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Abstract
We present a method for scattered data approximation with subdivision surfaces which actually uses the true representation
of the limit surface as a linear combination of smooth basis functions associated with the control vertices. This is unlike
previous techniques which used only piecewise linear approximations of the limit surface. By this we can assign arbitrary
parameterizations to the given sample points, including those generated by parameter correction. We present a robust and
fast algorithm for exact closest point search on Loop surfaces by combining Newton iteration and non-linear minimization.
Based on this we perform unconditionally convergent parameter correction to optimize the approximation with respect to
the L2 metric and thus we make a well-established scattered data fitting technique which has been available before only for
B-spline surfaces, applicable to subdivision surfaces. Further we exploit the fact that the control mesh of a subdivision surface
can have arbitrary connectivity to reduce the L∞ error up to a certain user-defined tolerance by adaptively restructuring
the control mesh. By employing iterative least squares solvers, we achieve acceptable running times even for large amounts
of data and we obtain high quality approximations by surfaces with relatively low control mesh complexity compared
to the number of sample points. Since we are using plain subdivision surfaces, there is no need for multiresolution detail
coefficients and we do not have to deal with the additional overhead in data and computational complexity associated with them.

Categories and Subject Descriptors (according to ACM CCS):
I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations

1. Introduction

Scattered data approximation methods are a key technology for
shape reconstruction and reverse engineering from measured ge-
ometry data. In a typical application scenario, raw data is generated,
e.g., by some 3D scanning device and fitting a globally smooth sur-
face to the set of sample points converts this data into a geomet-
ric representation of the original object that enables sophisticated
downstream applications like, e.g., free-form shape editing. Most
of the work in this area has been done based on classical tensor-
product spline surfaces but with the availability of more flexible
subdivision surfaces many ideas have been extended to this gen-
eralized setting during the last years. Instead of being constrained
to rectangular patches, subdivision surfaces can represent globally
smooth surfaces of arbitrary (manifold) topology by allowing for
arbitrary irregular control meshes. We are using Loop subdivision
surfaces [Loo87] in this paper, but the basic concepts could be
transferred to other types of subdivision, e.g., Catmull-Clark sub-
division surfaces [CC78].

The majority of the well-established scattered data approxima-
tion techniques focuses on the minimization of some form of the
L2 error. The main reason for this is that least squares problems
are easy and efficiently handled by solving a simple linear system.

However, from the application point of view, L∞ type errors are
much more relevant since the user usually prescribes some maxi-
mum tolerance δ by which the fitted surface is allowed to deviate
from the given data. Because the L2 metric is computed by some
integral over the surface, one often wastes effort (and degrees of
freedom) when globally improving the approximation even if the
maximum tolerance is only violated in some local region.

The motivation for the work presented in this paper is the obser-
vation that due to the flexibility of subdivision surfaces with respect
to their control mesh structure, we can apply and iterate many dif-
ferent operations to progressively improve the approximation of the
given data. If we just update the positions of the control vertices we
can do least squares fitting just like for spline surfaces. However, in
addition we can change the structure of the control mesh by locally
inserting or removing control vertices. This allows us to efficiently
reduce the L∞ error by adaptively introducing new degrees of free-
dom (i.e. control vertices) in regions where the maximum tolerance
is exceeded and by removing degrees of freedom in regions where
the surface fitting problem is under-determined due to sparse sam-
ple data.

The specific contributions of this paper are that we present a
complete scattered data fitting method for subdivision surfaces that
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Figure 1: Original Iphigenie model (left): scanned data 351750
points, Loop surface approximation (center): maximum deviation
is 0.05% of the bounding box diagonal, control mesh defining the
surface (right): 15347 control points.

uses the true subdivision basis functions instead of some piecewise
linear approximation. This is made possible by using Stam’s ex-
act evaluation procedure [Sta98, Sta99] to set up the least squares
system. Since we can also evaluate partial derivatives of a subdivi-
sion surface exactly, we propose a robust algorithm which finds the
parameter value of the closest point on the approximating surface
to a given sample. Thus we generalize the technique of parameter
correction [Die95] from spline surfaces to subdivision surfaces and
perform unconditionally convergent optimization of the approxi-
mation with respect to the L2 error (Section 2).

