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Abstract

To reliably determine the camera pose of an image relative to a 3D point cloud of a
scene, correspondences between 2D features and 3D points are needed. Recent work has
demonstrated that directly matching the features against the points outperforms methods
that take an intermediate image retrieval step in terms of the number of images that can
be localized successfully. Yet, direct matching is inherently less scalable than retrieval-
based approaches. In this paper, we therefore analyze the algorithmic factors that cause
the performance gap and identify false positive votes as the main source of the gap. Based
on a detailed experimental evaluation, we show that retrieval methods using a selective
voting scheme are able to outperform state-of-the-art direct matching methods. We ex-
plore how both selective voting and correspondence computation can be accelerated by
using a Hamming embedding of feature descriptors. Furthermore, we introduce a new
dataset with challenging query images for the evaluation of image-based localization.

1 Introduction
Image-based localization is the task of determining the exact location from which a query
photo was taken. With the widespread adoption of mobile camera phones, image-based
localization has recently received increased attention as it enables many interesting applica-
tions such as mobile landmark recognition [4], real-time camera pose tracking [13, 21, 37],
robot navigation [19], or community-based city reconstruction [36].

If the full camera pose, i.e., both position and orientation, is required, information about
the 3D structure of the scene needs to be known. Given a set of images, such a 3D model
can be computed efficiently using modern Structure-from-Motion (SfM) approaches [8, 10,
31, 33]. The camera pose can then be computed from 2D-to-3D correspondences between
2D image features and 3D points [12]. Due to the reconstruction process, feature descriptors
are available for every 3D point. Thus, correspondences can be found by finding nearest
neighbors for image descriptors and the image-based localization problem becomes a de-
scriptor matching problem. Previous approaches to this search problem can be divided into
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two main classes. Approaches based on image retrieval [25, 30] first find images similar to
the query image. Since features in the database images are projections of 3D points, 2D-to-
3D correspondences can be established by matching the query image against the database
images [13]. Direct matching approaches skip this image matching step and instead try to
find correspondences by directly matching image features against 3D scene points. As re-
ported in [17, 28], direct matching methods achieve a better localization performance than
retrieval-based approaches as they are able to localize more query images. However, this
performance gain comes at the cost of memory consumption, since direct methods require
to store the descriptors of the 3D points in memory. In contrast, the inverted file indices and
feature geometry needed for image retrieval can be stored very efficiently [15, 24].

Due to their memory efficiency, image retrieval-based methods offer a better scalability.
In this paper, we therefore analyze the performance gap between retrieval-based approaches
and direct matching documented in [17, 28]. We discuss the factors that limit the effective-
ness of retrieval-based methods and experimentally determine their influence on the localiza-
tion performance. We show that selective voting schemes designed to handle the main error
source of retrieval approaches, false positive votes, are not only able to close the performance
gap but can even outperform the state-of-the-art in direct matching. Using Hamming embed-
ding [14] of the SIFT descriptor space, such schemes are both time and memory efficient,
even compared to classic image retrieval. Furthermore, we show that we can drastically im-
prove the efficiency of the pose estimation step using quantization and Hamming embedding
and we point out the resulting tradeoffs between performance and computational costs.

Our experiments are based on two large-scale image based localization datasets: The
Vienna dataset from [13], consisting of 1.1M 3D points and 266 query images and our novel
Aachen dataset, consisting of 1.5M 3D points and 369 query images. 1

Related Work. Early works on image-based localization exhaustively compared a query
image against all database images [27, 41]. Using image-retrieval techniques based on de-
scriptor quantization, inverted file scoring, and fast spatial matching [22, 25, 30], larger
datasets can be handled. Schindler et al. select only informative features [29] to construct
a vocabulary tree [22] while Knopp et al. remove confusing features [16]. By aggregating
multiple database images into scene maps, Avrithis et al. increase recall and decrease the
length of the inverted files [1]. Torii et al. exploit the spatial relationship between database
images by interpolating between views [35]. Zamir & Shah observe that using the original
SIFT descriptors to vote for camera locations increases localization performance [40].

