STREAMING 3D GEOMETRY DATA OVER LOSSY COMMUNICATION CHANNELS

Sephan Bischoff

Leif Kobbelt

Computer Graphics Group, RWTH-Aachen, Germany

ABSTRACT

In this paper we propose a progressive 3D geometry transmission
technique that is robust with respect to data loss. In a preprocess-
ing step we decompose a given polygon mesh model into a set of
overlapping ellipsoids, representing the coarse shape of the model,
and a stream of sample points, representing its fine detail. On the
client-side, we derive a coarse approximation of the model from
the ellipsoid decomposition and then re-insert the sample points to
reconstruct the fine detail. The overlapping ellipsoids as well as the
sample points represent independent pieces of geometric informa-
tion, hence partial data loss can be tolerated by our reconstruction
algorithm and will only lead to a gradual degradation of the recon-
struction quality. We present a transmission scheme that is espe-
cially well-suited for geometry broadcasting where we exploit that
the order of the sample points can be arbitrarily permuted.

1. INTRODUCTION

During the last decades the internet has evolved from a low-band-
width, text-only medium into an ubiquitous resource of multime-
dia documents. Digital documents nowadays contain not only tex-
tual information but also images as well as audio and video foot-
age. These multimedia extensions are not only mere document at-
tachments but are often tightly integrated into the document struc-
ture, e.g. as (live) audio and video streams. User interaction, how-
ever, is hardly possible and mostly restricted to predefined actions
at hot-spots [1]. Animated 3D models on the other hand enable
intuitive and realistic interaction with the displayed objects and al-
low for effects that cannot be achieved with conventional video
animations. Consequently, the current challenge is to integrate 3D
geometry as a new data type into digital documents as is done e.g.
in VRML and MPEGA4 [2, 3].

Apart from the enrichment of individual digital documents,
numerous other applications are emerging. Digital libraries could
provide extensive archives of 3D models which can be accessed
and searched for various purposes. Large scale design and engi-
neering projects can employ such central data bases for configura-
tion management — especially if some components are designed
by distributed teams. In computer aided learning (CAL), the ex-
tension of educational material by 3D models enables the students
to get a more thorough grasp of the subject-matter. Finally, broad-
casting 3D animations instead of plain video will open the door to
new qualities in immersive digital television.

Today, the most prevalent representation for 3D models are
polygonal meshes in general and triangle meshes in particular.
These representations allow to approximate models of arbitrary
shape and topology within any desired precision and a wide range
of data structures, algorithms and implementations for efficient
generation, modification and storage of polygonal meshes is avail-
able.

Figure 1: The figure above depicts a typical reconstruction se-
quence: From the ellipsoid model of the bunny (upper left, 300
ellipsoids) the reconstruction algorithm extracts a marching cubes
mesh (upper right, 10000 vertices). After the first chunk of re-
ceived vertices was inserted into the mesh (middle left, 5000 ver-
tices inserted), the points of the marching cubes mesh are removed
by a decimation algorithm (middle right, 5000 vertices). The re-
maining vertices are inserted into the resulting mesh (lower left,
10000 vertices inserted, lower right 30000 vertices inserted).

When transmitting polygonal meshes over possibly low-band-
width network channels one has to carefully pay regard to the
space- and time-efficiency of the employed algorithms. Geometry
compression schemes provide highly compact encoding of polygo-
nal meshes’ geometry as well as of their connectivity [4, 5, 6]. Pro-
gressive transmission schemes reorder the data chunks such that
crucial shape information is sent first while less important detail
is transmitted later [7]. Recent development efforts even combine
both strategies [8, 9].

An important issue that has to be addressed when transmitting
3D geometry is the robustness of the transmission, i.e. the way
the reconstruction algorithm reacts to (partial) data loss. Note that
compressed as well as progressive meshes exhibit complex local
and global data inter-dependencies, like well-ordering of the data
sequence and fixed vertex neighborhoods. Hence, the reconstruc-
tion process completely fails if only a single bit of data is lost or
altered during transmission.

In principle, a standard communications protocol, like the in-
ternet transmission protocol (TCP/IP), which is implemented on
some lower software layer, can taken to be responsible for the cor-
rect transmission of the data [10]. However, in broadcasting sce-
narios where a central server sends the same data to a multitude
of clients, individual back-channels might be difficult or even im-
possible to implement. Since errors cannot be reported back to
the server to trigger re-transmission, robust transmission schemes
become mandatory for 3D broadcasting.