To reduce the L∞ error below a user prescribed error tolerance
δ, we present an iterative procedure in Section 3 that adaptively re-
fines the control mesh according to the local approximation error or
coarsens it if the local sample density is insufficient. In combina-
tion with mesh connectivity regularization we are able to produce
high quality approximations without having to add a fairness func-
tional. Our technique is progressive and scalable in the sense that
we can get a coarse fit after just a few seconds while we can further
improve the approximation quality by letting the algorithm perform
some more iterations.

1.1. Related work

The amount of work that has been done in the area of surface
approximation is immense and a complete review is beyond the
scope of this paper. We refer to [Sap94] as a standard reference and
to [CMS03] for some more recent advances. Traditionally, tensor-
product spline surfaces have been used for this task, but when it
comes to the approximation of complex geometric objects, their
rigid regular structure makes it necessary to fit several patches to
parts of the data and then to stitch them together in a geometrically
smooth fashion [EH96].

Another problem is that the regular structure of tensor-product
patches prohibits the flexible adaption of the control mesh to the lo-
cal shape complexity or sample density. As a consequence penalty
functionals (a.k.a. fairing functionals) usually have to be added to
the approximation problem in order to stabilize it [Die95, EH96].
All these difficulties compromise the flexibility and approximation
power of spline surfaces for general approximation problems.

Subdivision surfaces are globally smooth (mostly even piece-
wise polynomial) surfaces that do not suffer from these lim-
itations. Complex shapes can be represented with one con-
trol mesh and local adaption of the control vertex den-
sity is straightforward [ZSS∗00]. This is why several pa-
pers [HKD93, HDD∗94, STK99, TSK∗00, MZ00, LLS01a] have
addressed the scattered data fitting problem by using subdivision
surface representations. However, since subdivision surfaces have
no obvious explicit parametrization, modifications and simplifica-
tions of the general setting have been used for the sake of efficiency.

One issue is that, assuming the canonical parametriza-
tion, subdivision surfaces are much easier to evaluate at
dyadic barycentric parameter values than at arbitrary param-
eter values. This is why special uniform parameterizations
of the given sample data have been preferred by many au-
thors [STK99, LMH00, LLS01a, LLS01b, JK02, MMTP02]. Al-
though this leads to well conditioned least squares systems and
extremely simple quasi-interpolation operators [LLS01a, LLS01b],
the major drawback of using uniform parameterizations is that the
evaluated approximation errors differ significantly from the ac-
tual geometric deviation. In [LLS01b], Litke et al. use uniform
parameterization in combination with re-sampling the target sur-
face. While this leads to a geometrically meaningful error metric,
it may affect the local sample density potentially leading to under-
sampling in regions where the surface normals of the fitting surface
and the target surface strongly differ or where the fitting surface has
high curvature (Fig. 2).

Parameter correction is a technique that does exactly the oppo-
site. For each given sample point, the closest point on the approx-
imating surface is found which implies an obvious geometric in-
terpretation of the approximation error (Fig. 2). However, when-
ever parameter correction has been used for subdivision surfaces
in the literature, the correction has been computed with respect to
a piecewise linear approximation instead of the true limit surface
[HDD∗94]. In practice this often leads to numerical instabilities -
mostly due to the fact that the piecewise linear approximation does
not have a continuous surface normal field.

From the conceptual point of view our work is closest to
[HDD∗94]. In this paper Hoppe et al. describe a procedure that
does least squares fitting of a subdivision surface to scattered data,
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Figure 2: Uniform parametrization (top) vs. parameter correction
(bottom). The dots represent the approximated samples and the po-
sition of the squares indicate the corresponding parameter values.
In the uniform setting we have to find the closest data sample for
uniformly distributed “sensor” points on the approximating sur-
face. In the parameter correction setting we find the closest point
on the approximating surface for each sample leading to a more
reliable geometric distance measure.

however the parametrization is computed and evaluated only on a
piecewise linear approximation of the approximating surface. This
procedure is interleaved with a “random descent” mesh optimiza-
tion scheme, which iteratively attempts to reduce the L2 error. Min-
imization of the L∞ error is not discussed.