Further information, such as building outlines or 3D geometry, can be combined with
the image database to improve localization approaches [2, 4]. When the coverage of the
scene by the images is dense enough, SfM techniques can be used to reconstruct a 3D point
cloud of the scene [8, 10, 31, 33]. Based upon such a 3D model, Irschara et al. propose
an efficient, GPU-based image retrieval approach for accurate localization [13]. To handle
a larger variety of viewpoints for query images, they generate additional database images
by placing virtual cameras on a ground plane. Wendel et al. consequently generalize this
concept to virtual views in full 3D to handle image-based localization for flying vehicles [37].
Li et al. show that a prioritized, direct matching of 3D points to 2D features using feature
descriptors vastly improves the localization performance compared to image retrieval-based
methods [17]. Another direct matching approach by Sattler et al. improves the performance
even further [28]. Interestingly, the method from [28] uses data structures similar to retrieval
systems, such as a visual vocabulary and inverted files. We use this similarity to identify the

1The dataset is available at http://www.graphics.rwth-aachen.de/localization .
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Figure 1: Image-based localization methods. (a) Image retrieval, (b) Direct matching [28],
(c) Selective voting as proposed in this paper.

reasons for the performance gap between image retrieval methods and direct matching.
In the next section, we compare the method by Irschara et al. [13] as an example for a

retrieval-based system to the approach by Sattler et al. [28]. Based on the discussion of both
works, we analyze the possible reasons for the shortcomings of image retrieval in Section 3
and point out possible solutions. We thoroughly evaluate these possible solutions in Section
4. Section 5 concludes the paper by offering a discussion of the results.

2 Retrieval Vs. Direct Matching
In a 3D point cloud obtained from SfM, every 3D point is created from 2D features found in
the database images. Thus, we associate a 3D point with the descriptors of its corresponding
2D features. Following [17, 28], we will refer to 2D features and their descriptors as features
and 3D points and their associated descriptors as points. Since the same type of descriptors
is used, finding 2D-to-3D correspondences is a descriptor matching problem. After estab-
lishing matches, the camera pose is estimated using RANSAC [9] in combination with an
n-point-pose algorithm [9, 11, 12]. A camera is considered as localized or registered against
the model if the best pose found by RANSAC has a certain number of inliers.

Both Irschara et al. and Sattler et al. use a visual vocabulary, obtained by clustering SIFT
descriptors [18] using k-means [22, 25]. Each cluster defines a visual word and descriptors
are assigned to the closest cluster center through approximate nearest neighbor search [20].
Since a 3D point consists of multiple descriptors, it is usually assigned to multiple words.

Localization by Retrieval. There are fundamental differences between classical image
retrieval systems [7, 25, 30] and image retrieval approaches for image-based localization.
The former aim at finding as many relevant database images as possible for a given query
image. For the latter, it is sufficient to retrieve just one relevant image if the correspondences
found by matching query and database image suffice to estimate the camera pose of the query
image. Recall-improving techniques such as query expansion [7] thus do not improve the
performance of image-based localization. Furthermore, fast, approximate spatial verification
approaches [25, 34] cannot be used since we are interested in accurately estimating the full
camera pose. For mobile applications of image-based localization, the localization method
needs to be as fast as possible. We therefore prefer efficiency to accuracy, i.e., we will accept
a slight drop in the number of images that can be localized if it improves the run-time.

To establish the correspondences for camera pose estimation, Irschara et al. perform im-
age retrieval to find similar views in a set of database images [13]. Given a new query image,
SIFT features are extracted and each feature is assigned to visual words using a vocabulary
tree [22]. Each entry in the inverted file of an activated visual word then votes for a database
image. Based on this voting, only the top-k ranked images are kept for further processing.
Applying regular SIFT matching for every top-ranked view, the SIFT features belonging to
3D points are matched against the query image and correspondences are established using
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the SIFT ratio test, followed by pose estimation. Fig. 1(a) illustrates this approach.
There are three major differences between [13] and classical image retrieval systems.

