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Abstract. Recent developments in Structure-from-Motion approaches
allow the reconstructions of large parts of urban scenes. The available
models can in turn be used for accurate image-based localization via pose
estimation from 2D-to-3D correspondences. In this paper, we analyze a
recently proposed localization method that achieves state-of-the-art lo-
calization performance using a visual vocabulary quantization for effi-
cient 2D-t0-3D correspondence search. We show that using only a subset
of the original models allows the method to achieve a similar localization
performance. While this gain can come at additional computational cost
depending on the dataset, the reduced model requires significantly less
memory, allowing the method to handle even larger datasets. We study
how the size of the subset, as well as the quantization, affect both the
search for matches and the time needed by RANSAC for pose estimation.
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1 Introduction

Image-based localization methods try to estimate the position from which a
query image was taken. Once obtained, the position can be used to determine,
e.g., the position of a pedestrian [20, 29, 40, 7] or of a mobile robot [11,12,37]. An
especially interesting application is image-based localization for mobile devices,
where a user simply sends a photo taken with her mobile phone to a server and in
return receives information about her position [7]. Camera positions computed by
localization methods are also useful for Structure-from-Motion reconstructions
[1,10,14,18,28,35] or for the visualization of photo collections [34].

In order to enable image-based localization, some kind of visual representa-
tion of the scene is required. Traditionally, the chosen representation has been a
set of images, enabling the use of image retrieval methods to efficiently find sim-
ilar images and then use the (GPS) positions of the images as an approximation
to the position of the query camera. Such a representation usually contains a lot
of redundant information as multiple images cover the same part of the scene.
Furthermore, many confusing features found in the images have to be removed
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for better retrieval [22]. The redundancy in the image set can be exploited to ob-
tain a Structure-from-Motion (SfM) reconstruction of the scene [1, 10, 14, 18, 28,
35], resulting in a 3D point cloud. The image matching part of the SfM pipeline
automatically removes most of the confusing features. Thus, a 3D reconstruction
offers a more compact representation of the scene than the original images.

While a purely image-based representation only allows to compute the posi-
tion of the camera, using a 3D model to represent the scene offers the additional
advantage that the full camera pose, i.e., both position and orientation, can be
determined. Essential for camera pose estimation are correspondences between
2D features in the query image and 3D points in the model. For every 3D point
there is a list of 2D image features obtained from the images used to triangu-
late the point. These features model the appearance of the point from multiple
viewpoints under varying lighting conditions. By also extracting local features
in the query image, the correspondence search can be modeled as a descriptor
matching problem. Due to the large scale of the reconstructions, containing one
million or more points, the search method needs to be efficient. It has to find
enough correspondences to allow pose estimation. At the the same time, it has to
find mainly correct correspondences in order to avoid spending too much time on
RANSAC-based pose estimation. A common approach for fast correspondence
search is to first find an intermediate representation to quickly narrow down the
search for possible correspondence, for example by only considering points found
in database images similar to the query image [20].

Recently, Sattler et al. showed that direct search approaches that consider
all 3D points with similar enough descriptors as potential correspondences for
a feature in the query image achieve a better localization performance, i.e., are
able to localize more images [30]. They propose a direct search method based on
a visual vocabulary which limits the correspondence search of a query feature
to all 3D points with descriptors assigned to the same visual word. Combined
with a prioritization scheme, their approach is able to outperform current state-
of-the-art methods either in localization performance or efficiency or both. In
this paper, we look at two aspects of the method that are critical for scalability
to larger datasets: First, the method requires to keep multiple descriptors for
every 3D point in memory for efficient nearest neighbor search. Second, as more
3D points are used, the space containing the descriptors becomes denser. As the
method uses SIFT features together with SIFT ratio-test [24] to reject wrong
correspondences, a denser search space will most likely remove more correct
correspondences as well. A simple way to reduce the memory footprint is to
use only a subset of the 3D points available in the model. Using fewer points,
and thus fewer descriptors, can also have a positive effect on the localization
performance for larger datasets if the descriptor space also becomes sparser. In
this paper, we experimentally evaluate the impact of considering subsets of the
points in the model, selected by a simple reduction scheme recently proposed
by Li et al. [23]. More specifically, we explore the relation between the number
of points used, localization performance and efficiency, as well as localization
accuracy. We show that we can achieve a similar registration performance at



comparable efficiency and slightly better accuracy when using less than half
of the points originally contained in the model. To explore the effect of using
fewer points on the descriptor space, we simulate a larger dataset by combining
multiple smaller ones. Our experiments show that using subsets of the points
cannot prevent the descriptor space from becoming too dense, but can speed up
the registration process while maintaining a similar registration performance.

We use the notation introduced in [23], referring to 2D local features found in
images and their descriptors as features and to 3D points and their descriptors
from the database images as points. A visual vocabulary is obtained by clustering
a set of local features using approximate k-means [27]. The obtained cluster
centers are called visual words. Assigning a feature to its visual words means
finding the cluster center which has the closest Euclidean distance to the feature
through approximate nearest neighbor search.

The paper is structured as follows. Section 2 reviews related work. Section 3
discusses the approaches from [23,30] in more detail as they are the most rele-
vant work to the work presented in this paper. We experimentally evaluate the
combination of the method from [30] and the point filtering proposed in [23] in
Section 4. Section 5 concludes the paper by discussing future work.