A quite different approach to subdivision surface fitting is de-
scribed in [BKZ01, JK02, LMH00, LLS01a, LLS01b]. Here the
so-called multiresolution subdivision surfaces [Zor97] are used
which assign an additional displacement vector to every control
vertex of an adaptively refined control mesh. While this repre-
sentation provides a natural hierarchy that distinguishes differ-
ent levels of detail, the mathematical representations becomes ex-
tremely redundant as can be seen from the number of detail coef-
ficients that are necessary to closely approximate complicated ob-
jects [LLS01a].

1.2. Notation

With S = {s1 · · · sM} we denote the set of given data samples and
with D the subdivision surface which is fitted to S. Its control mesh,
the base mesh C0(P0,T0), is composed of two sets - vertices and tri-
angles. We denote N = #(P0) as the number of degrees of freedom
(control vertices) and we usually assume M � N. The uniform re-
finement levels of C0 are {C1 · · ·Ck} and the meshes Ĉ j(P̂j,Tj) are
obtained by applying the limit surface projection operator to the
control vertices Pj of C j .

2. Optimization of the L2 metric

We examine the problem of finding the best L2 approximation of
a given set of samples S = {si} by a Loop subdivision surface D
with fixed number of control points and connectivity. Since S is a
discrete set, the L2 error is expressed by the following term:

L2({si},D) =

(
M

∑
i=1

‖si −D(ti)‖
2
2

) 1
2

, (1)

where {ti} are the parameter values assigned to the samples {si}
with respect to some parametrization of the surface D. The most
common way is to use barycentric coordinates with respect to the
triangles of the base mesh C0, i.e., ti =< fi, (vi,wi) >, where fi ∈
T0 indicates the patch to which the sample si is mapped and (1−
vi −wi,vi,wi) define the barycentric coordinates of ti within this
triangle.

Given a fixed correspondence si ↔ ti, the problem of minimiz-
ing (1) is solved in the least squares sense by finding that solution
P0 which minimizes the L2 residuum of the over-determined linear
system

AP0 = S . (2)

In order to compute the matrix A = [φ j(ti)]M×N for arbitrary
parameterizations {ti}, we have to evaluate the basis functions
{φ1 · · · φN} which define D at {t1 · · · tM} (see 2.1). Solving the sys-
tem (2) gives us the optimal position of the control vertices P0 of
D. The sparsity of the matrix A depends on the support of the basis
functions φ j. In the case of Loop subdivision surfaces, each patch
(corresponding to one triangle of the base mesh) is affected by 12
control vertices on average. Hence the matrix A has about 12 non-
zero coefficients per row. There are many different ways to effi-
ciently solve (2). In our implementation we use an iterative method
such as CGLS [Elf78].

Another way to minimize (1) is by performing parameter correc-
tion, i.e., by finding for every sample point si the parameter ti of
the closest point on D. Iterating least square fitting and parameter
correction generates a sequence of solutions D0, D1, D2, ..., each of
which has a smaller L2 error, until the approximation quality cannot
be improved any more, i.e.

L2({si},Dk)−L2({si},Dk+1) < ε ,

or some other criterion is met, for example a maximum number of
steps is performed.

2.1. Exact evaluation of the subdivision basis functions

A significant improvement of our method is due to the fact that
the fitting procedure depends on the exact subdivision surface D
instead of depending on some piecewise-linear approximation of
it, as in [HDD∗94]. To achieve this, we use the representation of
D as a linear combination of one smooth basis function for each
control vertex, i.e.

D(t) =
N

∑
j=0

φ j(t)p0, j ,

where the parameter domain of D is modeled as the faces of the
base mesh C0. Unlike uniform tensor-product spline surfaces, the
subdivision basis functions are not mere translates of each other.
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Figure 3: From left to right: a) original model with 30696 sample points, b) initial approximation with 461 control points, L2 error 82.9,
c) after 25 parameter correction and re-fitting steps, L2 error 42.6, d) and e) show color coded errors before and after the 25 optimization
steps. Notice the concentration of the error to local “hot spots” which makes it easier to detect regions where the insertion of new control
vertices effectively reduces the L∞ error. f) convergence behavior (error vs. number of iterations) plot.

