OpenFlipper - A Highly Modular Framework for Processing and
Visualization of Complex Geometric Models

Jan Mébius*
RWTH Aachen University

Michael Kremer *
RWTH Aachen University

Leif Kobbelt *
RWTH Aachen University

Figure 1: Left: Splat rendering of an urban 3D model. Right: Motion tracked Armadillo animation.

ABSTRACT

OpenFlipper is an open-source framework for processing and visu-
alization of complex geometric models suitable for software devel-
opment in both research and commercial applications. In this paper
we describe in detail the software architecture which is designed
in order to provide a high degree of modularity and adaptability
for various purposes. Although OpenFlipper originates in the field
of geometry processing, many emerging applications in this do-
main increasingly rely on immersion technologies. Consequently,
the presented software is, unlike most existing VR software frame-
works, mainly intended to be used for the content creation and pro-
cessing of virtual environments while directly providing a variety
of immersion techniques. By keeping OpenFlipper’s core as sim-
ple as possible and implementing functional components as plug-
ins, the framework’s structure allows for easy extensions, replace-
ments, and bundling. We particularly focus on the description of
the integrated rendering pipeline that addresses the requirements
of flexible, modern high-end graphics applications. Furthermore,
we describe how cross-platform unit and smoke testing as well as
continuous integration is implemented in order to guarantee that
new code revisions remain portable and regression is minimized.
OpenFlipper is licensed under the Lesser GNU Public License and
available, up to this state, for Linux, Windows, and Mac OSX.

Index Terms: 1.3.8 [Computer Graphics]: Applications; K.6.3
[Management of Computing and Information Systems]: Software
Management—Software Development, Software Maintanace

1 INTRODUCTION

Most virtual reality environments represent real world objects and
avatars using 3D geometry. The underlying data is often acquired
using laser scanners, structure from motion, and motion tracking
that usually undergo complex processing steps prior to being used
in the final application. The presented software framework, Open-
Flipper, aims at these geometry processing steps. Beyond that,

*e-mail: moebius@cs.rwth-aachen.de
fe-mail: mkremer @cs.rwth-aachen.de
*e-mail: kobbelt@cs.rwth-aachen.de

a wide variety of modern geometry processing applications increas-
ingly incorporate immersion technologies. Prominent examples
are: gesture-driven modeling, city reconstruction applications al-
lowing live previews, etc. In this paper, we describe the presented
software’s architecture that is flexible enough to allow combining
both the necessary tools for geometry processing applications and
the implementation of immersion techniques such as highly cus-
tomized rendering stages and the integration of new input devices.

Another important aspect of software development in research
environments is the minimization of coding overhead required to
process, visualize, and analyze results. Usually, researchers come
up with an idea, develop the mathematical and algorithmic core, and
implement this on a given framework to limit the implementation
overhead. Such a framework is required to ensure that basic func-
tionality, which is required across individual projects, doesn’t have
to be re-invented. This applies to selection metaphors, 1/0, render-
ing, or many other implementation details, which are not part of
the current research project itself. OpenFlipper is already equipped
with many commonly used functions as well as data structures for
the different data including polygonal, polytopal meshes, skeletons,
skeletal animations, B-spline curves and surfaces, and more.

This programming approach requires a highly modular structure
of the code, which allows for adjusting the software framework to
the specific requirements. OpenFlipper combines a fully modular
plug-in system with a very small core implementation. The plug-
ins available up to the current state cover many important functions
ranging from file I/O, GUI metaphors, and commonly used geom-
etry processing algorithms to rendering and post processing. The
framework allows developers to access almost all parts of the sys-
tem in order to implement innovative ideas in a rapid, goal-oriented
fashion.

Additionally, OpenFlipper integrates a powerful scripting sys-
tem, which allows for iterative development, i.e. modifying and
extending the system at runtime, as well as batch processing, the
creation of live demos, screenshots, videos, and many more.

To keep the software stable and avoid regressions between suc-
cessive code revisions, it is important to add a quality assurance
instance to the development process. This significantly reduces
the time required to get from research code to commercial grade
code since the framework’s core, which is reused among individ-
ual research projects, is subject to continuous quality tests. The
high degree of modularity combined with exhaustive code testing

of the most essential functions bestows important properties of re-
usability in software development upon the presented framework.
OpenFlipper uses the scripting system to run automatic tests to re-
veal bugs and regressions in the repositories. Furthermore, the de-
veloping process is assisted by a continuous integration system that
helps detecting syntactical or logical errors in the code at an early
stage, reducing the time to resolve errors in the implementations.

We show the different aspects of the framework and its devel-
opment at the example of plug-ins commonly required in geometry
processing and VR applications like rendering, input device man-
agement, GUI metaphors, etc.