2 Related Work

Robertson and Cipolla developed one of the earliest image-based methods for
localization. Their database consists of 200 image of facades in an urban envi-
ronment, which are rectified to allow invariance against viewpoint changes [29].
The approach of Zhang & Kosecka retrieves the two images in a database that
are most similar to a given query image [40], but instead of canonic views they
use SIFT features to handle viewpoint differences. The position of the query
camera is then triangulated from the GPS positions of the two retrieved im-
ages. Schindler et al. use 30k images, each one associated to a GPS position,
to model large parts of a city [31]. To scale their localization method to such a
large dataset, they accelerate the image retrieval step through the vocabulary
tree method developed by Nister and Stewenius [26], using only features that
are informative about their location to obtain a discriminative vocabulary. While
Schindler et al. operate on a visual word level, Zamir and Shah use the original
SIFT descriptors found in 100k database images, storing the descriptors in a
tree-structure [39]. They propose an adapted SIFT ratio-test to deal with repet-
itive features and achieve positional accuracy comparable to GPS using a voting
scheme. To handle an ever larger dataset of around 1 million images, Avrithis
et al. aggregate the information of multiple images depicting the same scene
into scene maps [4]. This clustering has the positive effect that it increases the
recall while reducing the number of documents in the database. A still larger,
planet-scale level with more than 6 million database images is considered by Hays
and Efros who achieve localization through finding the modes of a probability
distribution of possible locations all over the globe [19].



In robotics, the scene in which a robot operates might not be known in
advance. In this case, cameras mounted on the robot are used to build a 3D
reconstruction of the environment. This model is in turn used to estimate the
relative position and orientation of the robot. An early version of such a simulta-
neous localization and mapping (SLAM) system has been proposed by Se et al.
[32]. Current state-of-the-art methods such as [6,11, 12] try to adapt the SLAM
approach to increasingly large scenes for real-time localization.

For large scenes, the construction of the 3D model cannot be achieved in
real-time anymore. In case of a static environment the reconstruction can be
precomputed using Structure-from-Motion techniques. Irschara et al. propose
an approach that uses such models for image-based localization [20]. To narrow
down the set of points that have to be considered to establish 2D-to-3D corre-
spondences, they use an image retrieval step to find similar images from the set
of images used for the reconstruction. Efficient GPU implementations for both
feature matching and vocabulary tree-based retrieval enable their approach to
perform in real-time. In order to localize query images substantially different
from the database images, Irschara et al. place synthetic cameras on the ground
plane to generate additional views. A informative subset of images is picked from
the set of original and new images to form the database for retrieval. Wendel et
al. generalize the placement of virtual cameras to full 3D to use a similar pipeline
for the localization of aerial vehicles [37]. In another retrieval-based approach,
Arth et al. use manually selected 3D point sets together with the images the
points are visible in for pose estimation on mobile phones [2].

Li et al. show that directly establishing 3D-to-2D correspondences without
the intermediate image retrieval step improves localization performance [23].
Starting with points visible in many database images, their prioritized matching
algorithm tries to match 3D points to the 2D features in the query image. A
point selection schemes computes a more compact representation of the origi-
nal reconstruction. They show that using such a reduced model improves both
localization performance and registration time. Sattler et al. present another
approach that directly tries to establish correspondences [30]. In contrast to Li
et al. they perform 2D-to-3D matching of 2D features against 3D points. To
accelerate the correspondence search they use a prioritization scheme that first
evaluates features for which only a small part of the descriptor space has to
be searched. The search cost associated with each feature is estimated using a
quantization of descriptor space defined by a visual vocabulary.

3 Prioritized Search

In this paper we evaluate the combination of the localization method from Sattler
et al. [30] with the point selection scheme from Li et al. [23], aiming to achieve a
similar localization performance and efficiency using fewer points and thus less
memory. In the following, we review both approaches.

Both methods are based on the key observation that not all 2D-to-3D cor-
respondences that can be found are needed to successfully estimate the camera



pose. The search time can be reduced by applying a prioritization scheme that
first considers the most promising features and stops the search if enough corre-
spondences are found. As Li et al. and Sattler et al. perform matching in opposite
directions, their prioritization schemes are fundamentally different.

Li et al. try to match 3D points against 2D image features (3D-to-2D match-
ing). They establish a correspondence between a 3D point with mean descriptor

d and a 2D feature with descriptor dy if the SIFT ratio-test [9=5H2 < 0.7 is
fulfilled. Here d; and d are the first and second nearest neighbors for d amongst
the descriptors in the query image, found through approximate tree-based search
[3]. Their prioritization scheme is based on co-visibility of points since a match
found for a point p increases the likelihood to find a correspondence for points
visible together with p. To this end, two points p and p’ are considered to be
visible together if there is at least one database image that contains both points.
The initial priority of a point is related to the number of database images it
is visible in. In case the model was constructed from images obtained from a
photo-sharing website, the method thus favors points visible in regions where
many photos were taken, i.e., regions which seem to be interesting for tourists.
If the model was built from more evenly distributed images, e.g., street view
panoramas, stable points visible under different viewing angles are preferred.
When a correspondence for p is found the priority of a point p’ is increased if p
and p’ are visible together. The search for correspondences is stopped as soon
as Iy = 100 correspondences are found. Observing that about one out of every
500 point creates a correspondences by pure chance, Li et al. stop the search as
soon as 500 - Ny =50,000 points have been considered [23].

Large-scale reconstructions contain millions of 3D points and some query
images might see only 3D points whose priority is so low that the search would
be stopped before any of them are considered. To circumvent this problem, Li
et al. propose to use a set of ”seed” points [23] that contains locally important
points from all over the model. By giving these points a higher priority than all
other 3D points, they perform a breadth-first search on the set of seed points to
quickly converge to the area of the model that is likely to be seen in the image
[23]. The set of seed points is computed by solving a set cover problem, where
every point covers all images it is visible in. The seed set is constructed by finding
a (minimal) set of points such that every image in the database is covered by at
least 5 points. Since computing the minimum set cover is NP-hard, Li et al. use a
simple greedy algorithm that iteratively selects the point that covers the largest
number of images that have not yet been covered by 5 points [23]. The greedy
algorithm is stopped after finding 2000 points to keep the set of seed points
compact. Li et al. also use a compact model, again obtained from the greedy
algorithm ensuring that every image is covered by at least K points without any
limit on the number of selected points, instead of the full 3D model containing all
points. They show experimentally that 3-20% of the original features (depending
on the structure of the dataset) suffice to achieve both faster localization times
and better localization performance, as more images can be registered using the
reduced model than with the original model.



