
constant
F = # image features, W = size fine voc., W’ = size coarse voc., c+1 = # words a query feature is assigned to
N = # matches needed to terminate search,          = # nearest neighbors in 3D

O (c · F/W · P )
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Motivation

Comparison with state-of-the-art

Method Dubrovnik Rome Vienna

# reg. 
images

registr. 
time [s]

reject. 
time![s]

# reg. 
images

registr. 
time [s]

reject. 
time![s]

# reg. 
images

registr. 
time [s]

reject. 
time![s]

active search 795.5 0.25 0.56 991.5 0.28 2.14 220.1 0.27 0.52

all desc. [6] 783.9 0.31 2.22 976.9 0.29 1.90 207.7 0.50 2.40
int. mean [6] 782.0 0.28 1.70 974.6 0.25 1.66 206.9 0.46 2.43
Vis. Prob. [1] 788 0.25 0.51 977 0.27 0.61 219 0.4 0.49

P2F![3] 753 0.73 2.70 921 0.91 2.93 204 0.55 1.96
P2F+F2P [3] 753 0.70 3.96 924 0.87 4.67 205 0.54 3.62

Voc. tree (all) [3] 668 1.4 4.0 828 1.2 4.0 - - -
Voc. tree (points) [3] 677 1.3 4.0 815 1.2 4.0 - - -

Voc. tree GPU [2] - - - - - - 165 ≤ 0.27 (worst case)

kd-tree [4] 795 3.4 14.45 983 3.97 6.27 220 3.44 2.72

Method
# reg. 
images

Median 
[m]

Quartiles [m] #images with error
1st 3rd < 18.3m > 400 m

active search 795.5 1.4 0.4 5.3 704 (88.5%) 9 (1.1%)
all desc. [6] 783.9 1.4 0.4 5.9 685 (87.4%) 16 (2.0%)
int. mean [6] 782.0 1.3 0.5 5.1 675 (86.3%) 13 (1.7%)
Vis. Prob. [1] 788 3.1 0.88 11.83

P2F![3] 753 9.3 7.5 13.4 655 (87%) 0

• active search: combined prioritization, both filters,                                                                   
• all desc., int. mean: 3D-to-2D matching by Sattler et al. [6] without active search                  
• P2F: Prioritized 3D-to-2D matching proposed by Li et al. [3]                                                    
• P2F+F2P: Additional 2D-to-3D matching if P2F fails [3]                                                           
• Vis. Prob.: 3D-to-2D matching based on visibility probabilities [1] (ECCV’12)                          
• Image retrieval methods using a Vocabulary tree: 
• Irschara et al. [2]                                                                                                                    
• Li et al. [3]

N3D =200, k=10

• Ground truth: Geo-registered version of Dubrovnik model
• Pose estimation using 6-point DLT algorithm

RANSAC 
Pre-
Filter

Prioritize

Priority ∼ # descriptor 
comparisons

Pose Estimation using 
RANSAC

(accept poses with ! 12 inliers)

Query Image

assign features to 
visual words

(online)

assign points to visual 
words

(offline)

100k visual words

d1

d2
< 0.7

nearest neighbor search in 128D
establish 2D-to-3D match if

Update 
Prioritization

match found

Localization Framework

N=100 
matches 
found?

SfM Point Cloud

find          candidates for 3D-to-2D 
matching: 

N3D
...

nearest neighbor 
search in 3D 

Active Search

Dataset # Cameras # 3D Points # Descriptors # Query Images
Dubrovnik 6044 1.886.884 9.606.317 800

Rome 15.179 4.067.119 21.515.110 1000
Vienna 1324 1.123.028 4.854.056 266

Datasets • Same datasets used in [1,2,3,5]
• Query images have dimensions " 1600 pixels

• Structure-from-Motion point cloud: every point has ! 2 SIFT descriptors [4]
• 2D-to-3D correspondences needed for pose estimation for query image

extension of Sattler et al. [6]

Quantized Matching

d2

d1

Active Correspondence Search
• Prioritize over estimated search cost ∼ # descriptors inside a word [5]
• Independent of search direction!

2D-to-3D vs. 3D-to-2D matching
Method Efficiency Reject wrong matches Accept correct matches

3D-to-2D ✓ ! ✓
2D-to-3D ! ✓ !

Complimentary
Advantages

Dubrovnik Rome

Vienna

Re-use structures 
for 3D-to-2D

Matching

Vocabulary Tree

d2

d1

d1

d2

fine vocabulary for 
2D-to-3D matching

coarse vocabulary for 2D-to-3D matching

Use 2D-to-3D matches to seed 3D-to-2D matching

1. Find          candidates for 3D-
to-2D matching through nearest 
neighbor search in 3D 
2. Insert into prioritization

N3D

Computational 
Complexity

Soft 
assignments [5]

active 
search

Better
scalability

, P = # 3D points

Active Search improves registration performance
Dubrovnik Rome Vienna

all desc. [6] int. mean [6] kd-tree [6] direct combined afterwards
active search with different prioritization strategies

Prioritization

1

2

3

4 5 7

Prioritization Scheme Preferred Direction Registration performance Localization accuracy
direct 3D-to-2D best worst

combined cheaper direction medium good
afterwards 2D-to-3D worst good

2D-to-3D candidates

3D-to-2D candidates

search cost

direct

combined

afterwards

Use the combined strategy, prioritize cheaper direction

Faster Localization using Visibility Filtering
6

combined strategy, N3D = 200

Cluster    nearest 
cameras to 

recover 
performance

k
Dubrovnik Rome Vienna

Active 
search + 
filtering Dubrovnik

Rome Vienna

bipartite point-camera 
graph models co-visibility

RANSAC Pre-Filter: Keep 
only largest subgraph 
defined by matches

Filtering Points: Remove 3D-to-2D matching 
candidates not co-visible with 2D-to-3D match

(CPU)
(CPU)
(CPU)
(CPU)
(CPU)

(GPU)
(CPU)

• State-of-the-art registration performance obtained using a kd-tree for correspondence search, but kd-
tree search is slow (>3 seconds) [6]
• Approaches with state-of-the-art registration efficiency (0.25-0.4 seconds) can register significantly 

less images [1,2,3,6]
• Our approach: State-of-the-art registration performance & efficiency using Active Correspondence 

Search and Visibility Filtering


