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 Structure-from-Motion point cloud: every point has 2 2 SIFT descriptors [4]
e 2D-to-3D correspondences needed for pose estimation for query image

Motivation

e State-of-the-art registration performance obtained using a kd-tree for correspondence search, but kd-
tree search is slow (>3 seconds) [6]

e Approaches with state-of-the-art registration efficiency (0.25-0.4 seconds) can register significantly
less images [1,2,3,06]

e Our approach: State-of-the-art registration performance & efficiency using Active Correspondence
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Localization Framework

extension of Sattler ef al. [6]
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Dataset # Cameras | # 3D Points | # Descriptors |# Query Images (online)
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Complimentary

Advantages 3D-to-2D v 4 /

2D-to-3D X v X

Source code available at http://www.graphics.rwth-aachen.de/localization
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bipartite point-camera Filtering Points: Remove 3D-to-2D matching

candidates not co-visible with 2D-to-3D match

only largest subgraph

defined by matches » Pose estimation using 6-point DLT algorithm

F = # image features, W = size fine voc., W’ = size coarse voc., c+1 = # words a query feature is assigned to, P = # 3D points
N = # matches needed to terminate search, N3p = # nearest neighbors in 3D

graph models co-visibility
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