While Li et al. match points against features, Sattler et al. propose an ap-
proach that performs matching in the other direction (2D-to-3D matching) [30].
They observe that a simple method that stores the mean descriptor for every 3D
point in a kd-tree and then performs approximate search [25] for the two nearest
neighbors for every query feature, followed by applying the SIFT ratio-test and
RANSAC-based pose estimation, achieves better localization performance than
current state-of-the-art methods [23]. While offering excellent performance, this
method is way too slow for practical applications. Sattler et al. argue that this
simple method wastes most of its search time on features that have no corre-
spondence to 3D points in the scene. Instead of treating every feature the same
way, they propose a prioritization scheme that firsts evaluates features for which
one can quickly decide whether they lead to a correspondence or not. The cost
of matching a 2D feature against the reconstruction is related to the number
of points that have to be considered. To simultaneously limit the search space
and estimate the search cost, Sattler et al. quantize the descriptor space of the
used SIFT features into visual words using approx. k-means clustering [27]. In
an offline process, the descriptors of the 3D points are assigned to visual words
and for each word the list of points that have at least one descriptor assigned
to it is stored together with the corresponding feature descriptors. Considering
only the points assigned to the same visual word allows to relate the search cost
of a query feature to the number of points stored in its word.

Given a new query image and the local features extracted from it, the lo-
calization method by Sattler et al. first assigns every feature in the image to
its nearest visual word using approximate kd-tree search [25]. The list of (fea-
ture,word) pairs is then sorted in increasing number of (point,descriptor) pairs
assigned to the words during the offline process. The features in the image are
considered in this order. Given the currently considered feature f, the method
performs a linear search through all (point,descriptor) pairs stored in the visual
word the descriptor d; of f was assigned to. The search finds the two points p,
g (p # q) whose descriptors d,, d, are the nearest neighbors of dy. Similar to
[23], a correspondence between the feature f and the point p is established if

the SIFT ratio-test ij;:ijp”j < 0.7 is fulfilled. Since the 3D model is obtained

from a SfM reconstruction, every point has at least two descriptors assigned
to it. Therefore, a point can potentially be assigned to multiple visual words.
To avoid establishing multiple correspondences containing the same 3D point,
a newly found correspondence (f',p) replaces an existing correspondence (f, p)
if ||dp — dpll2 < ||df — dp|l2 and is rejected otherwise. The search for further
correspondences is stopped when N; correspondences are found. Similar to Li et
al., the 6-point DLT algorithm [17] is used to estimate the camera pose inside a
RANSAC [13] loop. For robust estimation, a randomized RANSAC variant [9]
is used in conjunction with a local optimization scheme [8].

Sattler et al. rigorously explore the design space of this method through ex-
periments on the datasets from [20, 23], showing that their method outperforms
other state-of-the-art methods such as [20, 23] in either localization performance
or efficiency or even both. They explore different strategies to represent 3D points



by their descriptors, reporting that the following two give the best results: The all
descriptors (all desc.) strategy represents every 3D point by all of its descriptors.
As a result, more than one descriptor of a point can be stored in the same visual
word, increasing the search time for the word. The integer mean per visual word
(int. mean) strategy tries to reduce the memory requirements by replacing mul-
tiple descriptors of the same point assigned to the same word by their mean de-
scriptor. The entries of this mean descriptor are then rounded to the nearest inte-
ger value to be able to use only 1 byte for each entry instead of the 4 bytes needed
by a floating point representation. Choosing N; = 100 helps to reduce the search
times without any significant negative impact on the registration performance.
Furthermore, assuming an initial inlier ratio of 20% for RANSAC effectively lim-
its the maximal number of taken samples with little impact on the localization
performance. Source code for the method has been made publicly available and
can be found at http://www.graphics.rwth-aachen.de/localization/.

There is an interesting analogy between the prioritization scheme of Sattler
et al. and the well-known idf-weighting scheme used in image retrieval [33]. The
idf-scheme weights down words that are used in many documents since they are
less discriminative. Similarly, the prioritization scheme from [30] favors features
mapped to a visual word which does not occur very often in the model and thus
contains discriminative points. Therefore, besides trying to minimize the search
costs by finding a suitable ordering of features, the prioritization scheme starts
with the most promising features found in the image.

An interesting result from [30] is that the performance of a generic set of
100k visual words obtained from an unrelated dataset is similar to the perfor-
mance of a specialized vocabulary trained from the descriptors of the points in
the corresponding reconstruction. This means that the same vocabulary can be
re-used, independently of the considered dataset. The main cause for this, some-
what surprising, result is that Sattler et al. perform a very approximate nearest
neighbor search to compute the assignment of descriptors to visual words in
order to minimize search costs. Specially trained vocabularies do not offer any
advantages for such a very approximative search.

Two problems will arise when applying the method from Sattler et al. on even
larger datasets. Since multiple STFT descriptors are stored for every 3D point, the
model will eventually become too large to fit into the RAM of a PC. As more
and more points are used, the distances between the descriptors of one point
and their nearest descriptors belonging to another point decrease. This has a
positive impact on the run-time of the RANSAC-based pose estimation, because
the SIFT ratio-test is able to remove more and more wrong correspondences.
However, as the descriptor space becomes denser, the ratio-test will also filter out
more correct correspondences. Thus only features with descriptors very similar
to the ones of its corresponding 3D point will pass the SIFT ratio-test. As a
result, images differing too much from the views in the database cannot be
registered anymore, decreasing the localization performance of the algorithm.
Compact models containing fewer points than the original reconstruction require
less memory and can therefore help to solve the first problem. Using fewer points



Table 1: Details on the datasets used for experimental evaluation.