Instead, each φ j depends on the valence of the corresponding con-
trol vertex p0, j and on the valences of its direct neighbors in C0.
Hence, the easiest way to evaluate a basis function φ j is to assign
an additional scalar attribute σ to each control vertex and set σ = 1
for p0, j and σ = 0 for all other vertices in P0 [BS02], and then to
apply Stam’s evaluation procedure on the so-defined scalar-valued
mesh.

2.2. Exact closest point search and parameter correction

The next ingredient of our L2 error minimization procedure is an
algorithm for finding the exact closest point D(ti) on a Loop sub-
division surface D given an arbitrary sample point si. This is done
by performing stabilized Newton iteration. The starting value for
the iteration can be either a previously assigned parameter value
ti or a value obtained by searching for the closest point on a dis-
crete piecewise linear approximation Ĉk. In the second case we use
a variant of the MESH-framework for evaluating Hausdorff dis-
tances between surfaces [ASCE02], which employs a spatial data
structure in order to minimize “closest point on triangle” evalua-
tions. We denote the initial solution as ti,0.

In the j-th step of the Newton iteration we linearize the surface
D at the current approximate solution ti, j by computing the tangent
plane Ti, j , which is given by the Jacobian ∇D(ti, j)∈R

3×2. In order
to find an update vector qi, j ∈ R

2 in the parameter domain towards
an improved estimate for the closest point D(ti), we determine the
orthogonal projection of si onto Ti, j by solving the following 2×2
linear system for qi, j:

{
si −

(
D(ti, j)+∇D(ti, j) ·qi, j

)}
.
∂D
∂v

(ti, j) = 0

{
si −

(
D(ti, j)+∇D(ti, j) ·qi, j

)}
.
∂D
∂w

(ti, j) = 0

Special care has to be taken when actually updating the parameter
value ti, j =< fi, j, (vi, j,wi, j) > since the parameter domain of the
surface D is split into disjoint triangles corresponding to the faces
of the base mesh C0. In order to avoid an excessive number of spe-
cial cases, we simply consider the following three cases:

1. When (vi, j,wi, j) + qi, j still lies in the same triangle fi, j then
ti, j+1 :=< fi, j, (vi, j,wi, j)+ qi, j >.

2. When (vi, j,wi, j) + qi, j lies outside fi, j , i.e., the update moves
into a neighboring patch, then we scale qi, j down by a factor
0 < λ < 1 such that the updated parameter value ti, j+1 :=<

fi, j, (vi, j,wi, j) + λqi, j > lies exactly on the boundary of the
patch fi, j. By this we avoid the re-parametrization that would
be necessary to compute the proper barycentric coordinates of
the vector qi, j in the next parameter triangle.

3. If ti, j lies already on an edge of fi, j and qi, j is pointing outside
then we switch to the neighbor face fi, j+1 into which qi, j points,
i.e., ti, j+1 :=< fi, j+1, (vi, j+1,wi, j+1) > where (vi, j+1,wi, j+1)
are the barycentric coordinates of the same common boundary
point with respect to the new triangle fi, j+1. The actual param-
eter update will be executed in the next iteration.

The distinction between case (2) and (3) is necessary because it is
difficult to predict if the update vector qi, j+1 in the next Newton
iteration will point into the same direction as qi, j or in the opposite
direction.

If the starting value ti,0 is not sufficiently close to the ex-
act solution, it might happen that the Newton iteration suggests
a parameter value where the L2 distance actually increases, i.e.∥∥si −D(ti, j+1)

∥∥
2 ≥

∥∥si −D(ti, j)
∥∥

2. This usually means that the
length of the update step qi, j is incorrect, which is a com-
mon behavior of any root-finding algorithm for multivariate func-
tions. To handle such situations in a robust manner, we switch
to a reliable univariate optimization technique like Brent mini-
mization [Bre73] to find the minimum ĥ of the function g(h) =∥∥si −D((vi, j,wi, j)+ hqi, j)

∥∥
2, h ∈ (0,1). Finally we set ti, j+1 =<

fi, j, (vi, j,wi, j)+ ĥqi, j >.

