. Following Lun et al. we used 10-fold cross-
validation to test our trained network and selected the same triplets
as they did.

For training we used the same set of hyper-parameters for all data
sets. For ADADELTA we used the parameters suggested by the
paper [Zeil2] (learning rate: 1, €: 1 X 1076, p : 0.95). We trained
the network to convergence, which took about 130-140 epochs for
each fold of the crossvalidation. On a computer with a i7-6700K
CPU and a NVIDIA Titan X GPU this took around 70 minutes for
each fold.

(© 2016 The Author(s)
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Furthermore, we tested the benefit of using heterogeneous data for
style similarity learning. In this setting we focused on the building
data set and downloaded 446 annotated photos found online with
simple search queries (e.g. ‘orthodox church exterior’) spread over
5 stylistic classes (Baroque, Gothic, Orthodox, Romanesque, and
East-Asian). We then identified to which style class a 3D shape is
most similar for 80 buildings. For testing we used 10-fold crossval-
idation.

In order to perform a stress test for our approach, we dumped 50%
of the 3D training shapes while retaining the same test set. By mak-
ing use of heterogeneous data sources we are still able to beat the
accuracy achieved by Lun et al. on the full training set as shown in
Figure 7. In the case where we use all 3D models available in the
training set and the photos found online we managed to achieve
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90% accuracy. A joint embedding of shapes and photos for the
building data set is shown in Figure 1.

Please see our results of training the network only on rendered im-
ages of the shapes in Table 1. In the first column we present our
results obtained by using our salient view selection during triplet
sampling. In the second column we show the results obtained with
our network, where we assume an upright orientation. In this set-
ting we capture 60 images of each shape with cameras positioned
between 20° and 70° in relation to the up vector (up is 0°). For
the building data set we also compared our triplet sampling method
(Section 4.3) with a simple random sampling of triplets. In compar-
ison to our triplet generation approach (88.8%) random sampling
only managed to achieve 78.5%. A naive exploration of the triplet
space leads to the network overfitting on a randomly chosen subset
of triplets as expected. The third column shows the results if we use
heterogeneous data sources for the building data set. Examples of
groups of stylistically consistent shapes selected with our trained
networks are shown in Figure 8.

Overall we obtain competitive results to Lun et al. For the build-
ing, column and dish data sets we achieve higher accuracy than
Lun et al. However, if there are many views of a shape that hide
stylistically relevant content we do not perform as well as Lun et
al., where they can benefit from the use of hand-crafted geometric
descriptors.

While we do not achieve better accuracies on all datasets com-
pared to Lun et al., we have presented a fully automatic method,
which does not rely on any special descriptors. We have also
shown that improved performance with the addition of photos can
be expected as we have demonstrated in the case of the building
dataset.

6. Conclusion

We have presented a competitive approach for style similarity
learning of 3D shapes using deep metric learning. It comes with
the benefit of not relying on explicitly pre-computed descriptors.
We also avoid the issue of having to choose and then weigh the
relative importance of each feature descriptor.

Furthermore, our chosen representation has less requirements with
respect to the consistency of the input data. We are also robust to
great variations of the overall shape and structure. Since objects
with the same style can have varying geometric shapes, this is vital
for style similarity. Using rendered images also allows us to make
use of the vast information contained in image data sets found on-
line. We showed that by tapping these data sources we were able to
improve style identification performance in the setting of compa-
rably small 3D shape collections. This is of benefit for shape data
sets, which can be extended with photos requiring only little anno-
tation effort.

An interesting future direction would be to alleviate the problem of
stylistic content being hidden from certain views of the shapes. For
this, a neural network based selection of salient views might be of
interest. This would allow us to move beyond the entropy motivated
selection towards a task driven one.

In summary, we presented a fully automated method without the
need for expensive pre-preprocessing. Also, we do not require any
expert knowledge on the selection and computation of specific ge-
ometric feature descriptors. Hence, we believe that our method
can be especially useful for applications ranging from supporting
3D artists in building stylistically consistent scenes to recommen-
dation systems that make use of heterogeneous data representa-
tions.
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