Dataset |# Cameras|# 3D Points|# Descriptors|# Query Images
Dubrovnik 6044 1,886,884 9,606,317 800
Rome 15,179 4,067,119 21,515,110 1000
Vienna 1324 1,123,028 4,854,056 266

can also induce a sparser descriptor space, helping the localization method to
avoid rejecting too many good correspondences.

In the case of 3D-to-2D matching, the descriptor space formed by the 2D
features in an image is much sparser than the descriptor space of the 3D model.
Thus, Li et al. are able to avoid the problem of rejecting too many correct
matches at the cost of finding more wrong correspondences. Note that their
approach still has problems scaling to larger datasets. To enable the breadth-first
search performed by the algorithm, a larger set of seed points has to be used for
reconstructions containing more points. Based to the observation that roughly
one out of every 500 points matches by chance, it will happen that the algorithm
stops before even considering the whole seed set since enough correspondences
are already found. In turn, finding enough good candidate points for matching is
not a problem for the method from Sattler et al. due to using a visual vocabulary
for finding possible correspondences.

4 Compact Models for 2D-to-3D Search

In this section, we evaluate the combination of the localization method from
[30] and the point selection scheme proposed by [23]. Specifically, we explore
the impact of compact models constructed by different choices for the set cover
parameter K on localization performance, efficiency and accuracy. In Section
4.1 the used datasets and the experimental setup are explained. The impact
of the parameter K on both registration performance and registration times is
evaluated in Section 4.2. In Section 4.3 we show that compact models can help
the method to handle larger datasets. In Section 4.4 we detail the impact of K
on the localization accuracy. Since the approach from Sattler et al. outperforms
the other state-of-the-art approaches, such as [20, 23], we do not compare our
results against other approaches.

4.1 Experimental Setup

We use the three large-scale datasets from [20, 23, 30] to allow a direct and fair
comparison. For two of the datasets, Dubrovnik and Rome, the database images
for the reconstruction were obtained from the photo-sharing website Flickr [23].
For the Vienna dataset the database images were taken at regular intervals with
a single camera [20]. The original Dubrovnik reconstruction consists of 6844 im-
ages depicting parts of the old city of Dubrovnik. 800 randomly selected images
were removed from the reconstruction to obtain a set of relevant query images.



Table 2: The percentage of points selected depending on K for Dubrovnik and Rome.

K

Dataset | 100 | 200 | 300 400 500 600 700 800 900 | 1000

Dubrovnik|3.84%|8.61%|13.58%| 18.6% |23.55%|28.24%|32.68%|36.88%|40.82%|44.59%
Rome |3.56%|8.36%13.57%|18.93%|24.23%|29.42%|34.32%|38.94%|43.29% |47.40%

Table 3: The percentage of points selected depending on K for the Vienna dataset.

K
Dataset| 500 | 750 | 1000 | 1250 | 1500 | 2000 | 2500 | 3000
Vienna |7.54%]|12.53%|18.03%|23.62%129.20%|39.68%|49.28%|58.00%

For every camera in the test set, the SIFT descriptors of the points visible in it
were deleted from the model. Any point visible in only one remaining camera
was also removed. The query images for the Rome dataset were obtained in the
same fashion, removing 1000 randomly selected images from the 16,179 images
in the initial reconstruction. In contrast to the Dubrovnik model the Rome re-
construction consists of multiple connected components, each one representing a
distinct landmark in Rome [23]. The Vienna model consists of 1324 cameras in
three connected components. Query images were obtained from the Panoramio
website. All query images have maximal width and height of 1600 pixels. The
Dubrovnik and Rome models used in [23] and [30] differ slightly in the number
of 3D points they contain. We use the latter model. More information about the
datasets than presented in Table 1 is available in [20, 23].

For the Dubrovnik model, Li et al. computed a transformation into a geo-
referenced coordinate frame such that distances in the model can be expressed
in meters [23]. Since the query images were obtained by removing images from
the initial reconstruction, we can use the original camera positions computed by
SfM as ground truth and measure the localization accuracy.

As proposed by Li et al., we accept a query image as localized, or registered
against the model, if the best camera pose estimated by RANSAC has at least
12 inliers. Repeating each experiment 10 times to account for the random nature
of RANSAC, we report the average number of images that can be registered and
the average time needed to register or reject an image. Assuming that SIFT
features are already given, the time needed to process an image is the sum of
the time needed to assign all of its features to visual words, the time needed
for correspondence search and the time needed by RANSAC to estimate the
camera pose. Beside the total time, we also report the time required for the
correspondence search and the time needed for RANSAC.