First, instead of using tf∗idf weighting [30] to vote for images, Irschara et al. use a prob-
abilistic ranking: Given a database image D that received k votes from a query image Q
with |Q| features, its score is the ratio P(#votes = k | Q ≡ D)/P(#votes = k | Q 6≡ D), where
Q ≡ D denotes the event that Q and D depict the same scene [13]. The second difference
is in the use of synthetic images. By placing virtual cameras onto the ground plane of the
model, new views can be generated that help improve registration performance. Third, only
features in the database images belonging to 3D points are used.

Localization by Direct Matching. Irschara et al. limit the search space for 2D-to-3D cor-
respondences by quantizing view directions [13]. The direct matching approach by Sattler
et al. directly establishes matches between features and points and thus does not require the
query images to be similar enough to database images [28]. To speed up the correspondence
search, a quantized SIFT matching is applied: For a given query feature f with SIFT descrip-
tor s f , only points whose descriptors are assigned to the same visual word are considered.
Inside a word, Sattler et al. find the two nearest neighboring points p and q, p 6= q, with
descriptors sp and sq, and ‖s f −sp‖2 ≤ ‖s f −sq‖2 using linear search. A correspondence be-
tween f and p is established if the SIFT ratio test ‖s f − sp‖2 < 0.7 · ‖s f − sq‖2 is passed. If
multiple correspondences containing the same point are found, only the one with the small-
est descriptor distance between point and feature is kept. The matches obtained this way are
again used to estimate the camera pose with RANSAC. To quickly determine the relevant
points and descriptors, Sattler et al. use an inverted file that maps each visual word to its
corresponding set of point ids and SIFT descriptors [28]. Fig. 1(b) illustrates this approach.

Comparison. Sattler et al. need to keep the actual feature descriptors in memory at all
time. To reduce these memory requirements, they cluster descriptors. If more than one
descriptor of the same 3D point is assigned to a word, only the mean descriptor, with entries
rounded to the nearest integer value, is stored, reducing memory requirements by about 1/3
[28]. Still, every inverted file entry contains a SIFT descriptor, which adds 128 bytes per
entry compared to classical inverted files. Computing the Euclidean distance for every entry
in an inverted file instead of casting a vote introduces additional computational cost. In
theory, direct matching will be two orders of magnitude slower than retrieval, but in practice
the gap is smaller due to the vectorization performed by modern CPUs. Still, the memory
requirements and additional computations hinder the scalability of [28] compared to [13].

However, Sattler et al. report that the localization performance of their method is at
least 15% better than image retrieval-based methods [28]. This gap is especially interesting
considering the similarity of both pipelines (cf . Fig. 1(a)-(b)). Finding the reason behind this
gap, and ways to close it, are the aims of this paper.

3 Image Retrieval Revisited
There are two key problems for image retrieval-based methods that can cause the gap in
registration performance: Incorrect votes might corrupt the re-ranking process, while using
pairwise image matching to establish 2D-to-3D correspondences might restrict the set of
views that can be registered. In the following, we discuss both aspects and point out solutions
to the problems. Furthermore, we explore different ways to speed up the matching process.