2 BACKGROUND AND RELATED WORK

Today there exist various geometry processing frameworks, how-
ever, there are still only few which simultaneously fulfill the re-
quirements of geometry processing algorithms and visualizing the
results in the context of virtual reality environments. A widely
used geometry processing framework is MeshLab [13]. While be-
ing portable and extensible, it still does not offer means to use ad-
vanced rendering techniques such as stereoscopy which is a useful
technique to provide a spatial sensation of the displayed data and to
judge the quality of algorithms altering mesh surfaces more accu-
rately. Furthermore, MeshLab only provides limited support for ad-
ditional input devices mainly used in virtual environments such as
spatial navigation devices (e.g. 3Dconnexion’s SpaceMouse [1]) or
infrared motion tracking systems. Furthermore, it lacks full script-
ing support allowing to run batch processes, create automated de-
mos or test algorithms with a series of automatically generated pa-
rameters and/or input data.

Another component-based software framework is IP3D [16]
which is designed to synthesize 3D models and real photographs
in order to create realistic virtual worlds. The framework is also
extendable but does not focus on animation and real-time applica-
tions. A similar approach is the open-source software Bundler [25]
that implements a structure from motion technique to reconstruct
realistic 3D scenes from unordered image collections. Although
OpenFlipper is clearly not targeted at 2D image reconstruction, it
is capable of visualizing geometry data generated by Bundler using
the splat rendering method described in [26].

In [8] an authoring framework for virtual environments, Colos-
seum3D, is presented. This software supports rendering complex
and realistic 3D scenes, incorporating rigid-body dynamics, 3D
sound rendering and avatars used for the virtual identification of
the user. Applications in this software can be controlled via a script-
ing interface using the scripting language Lua [17]. However, this
framework only offers limited support for the modular implementa-
tion of geometry processing algorithms and handling objects other
than polygonal meshes. The VR Juggler software framework pre-
sented in [11] is a well-established tool in the field of virtual re-
ality that provides a development interface with several degrees of
abstraction from the underlying hardware layer. These abstraction
layers, called virtual platforms, enable developers not particularly
experienced in low-level programming to effectively create appli-
cations without putting much effort into complex programming is-
sues emerging from the underlying system. In [21] the authors
present an extension to VR Juggler, called VR Jugglua. In this
framework the advantages of VR Juggler are combined with Open-
SceneGraph [19], an open-source scene graph data structure similar
to OpenSG [23], and the widely used scripting language Lua [17].
However, similar to Colosseum3D, both frameworks offer only re-
stricted support for the integration of geometry processing algo-
rithms and operating on geometrical objects other than polygonal
meshes (e.g. polynomial curves and surfaces).

Furthermore, CONTIGRA [15] is another component-oriented
software toolkit for 3D applications that uses XML to describe the
individual components of the virtual world. It is designed to facili-

tate the authoring and prototyping process as well as offering means
for non-programmers to get involved in these development stages.
In contrast, due to the inherent limitations of XML being a declara-
tive language, the framework barely offers the possibility to develop
customized control flow or low-level functions which is oftentimes
needed in the deployment of real-time and/or high-performance ap-
plications.

Additionally, there are several other closed-source virtual real-
ity software frameworks worth mentioning in this context. Among
these are InstantReality [10] which is a high-performance mixed-
reality system that offers many commonly used features and devel-
opment interfaces, and CoVise [22] that mainly focuses on collab-
orative visualization of simulation results and other data. Nonethe-
less, neither of mentioned software systems focuses on geometry
processing applications.

In contrast to frameworks such as VTK [24] we want to provide
an application front-end that delivers a common look and feel and
therefore decided to organize the Ul and the plug-ins via the core
application.

3 PLUG-IN ARCHITECTURE

The OpenFlipper framework is semantically divided into two parts:
The core application and the set of plug-ins. The core creates
a Qt [5] and OpenGL context as well as the application window and
some basic GUI elements. OpenFlipper’s GUI is composed of the
user interface elements provided by Qt. But, as we support picking,
every element in the scene can act as an interaction element (like
the coordinate system). Furthermore, OpenFlipper’s core provides
a very basic rendering system used as a fallback solution on systems
with outdated graphics cards or application setups that do not incor-
porate any rendering plug-in (see Section 4 for further information
on that topic). Apart from that, OpenFlipper’s core does not contain
any further advanced functionality but manages the interaction and
communication between plug-ins and organizes the user interface.