4.2 Compact Models

As shown in [38], pictures found on photo collection websites are distributed
around certain iconic views as tourists tend to take slightly different photos
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Table 4: Mean registration performance and times for 100k visual words and different
values for K. K =00 denotes the results reported in [30] for which all available points
were used. We obtain a similar registration performance as [30] using compact models
with of fewer 3D points. For Dubrovnik and Rome we achieve better registration times.

all descriptors integer mean per vw

# reg. registr. | rejection # reg. registr. | rejection

K images time [s] | time [s] images time [s] | time [s]
100 | 569.40 £3.17| 1.79 5.66 604.10 £ 4.61 | 1.59 5.45
24| 200 | 736.20 £3.26 | 0.94 5.01 739.60+1.96 | 0.78 4.67
é 400 | 776.80 £ 1.75 | 0.42 3.43 77530+ 1.16 | 0.37 3.03
g 600 | 781.30+1.42| 0.31 3.01 77850+ 1.18 | 0.28 2.66
=1 800 | 782.10£1.20| 0.29 2.32 779.20+1.40 | 0.26 2.17
- 900 | 782.00+0.94 | 0.27 2.45 780.80 = 1.23 | 0.26 1.96
1000 | 781.90 £ 0.99 | 0.27 2.43 781.30+0.95| 0.25 1.88
oo | 783.90+1.60| 0.31 2.22 782.00+0.82 | 0.28 1.70
100 | 950.10£1.66 | 0.41 3.08 947.40 £ 2.76 | 0.32 2.46
200 | 965.20+1.62 | 0.23 1.84 964.10£1.45| 0.20 1.63
ol 400 |971.90+1.45| 0.21 1.90 972.50 £ 1.08 | 0.18 1.77
% 600 | 974.60 +1.07 | 0.21 1.88 974.70 £1.83 | 0.18 1.77
=1 800 | 973.90+1.52 | 0.21 1.76 974.30£1.16 | 0.18 1.60
900 | 974.00+1.33 | 0.22 1.62 975.90+1.91| 0.19 1.56
1000 | 974.90 £ 0.99 | 0.23 1.63 974.80 £1.87 | 0.20 1.59
oo [976.90+£1.29| 0.29 1.90 974.60 = 1.65 | 0.25 1.66
500 | 122.50 £2.07 | 2.44 5.37 127.00 £1.76 | 2.28 5.12
< | 1000 | 181.30 £2.00 | 1.34 4.25 184.70 £2.54 | 1.24 4.02
511500 | 194.70 £ 0.82 | 0.73 3.63 193.90 £1.29 | 0.64 3.50
ﬁ 2000 | 202.30 £1.34 | 0.62 3.30 202.00 +1.05| 0.63 3.04
2500 | 206.40 £1.26 | 0.60 3.07 205.10+1.10 | 0.58 2.85
3000 | 206.90 £0.74 | 0.54 2.84 206.10+1.10 | 0.51 2.70
oo [207.70£1.06 | 0.50 2.40 206.90 £ 0.88 | 0.46 2.43

of the same buildings. Since the query images for Dubrovnik and Rome were
obtained by randomly selecting images from the reconstruction, they have the
same distribution as the database images. Thus the descriptors found in the
query images should be rather similar to those in the model. While the Vienna
model was reconstructed from images taken in nearly regular intervals, the query
images obtained from Panoramio follow a different distribution. Furthermore,
the database images were taken with a single camera on the same day while
query images are taken at different days and at different times of day with
different cameras. This makes the Vienna dataset the most challenging of the
three datasets and we can expect a larger difference between the SIFT descriptors
found in the query image and the those found in the database images. Due
to this difference in distributions, we use a different range of values for the
set cover parameter K for the Vienna dataset compared to the Dubrovnik and
Rome datasets, similar to [23]. Table 2 shows the percentage of points selected
depending on K for the Dubrovnik and Rome datasets, while Table 3 shows the
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Fig.1: Dependence of the average time needed to find enough correspondences and
the average time to compute the camera pose through RANSAC on the parameter
K. Timings are shown for (a), (d) Dubrovnik, (b), (¢) Rome and (c), (f) Vienna.
100k visual words were used for the results shown in the top row and 10k words for
the bottom row. Fewer 3D points yield more wrong correspondences, increasing the
run-time of RANSAC. Search time increases with the number of points in the words.

percentage of selected points for the Vienna dataset. We only consider values
for K until obtaining around 50% of the points contained in the original model
since we want to use the compact models to save storage space.

We evaluate the compact models obtained for the values for K shown in
Tables 2 and 3 together with the two strategies, all desc. and int. mean, in the
pipeline proposed in [30]. The visual vocabulary containing 100k words employed
in this experiments is the same as in [30]. We report the mean number of images
that can be localized and the mean time needed to register or reject an image in
Table 4. Small values for K lead to a significantly worse localization performance
with high registration and rejection times. Using more points allows to achieve
a registration performance similar to [30]. Slightly faster registration times can
be achieved for K from {800,900,1000} for Dubrovnik and Rome, while the
registration times for the Vienna dataset are a little worse compared to the full
model. There are two possible explanations for the observed behavior. First,
using fewer points and thus fewer descriptors leads to a sparser descriptor space
and visual words that are less full. As the distances between descriptors stored
in a visual word grow, it becomes more likely to accept wrong matches through
the SIFT ratio-test, which in turn increase the registration time. Secondly, the
selected points might not suffice to allow robust localization.
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Table 5: Mean registration performance and times for 10k visual words and different
values for K. For the Dubrovnik and Rome datasets, fewer points still allow a similar
registration performance compared to [30] at higher localization costs. A significantly
better performance at comparable registration times is achieved for the Vienna dataset.