We stop the closest point search whenever
∥∥qi, j

∥∥
2 < ε or j > n.

In our test cases we always used ε = 10−6 and n = 500. Because
of the robust minimization-based backtracking, we observed even
for very complicated models with more than 200000 sample points
less than 0.01% failures to converge with respect to the tolerance
ε in less than n update steps. If such a failure occurs, we com-
pare the newly found solution at ti,n with the old solution at ti,0 and
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keep the better one. This guarantees the unconditionally stable and
monotonic convergence of the parameter correction procedure. A
case where ti,0 is actually better than ti,n occurs extremely rarely. In
most of our experiments the Newton iteration converges on average
in less than 6 update steps.

It is important to notice the difference of our parameter correc-
tion scheme to previous approaches [HDD∗94], where a piecewise
linear approximation of the limit surface was used for the closest
point search. An update step that reduces the distance between a
sample point si and a piecewise linear approximation Ĉk of the limit
surface D does not necessarily reduce the distance between si and
D. To illustrate this we repeated the experiment of Fig. 3 search-
ing for the closest point on Ĉ2, as proposed in [HDD∗94]. The L2

error after the 25 optimization steps was larger by 26.24%. Since
the test control mesh was relatively coarse, we could repeat the
experiment again, this time using Ĉ4 as a piecewise linear approxi-
mation of D. The exact solution was still better by 11.4%. Note that
this approach is not applicable for the optimization of large control
meshes (without the use of a sophisticated adaptive subdivision al-
gorithm), since it requires us to subdivide the control mesh at every
step to a 64 times larger mesh.

3. Optimization of the L∞ metric

While the L2 error is a good measure for globally fitting a surface
to sample data, the L∞ error is much closer to the intuitive notion
of approximation tolerance. Hence we present a technique to effec-
tively reduce the L∞ error by changing the structure of the control
mesh. The L∞ error for discrete sample data {si} is defined as:

L∞({si},D) = max
1≤i≤M

‖si −D(ti)‖2 . (3)

In engineering applications this maximum tolerance δ ≥ 0 is usu-
ally set by the user. In [LMH00, BKZ01, LLS01a, LLS01b] mul-
tiresolution subdivision surfaces are used to satisfy such user de-
fined tolerances. Faces for which the maximum error is exceeded
are subdivided adaptively and displacement vectors are added to
the newly inserted vertices. This approach is robust and leads to
quite good results, has the advantage of a genuine multiresolution
semantics and is convenient for applications such as progressive
transmission and compression. However, it also has several draw-
backs:

1. Looking at the results, e.g., in [LLS01a], it seems that the rep-
resentation is highly redundant in terms of the number of coeffi-
cients that we need to faithfully represent complex objects. The
representation is no longer unique, especially if multiple detail
coefficients are assigned to the same control vertex on different
refinement levels.

2. The conceptual simplicity of the subdivision surface is lost since
we have to deal with a combination of basis functions from dif-
ferent refinement levels. The evaluation can become tricky in
regions where the adaptive refinement level changes.

To compensate for these difficulties, we present an iterative method
for optimizing the control mesh of a plain subdivision surface D
such that the approximation satisfies a given L∞ error tolerance
δ ≥ 0. We derive different heuristics to improve both the approx-
imation and the surface quality. The method is based on a set of
fundamental operations:

1. Adaptive insertion of control vertices where the tolerance is not
met (Section 3.1).

2. Removal of control vertices in under-sampled regions (Section
3.2).

3. Re-establishing the parameterization {ti} of the samples {si}
after the control mesh (and hence the surface D) has changed.
This is done by re-running the parameter correction algorithm
of Section 2.2.

4. Connectivity regularization (Section 3.3).

The overall optimization procedure is described by the following
pseudo-code:

Adaptively insert control vertices
do

Regularize connectivity
Re-establish the correspondence
Remove control vertices in

under-sampled regions
while removed_vertices_number > 0
Fit the new control mesh to the samples

The presented technique does not guarantee the achievement of the
criterion L∞({si},D) < δ in one single iteration, it is only a heuris-
tic which identifies regions of C0 which should be optimized with
respect to the L∞ error and the current parametrization {ti}. In
practice, one usually needs several iterations of the above proce-
dure to satisfy the criterion. In Section 4 we interleave this iteration
with the technique described in Section 2 to bound the growth of
the number of control vertices.