In the following we propose a transmission scheme that is both
robust and progressive. In Section 2 we will give an overview of
the scheme, Section 3 elaborates on a possible application sce-
nario, experimental results are presented in Section 4.

2. ROBUST GEOMETRY TRANSMISSION

Robust transmission schemes should be able to handle data loss,
data duplication and data disordering. In particular, partial data
loss should only lead to a gradual degradation of the approximation
quality. Hence, our general idea is to decompose an object into
independent pieces of information that allow to reconstruct certain
parts of the object even if other pieces get lost.

In our approach we chose ellipsoids as the basic independent
piece of geometric information, i.e. we decompose the object
into a set of overlapping ellipsoids that covers the object’s inte-
rior. Note that as no data inter-dependencies between the ellipsoids
exist, the transmission order of the ellipsoids is arbitrary. Further-
more, because each interior point of the object is in general cov-
ered by several ellipsoids, moderate data loss during transmission
will not affect the reconstructed shape or its topology significantly.

As it turns out, already a few ellipsoids suffice to convey the
basic shape and topology of an object. To save bandwidth, we
chose to represent the fine geometric detail of an object by simple
sample points, which can be considered as degenerate ellipsoids.
Loss of sample points will result in a less detailed reconstruction
but the overall shape of the object will not be affected.

Note that explicit connectivity information is attached neither
to the ellipsoids nor to the sample points. Hence it is not our inten-
tion that the connectivity of the reconstruction is the same as the
connectivity of the original model.

The general approach is as follows: On the sender side we
first transmit the base geometry as a set of ellipsoids. Then the
fine detail is transmitted as a stream of sample points. The client
derives a coarse approximation of the geometry from the set of

ellipsoids and then successively re-inserts the sample points into
this approximation.

2.1. Encoding the base geometry

Our basic idea is to approximate a given 3D model by a set of
overlapping ellipsoids that fill out the interior of the given object
(Figure 3). As each of these ellipsoids represents an independent
piece of geometric information, shape redundancy is introduced
by the fact that the ellipsoids overlap each other.

The ellipsoid decomposition has to be done only once in a
preprocessing step. For this we attach a small sphere to each of the
mesh points and then grow it into the interior of the object until it
cannot be stretched anymore.

The resulting set F of ellipsoids typically forms an extreme
over-representation of the objects volume. For our purposes, how-
ever, it suffices to select a small but at the same time geometrically
significant subset E’ C E. For this we use a greedy algorithm: At
the beginning, E’ is initialized to the largest ellipsoid in E. Then
we successively add those ellipsoids to E’ that yield the largest
volume gain until a prescribed error tolerance is reached. The set
E' is then transmitted to the clients. For a detailed description of
the whole ellipsoid fitting and decomposition process see [11].

Each ellipsoid @ can be represented implicitly by

Qx)=x"Ax+2b"x4+~=0

where A € IR**® is symmetric, b € IR® and v € IR (see [12]).
Normalizing the above equation such that v = 1, we see that each
ellipsoid @ can be efficiently encoded by only 9 scalar values.

On the client side, we initialize a discrete spatial distance field
to 41 (outside) everywhere. When an ellipsoid is received, the
client first computes its bounding box by determining the main
axes of the ellipsoid. By evaluating Q(x) for each grid point x
within the bounding box, every interior vertex is marked by —1
(inside). When all ellipsoids have been received, the client ex-
tracts the zero-surface from the spatial grid using e.g. the march-
ing cubes algorithm [13]. The resulting surface is the desired base
geometry.

Obviously, this method is invariant with respect to reordering
and duplication of ellipsoids during transmission. Furthermore,
because of the strong overlap of the ellipsoids, even in the reduced
set E’, each interior grid point is generally covered by several el-
lipsoids. Hence a small amount of ellipsoid loss will not change
the resulting shape or topology significantly.

Notice that the vertices that were generated by the marching
cubes algorithm are in general different from the original objects
vertices. Hence they have to be removed as soon as enough orig-
inal vertices are received to maintain the geometry (see below).
This is easily done by collapsing them into their nearest original
neighbor [14].

2.2. Encoding the detail

In our transmission scheme, detail information is represented by
sample points that are distributed on the surface of the original
model. In the simplest case these are the vertices of the original
object. Other data, like materials and texture coordinates can also
be associated to each point and are treated like additional point
coordinates.

