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Multiresolution Modeling

Shape deformation with
intuitive detail preservation
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Multiresolution Modeling

Frequency
decomposition

Change low
frequencies

Local frame
details
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Two Different Meshes

• User interaction

• Decomposition operator

•
•
• Deformation operator

• Reconstruction operator

• Responsible for robustness & 
efficiency

Detailed

Base
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Detail Encoding

Displacements in
normal direction
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Detail Encoding

Displacements in
normal direction Independent

tesselations!
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Remeshing ?
• Features, sharp edges

• Hand-crafted triangulation

•
•
•
• Low frequency surface

• No aliasing problems

Detailed

Base

Remesh base surface
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Outline

• Introduction

• Freeform Modeling

• Remeshing

• Results
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Modeling Requirements

• Per-vertex interpolation constraints

• Arbitrary support

• Physically plausible behaviour

• Stiffness, smoothness
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Boundary Constraint Modeling

• Prescribe boundary constraints

•
•
•
• Constraint energy minimization

•
• Euler-Lagrange PDE:

∆k(S) = 0

vertex positions
C0 - C2 continuities

Ek(S) =

∫
Fk (Suk , Suk−1v, . . . , Svk)
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Energy Functionals

Membrane
∆S = 0

Thin-Plate
∆

2
S = 0

∆
3
S = 0
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Modeling Metaphor
• Support region (blue)

• Handle regions (green)

• Fixed vertices (grey)
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Discretization → Linear System
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kp = b

h = {h1, . . . , hH}
p = {p1, . . . , pP }
f = {f1, . . . , fF }
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Laplace Discretization
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qi

(cot αi + cot βi) (p − qi)
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Problems

∆ (p) :=
2

A(p)

∑

qi

(cot αi + cot βi) (p − qi)

• Degenerate triangles

• Matrix no longer positive definite

• Reconstruction operator unstable

• Matrix unsymmetric

• Better solvers for symmetric matrices
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Irregular Tesselation

Why not uniform Laplacian?

Uniform Weights Cotangent Weights
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Uniform Laplacian Discretization?

Real-world meshes
are irregular...
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Remeshing Objectives

• Numerical robustness

• Triangle roundness

• Isotropic remeshing

• Computational efficiency

• Fast linear system solver

• Symmetric matrix



Computer Graphics Group
Mario Botsch

Isotropic Remeshing

• No global parameterization

• Explicit remeshing instead

• Several related works:

• Kobbelt et al. 2000

• Vorsatz et al. 2003

• Surazhsky et al. 2003
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Isotropic Remeshing

Specify target edge length L

Iterate:

1. Split edges longer than emax

2. Collapse edges shorter than emin

3. Flip edges to get valence 6

4. Relaxation by tangential smoothing

Optimal 
thresholds?
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Edge Length Thresholds

⇒ emax =
4

3
L

|emax − L| =

∣
∣ 1

2
emax − L

∣
∣

∣
∣emin − L

∣
∣ =

∣
∣ 3

2
emin − L

∣
∣

⇒ emin =
4

5
L
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Remeshing Results

Original
(

1

2
, 2

) (
4

5
,

4

3
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Isotropic Remeshing

• Leads to well-shaped triangles

• Increased robustness

• But matrix still unsymmetric

• Because of  Voronoi areas A(p)

• Equalize areas !

∆ (p) :=
2

A(p)

∑

qi

(cot αi + cot βi) (p − qi)
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Area Equalization

• Assign mass A(p) to each vertex p

• Mass weighted centroid

•
• Tangential update

gi :=
1∑

qi
A(qi)

∑

qi

A(qi)qi

pi !→ pi + λ
(
I − nin

T

i

)
(gi − pi)
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Remeshing Results
Original

(
1

2
, 2

) (
4

5
,

4

3

)
Area Eq.
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Remeshing Results
Original (1/2, 2) (4/5, 4/3) Area Eq.
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Area Equalization Remeshing

• Efficient algorithm

• Projection instead of local parametrization

• Remesh 100k triangles in <5 sec

•
• Very regular mesh

• Inner angles close to 60º

• Relative mean area error <5%
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Increased Robustness

• No degenerate triangles

• Matrix is positive definite

• No obtuse angles 

• Cotangent weights are positive

• More reliable Laplacian discretization
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Symmetric Laplace Matrix

• Replace Voronoi areas by their mean

•
•
• Matrix becomes symmetric

•
• Small low-frequency errors (~0.7%)

• Compensated by detail encoding (~0.2%)

∆̄ (p) :=
2

Ā

∑

qi

(cot αi + cot βi) (p − qi)

∆̄
kp = b
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Different Solvers

• Iterative solvers

• Not suitable for large systems: O(n2)

• Multigrid solvers

• Robust and efficient: O(n)

• Quite complicated to implement

• Direct solvers ?
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Direct Solvers

• Naive direct solvers are O(n3)

• Not suitable for large systems

• System is sparse, not band-limited

• Band-limitation by reordering

• Band-limited factorizing solvers

• Factorization:  O(bn2)

• Solving:           O(bn)
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Direct Solvers

• Unsymmetric systems:

• Band-limited LU factorization

• Requires pivoting for stability

• Compromises band-limiting permutations

• Symmetric systems:

• Band-limited Cholesky factorization

• Backward stable, exploits symmetry
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Comparison

• Iterative solvers

• Not suitable for large systems: O(n2)

• Multigrid solvers

• Robust and efficient: O(n)

• Quite complicated to implement

• Direct solvers

• Same linear complexity

• Faster by an order of magnitude

• Considerably easier to use
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Comparison (15k DoF)

Precomputation XYZ Solution

Iterative 7.2s 7.4s

Multigrid 4.5s 0.8s

Direct 2.4s 0.07s

O(n)

O(n)

O(n2)
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Multigrid vs. Direct
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System Overview

+Displacements-
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System Overview

+Displacements-

Factorization
(per modification)

Remeshing
(per model)

Back-Subst.
(per frame)
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Conclusion
• Multiresolution framework

• Independent tesselations

• Remesh smooth base surface

• Area equalizing isotropic remeshing

• Improves numerical robustness

• Yields symmetric matrix

• Allows for direct solvers

• Significantly faster

• Easier to use