3.1. Adaptive insertion of control vertices

With S fi = {si|ti ∈ fi} we denote the set of samples mapped to
fi ∈ T0. For every fi ∈ T0 we define

L∞( fi) = max
sk∈S fi

‖sk −D(tk)‖2 .

If L∞( fi) > δ, we have to split the face fi and so locally add new
degrees of freedom. We denote the set of all to-be-split faces by
G = { fi|L∞( fi) > δ}.

There are several common ways to split a face, e.g., longest edge-
split, 1-to-3 split, or 1-to-4 split with crack-fixing. We empirically
found that the best way to adaptively refine the mesh in terms of
surface quality and approximation is to 1-to-4 split every face from
G and then to fix the resulting cracks by bisecting neighboring
faces. This way of adaptive refinement least affects the regularity of
the mesh since all newly inserted vertices have valence 5 or 6 and
only the crack-fixing changes the valence of some existing vertices
by one. Other adaptive refinement operators tend to produce much
more irregular, i.e., non-valence-6, vertices which has a negative
effect on the quality of the resulting limit surface.

Let Q be the set of control vertices affected by the adaptive re-
finement of G (including the crack-fixing). These vertices have a
natural one-to-one correspondence to certain control vertices from
the mesh C1 obtained by applying the uniform Loop subdivision
operator to the given mesh C0. In the adaptively refined mesh, we
assign to all control vertices from Q the vertex positions of the cor-
responding vertex in C1 while the other control vertices keep their
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Figure 4: Adaptive insertion of control vertices. The red squares
correspond to the newly inserted control vertices when splitting the
central face. Blue dots correspond to the original control vertices
shifted to their position in C1. Dashed lines denote crack-fixing
edges.

position from C0 (Fig. 4). By this we minimize the instant modi-
fication of the surface D since the locally refined resolution of the
control mesh is compensated by shifting the control vertices to their
corresponding position on the next refinement level. The resulting
change of the limit surfaces is significantly smaller compared to the
adaptive refinement operator that simply inserts the new vertices at
the midpoints of the edges. Notice, however, that we still treat the
resulting control mesh as a single resolution plain subdivision sur-
face.

3.2. Removal of control vertices in under-sampled regions

During the iteration of parameter correction, least squares fitting,
and the adaptive insertion of new control vertices it can happen that
some control vertices in C0 become under-determined if too few
samples (or more precisely, their associated parameter values) lie
close enough to the center of the corresponding basis function’s
support. This leads to very unpleasant artifacts like ripples and
bumps. The standard answer to these kind of instabilities, espe-
cially in the spline world, is to add a penalizing term (a fairing func-
tional) to the minimization problem which, however, might affect
the approximation quality in the properly sampled regions. Again
by exploiting the flexibility of subdivision surfaces with respect to
the connectivity of their control meshes, we propose an alternative
approach that is based on detecting under-sampled vertices and re-
moving them from the mesh.

From the mathematical point of view, under-determined control
vertices degrade the condition number of the matrix A in the least
squares equation (2) which makes the solution less robust. An ap-
propriate value to rate the degree of being under-determined for a
given vertex is the sum of the absolute values of the coefficients
in the corresponding column of the matrix A. In the case of Loop
subdivision, the basis functions and hence the matrix coefficients
are all positive anyway.

The major drawback of this stability measure is that we need to
evaluate it during the L∞ optimization phase when no valid matrix
A is available and hence we have to compute each of these coef-
ficients by Stam’s evaluation procedure. For efficiency reasons we
therefore check if a control vertex is under-determined with a sim-
plified criterion. The idea is to simply check if there are samples

present at all in some region around the center of a basis function’s
support.

Since we observed that the stability of the least squares system
is less critical if the approximating surface already fits very well to
the given sample data, we actually define two criteria. One to be
used when the L∞ error is above some threshold τ and one to be
used when it is below.