all descriptors integer mean per vw
# reg. registr. | rejection # reg. registr. | rejection
K images time [s] | time [s] images time [s] | time [s]
100 | 771.00 £1.49 | 0.36 2.03 765.40 +1.96 | 0.26 1.55
% 200 | 778.80 £1.75| 0.31 1.81 77720092 | 0.21 1.18
2| 300 |780.70£0.95| 0.33 1.70 778.00+1.49 | 0.22 1.18
—!; 400 | 782.60+1.84 | 0.35 1.86 779.20+1.03 | 0.24 1.19
A | 600 | 783.30£0.95| 0.40 2.02 781.60 +2.22 | 0.27 1.38
800 | 783.40+0.97| 0.44 2.12 783.20+1.62 | 0.30 1.43
1000 | 784.50 + 1.65 | 0.47 2.22 784.30 £ 0.82 | 0.32 1.69
[30] | 783.90£1.60 | 0.31 2.22 782.00+0.82 | 0.28 1.70
100 | 964.20£1.32| 0.38 1.54 959.00 £ 1.56 | 0.21 1.13
200 | 972.40+1.84| 0.43 2.01 968.90 £1.10 | 0.24 1.36
o 300 | 974.90 £0.99 | 0.47 2.38 971.60 £ 1.17| 0.28 1.44
g1 400 | 978.80+1.03 | 0.51 2.64 974.80 £ 1.55 | 0.31 1.55
g% 600 | 980.00 £0.67 | 0.58 2.76 976.60 £0.84 | 0.36 1.86
800 | 978.80£1.03| 0.63 3.19 976.80 £1.62 | 0.40 2.09
1000 | 980.20 £1.75 | 0.67 3.45 977.10+1.73 | 0.44 2.23
[30] |976.90 £1.29 | 0.29 1.90 974.60 £1.65 | 0.25 1.66
500 | 198.70 £1.16 | 0.54 2.63 198.10 £1.66 | 0.55 2.18
750 | 209.00+1.25 | 0.57 2.31 205.90 +0.74 | 0.52 1.86
1000 | 215.00 +1.25 | 0.55 1.91 209.60 +1.43 | 0.46 1.61
211250 | 217.50 +£0.97 | 0.56 1.67 213.60£0.70 | 0.44 1.37
.5 1500 | 218.10 £ 0.88 | 0.56 1.54 213.90+1.10 | 0.44 1.35
> 12000 | 219.30 £ 0.67 | 0.55 1.43 214.80+1.23 | 0.44 1.27
2500 | 219.70 £0.82 | 0.58 1.31 215.20+£0.92 | 0.44 1.23
3000 | 218.90 £1.20 | 0.58 1.29 214.10+1.29 | 0.43 1.23
[30] |207.70 £1.06 | 0.50 2.40 206.90 = 0.88 | 0.46 2.43

The first explanation is easy to verify. Figure 1 shows how the mean time for
correspondence search and the mean time RANSAC needs depend on the choice
of K for (a) Dubrovnik, (b) Rome and (¢) Vienna. Compact models with more
points indeed lead to faster RANSAC times due to fewer wrong matches.

To reject the second explanation, we repeat the experiment using a visual
vocabulary containing only 10k words. Since each of the words in this smaller
vocabulary covers a larger part of descriptor space, the likelihood of assigning
the descriptors of a 3D point and the descriptor of its corresponding feature to
the same word increases compared to the original vocabulary. Table 5 shows that
a good registration performance can be achieved for much lower values of K with
the smaller vocabulary, indicating that enough points for robust localization are
selected. A compact model containing only about 18% of the original points
(K =400 for Dubrovnik and Rome, K = 1000 for Vienna) gives a performance
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comparable to the original methods from [30], albeit at increased registration
times. As shown in Figure 1(d)-(e) this increase is mainly due to the slower search
as more points are contained in the words. It is noticeable that the difference in
search time for both strategies is much larger for 10k words than for 100k words.
Since more descriptors of the same point are mapped to the same word for the
smaller vocabulary, the integer mean strategy is able to compress them into one
mean descriptor while the all descriptor strategy has to use all descriptors. At the
same time, the all descriptor strategy is able to handle denser visual words much
better as all information about the 3D points is preserved, which is visible in the
better registration performance for smaller values for K. We observe a significant
increase in the localization performance for the smaller vocabulary on the Vienna
dataset. As mentioned above, the difference in viewpoint and viewing condition
is the largest on this dataset, explaining that using fewer words increases the
chance of assigning features and points that belong together to the same visual
word. As predicted above, the number of wrong correspondences decreases for
the words in the smaller vocabulary as evident by the faster RANSAC run-time
shown in Figure 1(d)-(f) compared to Figure 1(a)-(c). This faster pose estimation
has the largest impact on the Vienna dataset for which the mean registration
time was dominated by the time spend by RANSAC when using 100k words.

4.3 Combining the Datasets

As shown in the previous experiments, we can use compact representations of the
3D models obtained by the point selection scheme from [23] to reduce the mem-
ory footprint and still obtain a similar registration performance and efficiency
compared to the original models. For larger datasets, the descriptor space be-
comes denser as more points are used. As a result, the SIFT ratio-test is more
likely to also reject good correspondences. As compact models contain fewer
points, they could help to avoid the loss in registration performance.

In this section we want to explore the effect of using compact models on the
density of the descriptor space for datasets larger than the three models used
so far. Although modern SfM approaches can efficiently handle large datasets,
obtaining the images for very large scenes is still challenging. We therefore try to
simulate a larger dataset by combining the three models. This is motivated by
the observation that only few correspondences are found when using the query
images from one dataset for different model [30]. The combined datasets therefore
represents a sort of ”best case” model which consists of distinct landmarks. If
we can observe that the descriptor space becomes too dense for this model, we
would expect that the space will also become too dense for other large datasets.

We combine (subsets of ) the three models to obtain three larger datasets:
The first one consists of all points from all three datasets, i.e., we set K = co. The
second is obtained using the point selection scheme with K = 900 on Dubrovnik
and Rome and K = 2500 on Vienna. The last one consists of the points selected
with K = 400 on Dubrovnik and Rome and K = 1000 on Vienna. We chose
the combinations 900 / 2500 and 400 / 1000 because these were the smallest
values for K that gave results similar to the original method when using 100k
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Table 6: Results for combining different versions of the three models for query images
from each dataset. We use K to build compact models for Dubrovnik and Rome and K
to obtain a compact model for Vienna. For comparison we include the results from [30]
on the single models. Due to the denser descriptor space, registration performance drops
compared to [30] for the combined models, but the usage of compact models can help
to decrease the registration and rejection times at a similar localization performance.