The client refines the initial base geometry by successively in-
serting the sample points into the current reconstruction. If points

get lost during transmission the reconstruction will be less detailed
but the basic shape of the object will not be affected.

Whenever the client receives a sample point, it is inserted into
the current approximation. As connectivity information is not a-
vailable, the point is inserted into the closest triangle by a 1-to-3
split. We use a space partitioning technique to make this nearest
neighbor search reasonably fast. In general, however, this proce-
dure creates triangles of bad aspect ratio, so-called caps and nee-
dles [15]. To remove these, we have to apply a sensible retriangu-
lation strategy locally around the inserted point.

In a planar setting, the Delaunay-triangulation of a point set
would be a good choice as it fulfills certain fairness criteria, e.g.
it maximizes the triangles’ roundness [16]. There is an easy algo-
rithm to transform an arbitrary planar triangulation into a Delaunay
triangulation, namely: Flip edges as long as the minimal angle of
the triangulation increases. This algorithm can trivially be gen-
eralized to triangulations embedded in space and works well in
areas that are almost flat. For highly curved regions, however, it
produces counter-intuitive results, like flipped triangles.

We proceed as follows: If the surface around an edge is suf-
ficiently flat, i.e. if the normal variation of the adjacent triangles
is below some threshold, the edge is flipped so as to maximize the
minimal angle of the triangulation. In the planar case this provably
results in a Delaunay triangulation. However, when the normal
variation is too strong, we use some custom-tailored heuristics to
prevent the creation of e.g. flipped triangles.

Although the flipping process described above could in the-
ory affect the complete mesh, in practice we observe only local
edge flipping around the inserted point. A typical reconstruction
sequence is shown in Figure 1. A detailed description of the com-
plete reconstruction process is given in [17].

3. PROGRESSIVE BROADCASTING

Broadcasting of 3D geometry is a scenario where robust transmis-
sion schemes are indispensable. Note that in general it is not nec-
essary to transmit geometry information at the same rate as images
or textures: it often suffices to update the geometry only once per
scene. Even so, because of the sheer size of the models, progres-
sive transmission is needed to promptly show an approximation to
the client user while he is waiting for the detail information to be
received.

In our setting we assume that in order to transmit geometry
data over a channel, it is split into packets of fixed size that are
sent from a central server over some (radio) network to a multitude
of clients. Although packets may get lost or may be reordered
during transmission we assume that the integrity of each received
packet is guaranteed by the underlying channel. This can easily
be achieved by appending a checksum to each packet and treating
malformed packets as lost.

Interaction between clients and server is in general not feasi-
ble: A back-channel does most often not exist and even if it does,
responding to individual clients’ requests separately would most
probably over-strain the network and/or the server capacity. Hence
the only possibility for interaction on the client side is to switch
channels.

Ideally, whenever a client tunes in, he should be served at least
an approximation of the model without significant delay. Standard
progressive transmission schemes do not perform very well for this
task: If the client switches channels shortly after the base mesh has

transmission cycle transmission cycle

miss wait wait wait
miss miss wait wait miss miss
miss miss miss wait miss miss miss

Figure 2: Broadcasting 3D geometry: On the left a conventional
progressive transmission cycle is shown. Clients that listen from
the beginning of the cycle, can display a sequence of meshes with
increasing quality. However, if even the smallest prefix of the
stream is missed, one has to wait until the next cycle starts. On
the right we depict the transmission scheme proposed in Section 3
where we repeat the base mesh several times and interleave its
transmission with the remaining geometry data. Reconstruction
can therefore start several times during one transmission cycle.
This significantly reduces the latency on client side while not in-
troducing much redundancy.

been transmitted he has to wait a complete transmission cycle until
the next repetition of the base mesh takes place (Fig. 2).

Our robust transmission scheme allows for receiving the detail
information in almost arbitrary order. We exploit this fact and send
the base geometry more frequently interleaved with the stream of
sample points. When the client switches to a new channel he only
has to wait for the next repetition of the base geometry and then
can insert all following sample points (Fig. 2).

Suppose, e.g., that the stream of sample points is divided into
n equally-sized chunks ds, . .., d, and let ¢ be the time necessary
to transmit a single chunk. Conventional progressive transmission
schemes cyclically transmit the base geometry b, whose size is
typically negligible, followed by the chunks in order:

b—di —do— - —d,

)

Hence, in the worst case the client has to wait » - ¢ seconds before
he can reconstruct the base mesh. If, however, we alternate the
base geometry and the chunks,

b—di—b—ds— " —b—d,

)

the worst case waiting time for the base geometry is reduced to
t seconds. Notice that any following chunk of sample points can
immediately be inserted into the mesh.