For every control vertex pi we define the Voronoi region Vi as the
union of all Voronoi sectors corresponding to the adjacent (param-
eter) triangles [MDSB03] and the one-ring region Wi as the union
of all adjacent (parameter) triangles. Both regions cover some in-
ner part of the basis function φi’s support. Further we denote the
set of samples that are associated with some parameter value in Vi
or Wi by SVi or SWi respectively. Based on these definitions, we de-
cide that a vertex pi is under-determined iff the current L∞ error
is above the threshold τ and the set SVi is empty or the current L∞

error is below the threshold τ and the set SWi is empty (Fig. 5).
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Figure 5: Left: the Voronoi cell Vi of a control vertex pi is defined as
the union of all Voronoi sectors of pi. Right: the one-ring region Wi
is defined as the union of the control faces adjacent to pi. The dots
represent the parametrization of the samples in the domains defined
by the control faces. Samples are associated to the set SVi (resp.
SWi) if their parameter value is inside Vi (resp. Wi). Depending on
the L∞ error, a vertex pi is classified as under-sampled if SVi or
SWi is empty.

The threshold τ could be set by the user. However, in our experi-
ments we found that the choice of τ is not very critical so we simply
set it to 0.1% of the bounding box diagonal of S for all the models
that we tested.

Once a vertex is classified as under-determined we remove it by
collapsing that half-edge connected to it which minimizes the con-
nectivity metric (4) of the control mesh after the collapse.

3.3. Connectivity regularization

We use the following common metric [SG03] for rating the regu-
larity of the connectivity of a mesh M:

R(M) = ∑
v∈M

(d(v)−dopt(v))2
, (4)

where d(v) is the valence of the vertex v and dopt (v) = 4 if v is a
boundary vertex or dopt (v) = 6 if v is a non-boundary vertex. An
edge flip is called good if it decreases R(M). We build a candidate
set H of all good edge flips and perform a greedy optimization by
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Figure 6: a) Original Cyberware scan of a male head with 320k triangles, M = 160k . From left to right: approximations produced by our
method with relative tolerance 0.03% (as in [LLS01a]) for different values of the parameter J, Ĉ0 is shown: b) N = 16792, J = 1, 8min, c)
N = 14365, J = 3, 15min, d) N = 13642, J = 5, 22min, e) shows (d) shaded. The initial approximating surface has 1600 vertices.

choosing the best flip hi ∈ H, i.e., the one that maximizes the im-
provement R(C0)−R(C

′

0), in every step. After flipping we remove
hi and all edge flips affected by it from H and continue the greedy
selection. Once H is empty we build a new set of candidates and
check if there exist more good flips. The procedure stops once there
are no more good edge flips in C0. Although this approach is not as
sophisticated as the one in [SG03] it usually converges quickly to a
local minimum of R(C0) and successfully prevents the occurrence
of high or low valence vertices in the control mesh.

4. Overall approximation procedure

Finding a good balance between the optimization of the L2 error
(Section 2) and the optimization of the L∞ error (Section 3) is one
of the key issues for achieving a high-quality approximation and
in our implementation this balance is determined by the user who
has to select two parameters - K and J. Here, K is the maximum
number of optimization steps, and every J-th step we perform opti-
mization with respect to the L∞ error, i.e., change the structure of
C0. The user also prescribes the L∞ error tolerance δ. The follow-
ing pseudo-code implements the main approximation loop:

while k < K and L∞
k > δ

if ((k+1 mod J) == 0)
Optimize the L∞ error

else
Optimize the L2 error

end
k=k+1

end

As a rule of thumb, using relative large J = 5,6, ..,10 is a good
idea and often leads to control meshes with smaller complexity
(Fig. 6) since it is generally worth investing effort in finding the
best approximating surface with the current number of degrees of
freedom, before trying to optimize the fit by adaptively inserting
control vertices in the high error regions. One can also look at J as
a parameter controlling the trade-off between mesh complexity and
running time for a given tolerance.

4.1. Initial fitting surface

As in [TSK∗00, MMTP02], given a polygonal mesh S we find the
initial approximating subdivision surface D by decimating S using
QEM-based mesh simplification [GH97] until the number of de-
grees of freedom, i.e., the number of control vertices of C0, reaches
some predefined number. A necessary condition for C0 is to have
the same topology as S. The final quality of the approximation
might vary depending on the number of C0 control vertices, but
values from 1% to 5% of M provide always very good results for
dense S. One might expect that using relatively large initial N over
5% of M will produce better results, but this often leads only to
unjustified waste of degrees of freedom which do not contribute to
the quality of the approximation and the overall minimization of
the error.