Selective Voting. In image retrieval-based methods, every feature votes for all database
images containing its visual word. Since a feature can correspond to at most one 3D point,
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Figure 2: (a) View quantization reduces the number of matches that can be found. (b)
Unrelated entries in a word cause incorrect votes. (c) Hamming embedding can be used to
discard incorrect votes. (d) Using a coarser quantization improves correspondence selection.

this one-to-many mapping results in many unnecessary and incorrect votes. Fig. 2(b) il-
lustrates this problem. The query feature (pink) is assigned to the same visual word as its
corresponding 3D point (red). But instead of only voting for the images observing the point,
the feature also votes for all other images in the inverted file of the word, even if the corre-
sponding descriptors are very far away (black points). Since the majority of the votes will
be for unrelated images, dealing with these incorrect votes is challenging even for advanced
re-ranking schemes such as tf∗idf weighting or probabilistic ranking. Since pose estimation
is only attempted for the top-k images, failure to rank any of the relevant images among the
top-k will have a negative impact on localization performance.

Employing a finer vocabulary helps reduce the number of wrong votes, but also reduces
the probability that a feature and its 3D point are assigned to the same word due to quanti-
zation errors. Instead, we propose to use a selective voting mechanism, independently of the
chosen quantization. As illustrated in Fig. 1(c), votes are cast only for a selected subset of
entries in the inverted file of a visual word. Images are then ranked in decreasing order of
the number of votes and only the top-k ranked images are considered for pose estimation.

One possible selection criterion can be derived from the quantized SIFT matching [28]
(cf . Sec. 2). A feature f assigned to visual word w casts a vote for a database image I if
I contains a point p whose descriptor sp,I is also mapped to w, and f and p form a corre-
spondence found by quantized SIFT matching. In the following, we refer to this particular
approach of selective voting as correspondence voting.

Unfortunately, correspondence voting again requires us to store and compare SIFT de-
scriptors. Jégou et al. propose to use Hamming embedding to cast votes only for a subset of
all entries in a visual word [14]. Hamming embedding first projects every SIFT descriptor
s j into a d-dimensional space using a random, orthogonal projection matrix P ∈Rd×128. Let
p j = P · s j be the projection of a descriptor s j assigned to visual word w and let tw ∈ Rd be
a vector of thresholds defined for w. We denote the nth component of a vector v as v(n). A
binary representation b j ∈ {0,1}d for s j is obtained by thresholding p j, setting b j(n) = 1 if
p j(n) > tw(n) and b j(n) = 0 otherwise [14]. tw(n) is given by tw(n) = median({p j(n) | s j ∈
S(w)}), where S(w) denotes the descriptors of the 3D points assigned to word w.

Using Hamming embedding instead of SIFT descriptors yields Hamming voting, another
selective voting approach. Let f be a feature assigned to visual word w, with binary rep-
resentation b f . Consider a point p, observed in image I with descriptor sp,I , also assigned
to w. Then f votes for I if the Hamming distance between b f and bsp,I is below a certain
distance threshold. Fig. 2(c) illustrates a Hamming embedding with d = 2 together with the
resulting binary strings. Using Hamming voting, the votes cast by the pink query feature
can be restricted to include only points with similar Hamming descriptors, avoiding many
incorrect votes. While additional computational costs for projection and thresholding occur
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compared to image retrieval, using Hamming descriptors instead of SIFT descriptors signifi-
cantly reduces memory requirements, e.g., by a factor of 16 when using d = 64 dimensions.
Furthermore, modern CPUs often offer specialized instructions to compute Hamming dis-
tances [3]. Using SSE4.2 together with the POPCNT instruction, one million Hamming
distance computations for d = 64 dimensions can be done in about 2ms. In our experiments,
projecting and thresholding the features took less than 23ms on average for a query image.

View Quantization. Since correspondences are obtained by matching features in the query
image against points in a database image, both images need to share enough matches to
facilitate pose estimation, i.e., the overlap between both images has to be large enough. This
quantizes the viewpoints from which query images can be registered as shown in Fig. 2(a).
In this example, the red camera does not share enough common points with either database
camera to allow estimating its pose. Both synthetic views [13] and the view interpolation
from [35] can provide possible solutions to this problem. However, in this paper, we will
focus on selective voting and ignore the effects of view quantization.