Figure 3: From left to right: Original horse model (49000 vertices), ellipsoid approximations consisting of 100 and 400 ellipsoids respec-

tively (corresponding to 3600 and 14400 bytes).

4. RESULTS

Figure 3 depicts a typical ellipsoid decomposition of an object nec-
essary as a preprocessing step for the actual transmission. We ran-
domly selected 2500 of the original model’s 49000 vertices and ap-
plied the ellipsoid growing algorithm to them. Then we computed
a suitable subset £’ as described in Section 2.1. The complete
preprocessing step took about half an hour.

Figure 1 shows a typical reconstruction sequence as described
in Section 2.2. The base geometry is represented by a 300 ellipsoid
approximation (10800 bytes), the detail is divided into 6 chunks
consisting of 5000 vertices (60000 bytes) each. The overhead for
repeatedly transmitting the base geometry is only about 15 percent.

An alternative approach would be to approximate the base
geometry by a decimated mesh instead of a collection of ellip-
soids [17]. However, in this case the correct transmission of the
whole base mesh would be critical while in our case the size of the
critical blocks is only the size of the channel packets.

It turned out that the sample vertices can be re-inserted into the
reconstruction in practically any order. In all our experiments the
scheme has proven to be sufficiently robust even if more than half
of the vertex data gets lost. This even allows us to refine a mesh
only locally in regions of interest and deliberately discard vertices
that are not relevant from the current viewpoint.

5. ACKNOWLEDGEMENT

This work was supported by the Deutsche Forschungsgemein-
schaft under grant KO2064/1-1, “Distributed Processing and De-
livery of Digital Documents”.

6. REFERENCES

[1] S.E.Chen, “QuickTime VR — An image-based approach to
virtual environment navigation,” in SIGGRAPH 95 Proceed-
ings, 1995, pp. 29-38.

[2] A. Ames, D. R. Nadeau, and J. L. Moreland, The VRML 2.0
Sourcebook, John Wiley & Sons Inc, 1996.

(3]

[4]
5]
(6]

[7]
(8]

(9]

[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]

R. Koenen, “Overview of the MPEG4 standard,” in
http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-
4.htm, 2001.

M. Deering, “Geometric compression,” in SIGGRAPH 95
Proceedings, 1995, pp. 13-20.

C. Touma and C. Gotsman, “Triangle mesh compression,” in
Proceedings of Graphics Interface, 1998, pp. 26-34.

J. Rossignac, “Edgebreaker: Connectivity compression for
triangle meshes,” IEEE Transactions on Visualization and
Computer Graphics, vol. 5, no. 1, pp. 47-61, 1999.

H. Hoppe, “Progressive meshes,” in SIGGRAPH 96 Pro-
ceedings, 1996, pp. 99-108.

P. Alliez and M. Desbrun, “Progressive encoding for lossless
transmission of 3D meshes,” in SIGGRAPH 01 Proceedings,
2001, pp. 195-202.

A. Khodakovsky, P. Schrider, and W. Sweldens, “Progres-
sive geometry compression,” in SIGGRAPH 00 Proceedings,
2000, pp. 271-278.

C. Hunt, TCP/IP network administration, O’Reilly, 1992.
S. Bischoff and L. Kobbelt, “Ellipsoid decomposition of 3D
models,” to appear in 3D Data Processing, Transmission,
Visualization Proceedings, 2002.

W. Boehm and H. Prautzsch, Geometric Concepts for Geo-
metric Design, AK Peters, 1994.

W.E. Lorensen and H.E. Cline, “Marching Cubes: A high
resolution 3D surface reconstruction algorithm,” in SIG-
GRAPH 87 Proceedings, 1987, pp. 163-169.

G. Turk, “Re-tiling polygonal surfaces,” in SIGGRAPH 92
Proceedings, 1992, pp. 55-64.

J. R. Shewchuk, Delaunay Refinement Mesh Generation,
Ph.D. thesis, Carnegie Mellon University, Pittsburg, 1997.
H. Edelsbrunner, Geometry and Topology of Mesh Genera-
tion, Cambridge Univ. Press, England, 2001.

S. Bischoff and L. Kobbelt, “Towards robust broadcasting of
geometry data,” to appear in Computers and Graphics.