The connectivity information of S is not used at any other place
throughout the approximation procedure, therefore one could use
any other method for determining the initial surface. In the future
we intend to examine alternative approaches to construct the ini-
tial approximating surface with the same topology as the sample
set, which will allow us to perform approximation also of non-
triangulated point sets.

5. Results

We tested our approximation method on several models (Table 1).
The goal was to achieve high-quality approximation with L∞ error
not larger than 0.05% of the bounding box diagonal of the cor-
responding model. We also illustrate that we are able to quickly
produce a relatively coarse fit with tolerance less than 1% and pro-
gressively improve the approximation by investing more time into
the fitting procedure (Fig. 7).

We first compare our algorithm with the B-spline approximation
method in [EH96]. The best approximation of the bunny model pre-
sented in that paper has a relative maximum deviation of 1.44%.
The approximating surface consists of 153 patches. Taking the
inter-patch G1 smoothness conditions into account, we count on
average 4 dofs (degrees of freedom) per bi-cubic patch. Note that
the actual patches are defined by more control vertices, however
most of them are used up to satisfy the C0 continuity and the G1
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Figure 7: From left to right: a) the original Stanford bunny model. Different approximations (N, relative L∞(S,D), time in min:sec): b) 612,
0.63%, 0:32, c) 913, 0.30%, 1:54 d) 4680, 0.12%, 2:36, e) 8440, 0.049%, 4:39.

Model M initial N final N L∞(%) time h:m

Fig. 1 352K 3518 15347 0.049 0:30

Fig. 6 160K 1600 13642 0.029 0:22

Fig. 7 37K 612 8440 0.048 0:05

Fig. 8 40K 804 4494 0.036 0:03

Fig. 9 546K 4093 17995 0.049 1:04

Fig. 10 31K 307 4698 0.048 0:05

Fig. 11 51K 2028 4733 0.049 0:06

Table 1: Results obtained by the procedure described in Section 4.
The L∞ error is given as a percentage of the bounding box diag-
onal. J = 5 in all of the experiments and the algorithm converged
in less than the maximum allowed (K = 100) optimization steps.
Timings are taken on 2.8GHz Pentium IV with 2Gb RAM.

smoothness constraints across the patch boundaries. The estimated
complexity corresponds to 153× 4 = 612 dofs in the approximat-
ing Loop surface, where each dof corresponds to one control vertex.
Using our procedure with an initial surface obtained by decimating
the bunny model down to 612 vertices and performing 5 parameter
correction steps, gives a relative maximum deviation of 0.63% and
takes 32s to compute on 2.8GHz Pentium IV including the decima-
tion (Fig. 7).

Next we compare our results to the multiresolution subdivision
surface fitting technique proposed in [LLS01a] since this is, to our
knowledge, the only work where subdivision surfaces have been
used to produce high-quality approximations of complex objects
comparable to ours. The algorithm presented in that paper is very
efficient due to the quasi-interpolation fitting and the multiresolu-
tion hierarchy. However, as we show in Fig. 6, the number of de-
grees of freedom required in [LLS01a] for obtaining the same pre-
cision is significantly larger (8 times for this example) than in our
method.

6. Future work

The parameter correction procedure, which we use to establish the
correspondence between the samples and the approximating sur-

face, does not guarantee one-to-one mapping in all cases. Nev-
ertheless, in practice we observed flipping only when the initial
fitting control mesh was extremely coarse and could always be
avoided by allowing enough degrees of freedom from the begin-
ning. The connectivity regularization procedure could be improved
using [SG03]. Full support of piecewise-smooth subdivision sur-
faces [ZK02] and a lot of performance optimizations are still pend-
ing in our implementation. We also investigate the possibility to
use an anisotropic remeshing [ACSD∗03] of S as an initial control
mesh for the fitting procedure, which could reduce the final control
mesh complexity.
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