7 reg. registered rejection
K, / K2 | method images search [s] | RANSAC [s] | total [s] | time [g]
0 / 50 all desc. |779.20 4+ 0.63 0.42 0.02 0.55 1.32
int. mean | 776.00 4= 1.25 0.33 0.02 0.46 1.05
é 900 / 2500 all desc. |775.80 +1.23 0.27 0.02 0.40 0.90
3 int. mean | 775.80 & 1.40 0.20 0.02 0.33 0.68
3 all desc. |774.60 +1.17 0.19 0.02 0.31 0.64
=
A 400 / 1000 int. mean | 773.50 4= 0.85 0.13 0.02 0.25 0.45
130] all desc. |783.90 &+ 1.60 0.10 0.08 0.31 2.22
int. mean | 782.00 4 0.82 0.08 0.08 0.28 1.70
% / % all desc. |973.10 4 2.02 0.24 0.04 0.36 1.68
int. mean | 971.20 £ 1.55 0.19 0.04 0.31 1.35
all desc. [975.00 +1.25 0.16 0.04 0.28 1.32
g 900 / 2500 int. mean | 970.20 4+ 1.23 0.12 0.04 0.24 1.10
3
~ all desc. |971.90 +0.74 0.11 0.04 0.23 1.26
400 /1000 int. mean | 970.90 4+ 1.79 0.07 0.04 0.20 1.09
130] all desc. |976.90 4+ 1.29 0.15 0.05 0.29 1.90
int. mean | 974.60 £ 1.65 0.11 0.05 0.25 1.66
/ all desc. |202.70 +0.67 0.54 0.01 0.67 1.29
>/ %% lint. mean |200.80 +0.79| 0.43 0.01 0.57 | 0.98
. all desc. |203.90 +0.74 0.36 0.02 0.50 0.82
g 900 /2500 int. mean | 200.60 4= 0.52 0.27 0.03 0.41 0.60
]
e 1l desc. |192.60 4+ 1.26 0.24 0.02 0.37 0.66
i a
400 / 1000 int. mean |189.10 £ 0.57| 0.16 0.02 0.30 0.48
130] all desc. |207.70 +1.06 0.06 0.30 0.50 2.40
int. mean | 206.90 4 0.88 0.05 0.28 0.46 2.43

respectively 10k visual words. We only consider the vocabulary of size 100k
words since the search time for 10k words were already too large for the single
models. Table 6 reports the registration performance and efficiency for the query
images from each dataset and compares it to the results obtained in [30] on the
single models. As can be seen, the sparser descriptor space obtained from the
compact models is still too dense to prevent a loss in registration performance.
However, the compact models can be used to speed up the search times while
still obtaining very similar performance compared to using the full model.

The denser descriptor space has a significant impact on the pose estima-
tion time as most wrong correspondences are eliminated by the SIFT ratio-test,
allowing us to achieve even better registration and rejection times than the orig-
inal method. For example, we obtain significantly better registration times with
K = 1000 for the query images from Vienna dataset when combining the mod-
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els compared to only considering the Vienna model. This is again caused by the
denser descriptor space which helps to eliminate wrong correspondences.

4.4 Localization Accuracy

We measure the localization accuracy of the combination of point selection and
the localization method from [30] on the Dubrovnik dataset. The random nature
of RANSAC results in slightly differing camera pose estimates for all repetitions
of the experiment. To compensate for this, we measure the average camera po-
sition for every query image from all its estimated poses with at least 12 inliers
from the 10 repetitions. We report the distance between this averaged position
and the ground truth position of the query camera in the original reconstruction.

The greedy point selection algorithm iteratively picks the point that covers
the largest number of cameras that have not yet been covered and thus prefers
points visible in many cameras [23]. We can expect that the amount of positional
uncertainty related to the selected points is relative small, since they have been
detected in multiple images. Using these high-quality points should improve the
localization accuracy. Unfortunately, SIFT features are not equally distributed
over images but mostly found in highly textured regions. Given such a highly
textured region, it is rather likely that multiple points in this region appear in
many database images. Thus if one of them is selected by the greedy algorithm it
is very likely that also the other points are selected since they are also visible in
a similar number of images. As a result, it might happen that the selected points
are not well-distributed over the model but form small clusters. This in turn can
lead to unstable or even degenerate configurations for the pose estimation step.
To verify whether using fewer points yields less accurate localization results,
we look at the cumulative distribution of the query images over localization
errors depicted in Figure 2. In contrast to [30], we followed RANSAC-based pose
estimation with a linear least-squares estimate of the pose from the inliers. As
seen in Section 4.2, the number of images that can be registered differs with the
choice of K. To allow a fair comparison, we normalized the cumulative histogram
for each variant using the total number of images that it could register, i.e., the
number of images that could be localized at least once during the 10 repetitions of
the experiment. As can be seen in the figure, using too few points indeed results in
worse localization accuracy. However, about 14% of the total features (K = 300,
cf. Table 2) are already sufficient to achieve localization accuracy comparable
to or better than the results reported in [30]. Choosing K from {800,900, 1000}
gives the best results. We notice that using the smaller vocabulary of 10k words
improves the accuracy. Due to the coarser quantization and the approximative
nature of visual word assignments, it is more likely to assign two descriptors of
the same 3D point to the same visual word when using 10k words instead of
100k. This enables the algorithm to find more correspondences for points seen
from rather large viewpoint changes compared to the original cameras, which in
turn yield better configurations for pose estimation.