Correspondence Selection. Irschara et al. perform a regular SIFT matching between the
query and the top-ranked database image to obtain correspondences between features and
points [13]. For every point in the database image they find its two (approximate) nearest
neighboring features in the query image and establish matches using the SIFT ratio test.

Regular SIFT matching introduces additional computational costs, especially if search
structures have to be build. To save computation time, information from the voting stage
could be re-used for correspondence selection. The simplest strategy, visual word matching,
establishes a match between a point and a feature if they are mapped to the same visual word
(without considering the actual descriptors). Although requiring no additional computations,
this approach is likely to produce many wrong correspondences. Similar to correspondence
voting, quantized SIFT matching [28] can be used to remove many of these wrong matches.
Quantized SIFT matching is likely to miss matches due to quantization errors introduced by
the fine vocabularies required for voting. This is shown Fig. 2(d), where the query feature
(pink) and its corresponding point (red) are mapped to different words in the fine vocabu-
lary (black lines). Using a coarser vocabulary (gray lines) instead decreases the likelihood
of missed matches, but introduces additional computations since the words in the coarser
vocabulary contain more points (black points). Building the coarser vocabulary on top of the
fine one, the assignments to the coarser vocabulary are given by the mapping to the finer one
and require no additional computations.

Quantized Hamming matching uses the idea of quantized SIFT matching and replaces
SIFT descriptors with binary strings. A correspondence between two features f , g mapped
to the same word w is establish if b f is the nearest neighbor of bg and the Hamming distance
between b f and bg is below a certain threshold. If Hamming voting is used, this method can
re-use both the vocabulary tree quantization and the random projections of the descriptors.
The only computation required is thus the thresholding for the coarser vocabulary.

For all correspondence selection schemes, we match the 3D points contained in the
database images against the 2D features in the query image.

4 Evaluation
In this section, we evaluate the impact of different selective voting strategies on the problem
of incorrect votes on two large scale datasets. We further evaluate different correspondence
selection schemes. We obtained two visual vocabularies, one containing 100k and the other
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# Cameras # Points # Descriptors # Query Images Mean # Features per Query Image
Aachen 3047 1,540,786 7,281,501 369 8648.66
Vienna 1324 1,123,028 4,854,056 266 9707.29

Table 1: Statistics of the datasets used for the experimental evaluation.
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Figure 3: Registration performance for different ranking schemes compared with direct
2D-3D matching. The correspondence voting scheme is able to achieve significantly better
results than standard ranking schemes due to its ability to discard incorrect votes.

containing 1M visual words, from approximate k-means clustering [25]. To compute the
visual word assignments, we use a single kd-tree built using the FLANN library [20] and
stop the search for the closest word after visiting at most 10 leaves. For retrieval-based
methods, only features in the database images corresponding to 3D points are used. To
implement regular SIFT matching, we use the FLANN library to construct a single kd-tree
for every query image. Correspondences between the points visible in a database image and
the features in the query image are established using approximate search in the tree, visiting
at most 300 leaves, followed by the SIFT ratio test with threshold 0.7. If multiple matches
for the same feature are found, we keep only the one with the smallest distance between its
descriptors. The camera pose of the query images is estimated from these matches using the
6-point DLT algorithm [12] inside a RANSAC loop [5, 6]. As in [17, 28], a query image is
considered registered if the best pose found by RANSAC has at least 12 inliers. Similar to
[13], we only consider the top-10 ranked images.

Datasets. We use two datasets for experimental evaluation. Table 1 gives a brief overview
over their important statistics. The Vienna dataset has already been used in [13, 17, 28] and
thus allows a fair comparison with current state-of-the-art localization methods. We further-
more introduce a new dataset, covering the historic center of the city of Aachen, Germany.
3047 high-resolution pictures were taken with different cameras. An SfM reconstruction
of the scene was obtained using the freely available Bundler software [31, 39] and SiftGPU
[38]. To obtain a metric reconstruction in which distances can be measured in meters, the 3D
model was aligned to the building outlines of the city obtained from [23] using the approach
from [33]. A set of 369 query images for the dataset was taken using the camera of a Mo-
torola Milestone mobile phone, exhibiting the typical image quality shortcomings of mobile
phone cameras such as motion blur, lack of focus and rolling shutter artifacts. The images
were taken at different times of day and year over a period of two years. As a result, they
cover a wide range of lighting and weather conditions as well as temporary occlusions by
construction sites and changes in architecture not present in the 3D model. All query images
used in this paper have a maximal dimension of 1600×1600 pixels.

