A Remeshing Approach to Multiresolution Modeling

Mario Botsch Leif Kobbelt

Shape deformation with intuitive detail preservation

RNTHAACHEN

Frequency decomposition

RNTHAACHEN

RNTHAACHEN

Two Different Meshes

Detailed

- User interaction
- **Decomposition** operator

Deformation operator

- Reconstruction operator
- Responsible for robustness & efficiency

Base

RNTHAACHEN

Mario Botsch

Detail Encoding

Displacements in normal direction

Detail Encoding

Displacements in normal direction

Remeshing ?

- Features, sharp edges
- Hand-crafted triangulation

- Low frequency surface
- No aliasing problems

Base

RNTHAACHEN

Outline

- Introduction
- Freeform Modeling
- Remeshing
- Results

Modeling Requirements

- Per-vertex interpolation constraints
 Arbitrary support
 Physically plausible behaviour
 - Stiffness, smoothness

Boundary Constraint Modeling

- Prescribe boundary constraints
- vertex positions
- $C^0 C^2$ continuities
- Constraint energy minimization • $E_k(S) = \int F_k(S_{u^k}, S_{u^{k-1}v}, \dots, S_{v^k})$
- Euler-Lagrange PDE: $\Delta^k(S) = 0$

Energy Functionals

RVTHAACHEN

Modeling Metaphor

- Support region (blue)
- Handle regions (green)
- Fixed vertices (grey)

Discretization → Linear System

$$\mathbf{h} = \{h_1, \dots, h_H\}$$
$$\mathbf{p} = \{p_1, \dots, p_P\}$$
$$\mathbf{f} = \{f_1, \dots, f_F\}$$

$$\begin{pmatrix} \Delta^k \\ \mathbf{f} \\ 0 & I_{F+H} \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ \mathbf{f} \\ \mathbf{h} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{f} \\ \mathbf{h} \end{pmatrix}$$

Laplace Discretization

Problems

- Degenerate triangles
 - Matrix no longer positive definite
 - Reconstruction operator unstable
- Matrix unsymmetric
 Better solvers for symmetric matrices

$$\Delta(p) := \underbrace{2}_{A(p)} \sum_{q_i} \left(\cot \alpha_i + \cot \beta_i\right) \left(p - q_i\right)$$

Why not uniform Laplacian?

Irregular Tesselation

Uniform Weights

RNTHAACHEN

Cotangent Weights

Uniform Laplacian Discretization?

Real-world meshes are irregular...

Outline

- Introduction
- Freeform Modeling
- Remeshing
- Results

Remeshing Objectives

Numerical robustness

- Triangle roundness
- Isotropic remeshing

Computational efficiency
 Fast linear system solver
 Symmetric matrix

Isotropic Remeshing

No global parameterization
 Explicit remeshing instead

Several related works:
Kobbelt et al. 2000
Vorsatz et al. 2003
Surazhsky et al. 2003

Isotropic Remeshing

Specify target edge length L

Iterate:

I. Split edges longer than e_{max}

2. Collapse edges shorter than e_{min}

3. Flip edges to get valence 6

4. Relaxation by tangential smoothing

Optimal

thresholds?

Edge Length Thresholds

$$|e_{\max} - L| = \left|\frac{1}{2}e_{\max} - L\right|$$

 $\Rightarrow e_{\max} = \frac{4}{3}L$

$$\begin{aligned} |e_{\min} - L| &= \left| \frac{3}{2} e_{\min} - L \right| \\ \Rightarrow e_{\min} &= \frac{4}{5}L \end{aligned}$$

Remeshing Results

RNTHAACHEN

Isotropic Remeshing

Leads to well-shaped triangles
 Increased robustness

But matrix still unsymmetric
Because of Voronoi areas A(p)
Equalize areas !

$$\Delta(p) := \frac{2}{A(p)} \sum_{q_i} \left(\cot \alpha_i + \cot \beta_i \right) \left(p - q_i \right)$$

Area Equalization

- Assign mass A(p) to each vertex p
- Mass weighted centroid

$$\mathbf{g}_i := \frac{1}{\sum_{\mathbf{q}_i} A(\mathbf{q}_i)} \sum_{\mathbf{q}_i} A(\mathbf{q}_i) \mathbf{q}_i$$

• Tangential update $\mathbf{p}_i \mapsto \mathbf{p}_i + \lambda \left(I - \mathbf{n}_i \mathbf{n}_i^T\right) \left(\mathbf{g}_i - \mathbf{p}_i\right)$

Remeshing ResultsOriginal $\left(\frac{1}{2}, 2\right)$ $\left(\frac{4}{5}, \frac{4}{3}\right)$ Area Eq.

RNTHAACHEN

Remeshing Results

Original (1/2, 2) (4/5, 4/3) Area Eq.

RVITHAACHEN

Area Equalization Remeshing

• Efficient algorithm

- Projection instead of local parametrization
- Remesh 100k triangles in <5 sec</p>

- Very regular mesh
 - Inner angles close to 60°
 - Relative mean area error <5%</p>

Outline

- Introduction
- Freeform Modeling
- Remeshing
- Results

Increased Robustness

No degenerate triangles
 Matrix is positive definite

No obtuse angles
Cotangent weights are positive
More reliable Laplacian discretization

Symmetric Laplace Matrix

- Replace Voronoi areas by their mean
- $\bar{\Delta}(p) := \frac{2}{\bar{A}} \sum_{q_i} \left(\cot \alpha_i + \cot \beta_i \right) \left(p q_i \right)$
- Matrix becomes symmetric
- $\bar{\Delta}^k \mathbf{p} = \mathbf{b}$
- Small low-frequency errors (~0.7%)
 Compensated by detail encoding (~0.2%)

Different Solvers

Iterative solvers Not suitable for large systems: O(n²)

- Multigrid solvers
 Robust and efficient: O(n)
 Quite complicated to implement
- Direct solvers ?

Direct Solvers

Naive direct solvers are O(n³)
 Not suitable for large systems

System is sparse, not band-limited
Band-limitation by reordering

Band-limited factorizing solvers
 Factorization: O(bn²)
 Solving: O(bn)

Direct Solvers

- Unsymmetric systems:
 - Band-limited LU factorization
 - Requires pivoting for stability
 - Compromises band-limiting permutations
- Symmetric systems:
 Band-limited Cholesky factorization
 Backward stable, exploits symmetry

Comparison

Iterative solvers
 Not suitable for large systems: O(n²)

Multigrid solvers
Robust and efficient: O(n)
Quite complicated to implement

Direct solvers
Same linear complexity
Faster by an order of magnitude
Considerably easier to use

Comparison (15k DoF)

	Precomputation	XYZ Solution	
Iterative	7.2s	7.4s	O(n ²)
Multigrid	4.5s	0.8s	O(n)
Direct	2.4s	0.07s	O(n)

Multigrid vs. Direct

MultigridCholesky

RNTHAACHEN

System Overview

RNTHAACHEN

System Overview

Conclusion

Multiresolution framework
 Independent tesselations
 Remesh smooth base surface

Area equalizing isotropic remeshing
 Improves numerical robustness
 Yields symmetric matrix

Allows for direct solvers
Significantly faster
Easier to use

RNTHAACHEN