More details on selected values for K are given in Table 7. We report the
median localization error, the 1st and 3rd quartile and the number of images with
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Fig. 2: Normalized cumulative histograms of the distribution of the localization error
depending on K for all descriptors using (a) 100k words respectively (c¢) 10k words
and integer mean using (b) 100k words and (d) 10k words. Choosing K > 300 helps
to improve the localization accuracy compared to the original method independently
of the vocabulary size since a higher percentage of reliably localized images points is
used. Values for K from the range [800,1000] give the best results.

a localization error smaller than 18.3m respectively 400m, which correspond to
the mean and maximal errors reported in [23]. The results verify the observations
from Figure 2, since compact models help to improve the localization accuracy.
Again, the usage of a smaller vocabulary has a positive impact on the accuracy of
the position estimates. We do not report the mean or maximal registration error,
since there are a few images with very high localization error of up to multiple
kilometers. These large errors are caused by degenerate point configurations for
pose estimation. We observe that images with such large errors mostly have
more than 12 inliers, indicating that the pure inlier count is not a good measure
for localization accuracy. This behavior has already been reported by Sattler et
al. [30]. They show that using the focal length of an image, obtained from its
EXIF tag, for 3-point pose estimation [13, 16] or a more restrictive camera model,
which estimates only its focal length and a radial distortion parameter [21], help
to obtain more accurate estimates. We could also estimate the covariance of
the position parameters of the query camera and reject a camera for which the
positional uncertainty is too high.
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Table 7: Statistics on the localization errors for selected values of K. Using compact
models helps to improve the localization accuracy compared to the original methods
using all points (K = oo) from [30] and the method from [23].

Median | Quartiles [m] | #imgs. with error
K | Method |# vw| [m] |1st 3rd < 18.3m | > 400m
all desc. 10k 1.2 0.5 4.1 710 7
400 100k 1.3 0.5 4.3 690 9
int. mean 10k 1.2 0.5 4.1 703 6
100k 1.3 0.5 4.5 689 12
all desc. 10k 1.1 0.4 3.8 710 9
800 100k 1.2 0.5 4.3 698 11
int. mean 10k 1.2 0.4 4.3 714 12
100k 1.3 0.4 4.1 705 13
all desc. 10k 1.1 0.4 3.6 713 8
900 100k 1.2 0.4 3.9 698 10
int. mean 10k 1.2 0.5 3.5 709 9
100k 1.3 0.5 4.3 696 14
10k 1.1 0.4 3.8 714 9
10007 alldesc- | 4o | 19 04| 40 700 11
int. mean 10k 1.1 0.4 4.1 711 11
100k 1.3 0.5 4.3 701 10
. all desc. | 100k 1.4 0.4 5.9 685 16
int. mean | 100k 1.3 0.5 5.1 675 13
[100 [P2F [23] [ - | 93 [75] 134 [ 655 [ - |

We report the localization accuracies for the combined datasets in Table 8.
The results were obtained without the final linear least-square pose estimate and
show no significant difference in localization accuracy between the different com-
binations and the original results from [30], obtained using only the Dubrovnik
dataset. The drop in localization accuracy compared to the experiments on the
Dubrovnik dataset alone (cf. Table 7) can be explained by the different set of
correspondences found when also using the points from the other datasets.

5 Conclusion & Future Work

In this paper we have shown that not all points contained in a Structure-from-
Motion model are needed for robust image-based localization. By combining the
state-of-the-art localization method from Sattler et al. [30] and the simple point
selection scheme from Li et al. [23] we demonstrated that using less than half of
the original points still allows state-of-the-art localization performance at similar
registration and rejection times and with slightly better localization accuracy.
This result is still valid when combining the different datasets to simulate one
larger reconstruction. Therefore, we can save memory by storing fewer points
and descriptors without a significant sacrifice in performance and efficiency. As
the method of computing the compact models does not depend on the type
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Table 8: Statistics on the localization errors for the combined datasets from Section 4.3.
There is no significant difference in localization accuracy between the different combi-
nations and the original results from [30].

Median | Quartiles [m] | #imgs. with error

Ki / Ko | Method [m] | 1st 3rd < 18.3m | > 400m
/ all desc. 1.4 0.5 4.7 688 13
/% lint. mean| 1.3 [0.4| 5.2 674 9
all desc. 1.3 0.4 5.8 671 12
900 / 2500 int. mean 1.5 0.5 5.5 677 11
all desc. 1.5 0.5 6.4 671 12
400 / 1000 int. mean 1.5 0.5 6.9 671 13
[30] all desc. 1.4 0.4 5.9 685 16
int. mean 1.3 0.5 5.1 675 13

of feature descriptors, it can be readily combined with more memory efficient
descriptors [5,36] to further reduce the memory footprint.

The point selection algorithm from Li et al. might prefer points that form
small clusters over points that are well-distributed over the model, which can
lead to unstable configurations for pose estimation. The point selection scheme
does not take similarity in descriptor appearance into account. As shown in
Section 4.3, it thus cannot prevent a drop in registration performance when
the descriptor space becomes denser. Furthermore, localization performance and
efficiency depend on the set cover parameter K. An interesting open question
is whether we can design a better, parameter-free point filtering algorithm that
ensures a better distribution of points and impacts the descriptor space.

As shown in Section 4.2, the number of points stored in a visual word has an
impact on the quality of the found correspondences. A data structure that tries
to adapt the number of words to take the density of the points inside a word
into account could help to improve localization performance further.

Finally, we notice that the localization methods proposed by Li et al. and
Sattler et al. have both distinct strength and weaknesses, as detailed at the end
of Section 3. Combining their matching directions could help to obtain a novel
localization method that combines the strength of both approaches while elimi-
nating their weaknesses, which would have a positive impact on its performance.
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