Impact of Incorrect Votes. In the first experiment, we evaluate the impact of incorrect votes
on image retrieval-based localization. As a baseline, we use the 2D-3D matching approach
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Figure 4: Hamming voting using 32- and 64-bit Hamming vectors achieves nearly the same
performance as correspondence voting, which utilizes SIFT descriptors.

from [28], where we disabled the early termination of correspondence search and instead
opted to find as many correspondences as possible. For image retrieval, we compare tf∗idf -
weighted ranking [30] with probabilistic ranking [13] using both vocabularies. For both
retrieval methods, regular SIFT matching is used to establish the correspondences needed
for pose estimation. Fig. 3 compares the two ranking methods with the baseline. There is
a significant gap in registration performance between direct matching (304 images (82%)
for Aachen and 213 images (80%) for Vienna) and the two ranking schemes (at most 280
images (76%) for Aachen and less than 200 images (75%) for Vienna). To verify that this gap
is caused by incorrect votes, we evaluate correspondence voting using the 100k vocabulary
and direct SIFT matching. Note that correspondence voting uses the same matches found by
[28] to vote for the database images. As can be seen in Fig. 3, this selective voting scheme
achieves much better results than the other two ranking methods due to its ability to discard
incorrect votes. It even outperforms 2D-3D matching by registering 332 images (90%) for
Aachen and 231 images (87%) for Vienna. This performance increase is caused by the more
detailed matching performed to establish correspondences, which is able to recover matches
lost in [28] due to quantization. In contrast to correspondence voting, 2D-3D matching is
not bound to specific views. Thus, the results also show that the gap can be closed without
handling view quantization, justifying our decision to focus on selective voting.

Correspondence Voting vs. Hamming Voting. To reduce memory requirements and dis-
tance computation times of correspondence voting, we proposed Hamming voting. In this
experiment, we compare both selective voting approaches, again using the top-10 ranked
images and regular SIFT matching to establish matches. Fig. 4 shows the results for us-
ing different numbers of bits for the Hamming embedding, both vocabularies, and different
thresholds to restrict the voting for images. As can be seen, using 32-bit or 64-bit Hamming
vectors instead of SIFT descriptors has only a slight impact on registration performance. On
the Aachen dataset, 327 images (89%) can be registered using 64-bit compared to the 332
images (90%) obtained by correspondence voting. Using 32-bit vectors we can still register
313 images (85%), outperforming the method from [28] while using 32 times less mem-
ory for the same number of inverted file entries. On the Vienna dataset, Hamming voting
can register 227 (85%) respectively 222 images (83%) using 64- and 32-bit compared to the
231 images (87%) correspondence voting can register, again outperforming the method from
[28]. Using a coarser vocabulary yields better results due to less quantization errors.

Correspondence Selection. We now evaluate the alternative correspondence selection ap-
proaches presented in Sec. 3, using Hamming voting with 64-bits and the distance threshold
set to 15 for retrieval. Our goal is to keep a low false positive rate, while reducing the com-
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Voc. # Images Correspondence RANSAC Preprocessing
Matching Method Size Registered Search [ms] ok [ms] err [ms] Time [ms]
Regular SIFT - 320.0 (87%) 300.3 0.9 0.0 30.1
Quantized SIFT 100 319.0 (86%) 14.5 3.1 155.3 -

1k 304.0 (82%) 2.5 17.4 2705.8 -
10k 246.0 (67%) 1.0 10.2 22.5 -

Quantized Hamming 100 307.0 (83%) 3.6 141.6 2825.0 3.6
(64-bit) 1k 300.0 (81%) 0.8 3.5 35.9 3.6

10k 272.0 (74%) 0.5 0.9 0.0 3.9
Table 2: Pose estimation performance and timings per image pair for different correspon-
dence selection methods on the Aachen dataset, averaged over 10 runs on an Intel Core i7
3.4 GHz CPU. RANSAC timings are median values over all image pairs for successful and
failed pose estimation. The preprocessing time is required once per query image, building
the search index for regular SIFT and thresholding for quantized Hamming.

putation time needed for pose estimation. To obtain the coarser vocabularies needed for the
quantized matching approaches, we built a vocabulary tree with branching factor 10 on top
of the 100k vocabulary. Coarser levels in the tree thus define coarser vocabularies. Using
the vocabulary to compute the word assignments for voting instead of the kd-tree used in the
previous experiments did not result in a significant difference in localization performance
(87% vs. 89% for Aachen and 86% vs. 85% for Vienna when using regular SIFT matching).

Tab. 2 shows results for the different methods on the Aachen dataset. Fig. 5 compares the
distributions of inlier ratios for the registered query images. Regular SIFT matching (RSM)
[13] yields the best performance, being able to register 320 (87%) and 228 images (86%) on
Aachen and Vienna. Due to the low false positive rate, RANSAC-based pose estimation is
very fast, but matching takes on average 300ms per image pair, and an additional 30ms per
query image are necessary to build the kd-tree for efficient feature matching. As expected,
visual word matching generates the most false positives (Fig. 5, left), which reduces the num-
ber of registered images to 220 (60%) and 197 (74%) on Aachen and Vienna, respectively.
Quantized SIFT matching (QSM) [28] drastically reduces the matching time by performing
SIFT matching only within the visual word of the query point. The use of larger vocabularies
offers a higher speedup, but also increases the false positive rate (Fig. 5, middle), requiring
more RANSAC iterations. Quantized Hamming matching (QHM), with the distance thresh-
old set to 15, yields a consistent speedup for correspondence search. For 100 visual words,
the high number of false positives (Fig. 5, right) drastically slows down RANSAC. At 1k
visual words, registration performances of QHM and QSM are comparable, but RANSAC
is much faster for QHM, because QSM is more prone to generate false positives at larger
vocabulary sizes. Since larger vocabularies contain fewer features per word, the SIFT ratio
test employed by QSM is more likely to accept wrong matches, even for far away descriptors
(cf . Fig. 2(d)). Due to its uses of an absolute distance threshold, QHM is able to avoid such
matches. The vocabulary with 10k words is too fine, resulting in too many missed matches.

0 0.2 0.4 0.6 0.8 1
Inlier Ratio
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Visual Word Matching
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Figure 5: Comparison of inlier ratios of different matching methods for registered images.
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5 Conclusion
In this paper, we have analyzed the performance gap observed between direct matching
methods and image retrieval-based approaches for image-based localization. As shown ex-
perimentally, this gap is caused by the large number of incorrect votes cast by standard
re-ranking schemes. Applying selective voting using SIFT descriptors combines the corre-
spondence search of direct matching with a simple voting scheme that is able to discard those
incorrect votes. Since it uses a much more detailed matching step between query images and
the top-ranked database images, correspondence voting is even able to outperform direct
matching. Its main disadvantages, memory consumption and computational overhead, can
be resolved without a significant impact on registration performance by using Hamming em-
bedding. Furthermore, we have shown that the remaining bottleneck of image retrieval-based
localization, regular SIFT matching, can be accelerated using simpler matching schemes. We
expect that both voting and correspondence selection will improve with a better Hamming
embedding that can be obtained from learnt projection matrices [26, 32].
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