Practically all functional units are added individually in terms of
dynamically linked plug-in libraries. OpenFlipper’s API provides
a variety of plug-in interfaces from which plug-ins may inherit in
order to access a set of specialized functions. These functions are
used for the communication between plug-ins and the core applica-
tion as well as between different plug-ins. As OpenFlipper is an
event-driven architecture, all communication is accomplished by
making extensive use of Qt’s event system, i.e. signals and slots
that are processed with the help of event queues. There exist differ-
ent types of events, synchronous and asynchronous ones, that can
be used in order to provide a powerful way of interoperability be-
tween the different parts of OpenFlipper even in multi-thread envi-
ronments. Up to the current development state, many useful plug-in
interfaces providing the following functionalities are available: Se-
lections, rendering, I/O support, interception of input events, log-
ging, integration of GUI elements, scripting, and many more.

In addition to these functionalities, OpenFlipper provides many
commonly used data structures. These include, among others,
OpenMesh [12] and OpenVolumeMesh [18] for polygonal and
polytopal meshes, respectively, and implementations of data struc-
tures to handle skeletons, skeletal animations, B-spline curves and
surfaces, as well as geometric primitives.

4 RENDERING

Undoubtedly, one of the most important parts of a virtual reality
framework is the rendering back-end. Like the other components in
OpenFlipper, the rendering functionality is suspended to plug-ins
as well.

The core of OpenFlipper represents the scene in a hierarchical
scene graph data structure. Each object in the scene has a set of
corresponding nodes in the scene graph which take care of trans-
forming and rendering the object as well as auxiliary information

such as selections. Additionally, the scene graph contains nodes to
control different OpenGL states, e.g. the current material and tex-
tures attached to the object. Due to the scene graphs hierarchical
structure, the states of a node are also applied to all of its attached
child nodes.

The structure is created when objects are loaded in the scene
or when they are modified. E.g. if meshes are loaded, they
are added to the scene graph as a node, which optimizes them
for rendering (Cache optimization [6]). If they get modified,
only the required parts of this optimization are recomputed (topol-
ogy,geometry,selection).

Rendering this scene graph structure is done via OpenFlipper’s
renderer plug-ins. In order to keep the core as simple as possible,
only a very simple renderer is integrated, that allows basic render-
ing, in case no external renderer plug-in is available. In the pub-
licly available version of OpenFlipper, several rendering plug-ins
are contained that support various rendering algorithms and strate-
gies. They have access to the OpenGL context of the viewer and
the scene graph. Prior to loading a renderer plug-in OpenFlipper
checks whether the system’s OpenGL version is sufficient in or-
der to run the plug-in (each renderer plug-ins can use individual
OpenGL driver revisions). If the currently installed OpenGL ver-
sion is insufficient, the core will refuse to load the plug-in in order
to avoid unexpected behavior or crashes due to unsupported hard-
ware. The plug-ins are completely independent from each other,
such that it is easy to develop and test new rendering algorithms
without interfering with existing code.

Furthermore, OpenFlipper allows to split the screen into separate
parts, each of which can be processed by a different renderer. This
allows for directly comparing the results of the active renderers and
using them to highlight different aspects of the objects (e.g. ren-
dering an object using proper material and lighting simulations in
one part of the screen, while the other part visualizes the object as
a wire frame).

To simplify the implementation of rendering code and to support
legacy graphics cards, we provide two different rendering interfaces
in OpenFlipper: the classical and the advanced rendering interface.
Renderer plug-ins can be derived from either of these interfaces
depending on the degree of desired compatibility. The following
sections provide a more elaborate description of the basic rendering
interfaces.

4.1 Classical Rendering Interface

The classical interface does not support high-performance render-
ing. It is rather intended to provide means for visualization on
legacy systems. For this mode, each node of the scene graph has
to provide a draw function that takes care of rendering the object
represented by that node. The renderer plug-in itself does not need
to know anything about the object to be rendered, as the correspond-
ing OpenGL code is encapsulated in the node. Therefore, it is easy
to create new objects and nodes as they only need to implement the
draw function and no changes to the external renderer are required.

The drawback of placing the actual rendering code in the nodes is
that, if a different visualization is wanted, one has to replace or ex-
tend this code. To allow different styles of rendering the draw func-
tion in the nodes gets an additional draw mode parameter. These
draw modes can be used to switch or combine the visualization (e.g.
wire frame or smooth shading). But still all rendering functions re-
side in the nodes.

When the scene is rendered, the scene graph is traversed by the
active renderer plug-in. For each node an enter function is called
setting the required OpenGL states. Then the corresponding draw
function of the node is called. Afterwards, a leave function resets
the OpenGL states to the original ones.

The limitation of this mode is that no optimization can be per-
formed across the objects (e.g. no sorting of objects based on depth,

shaders, primitives, materials or shared rendering buffers). Further-
more, the OpenGL states changed between draw calls cannot be
controlled by the renderer, which is incompatible with global ren-
dering techniques like Dual Depth Peeling [9]. Moreover, this ap-
proach is not seamlessly compatible with shader programming in
general. For example, it is unclear when to set the uniforms, as the
drawing nodes are independent from the texture, shader, and mate-
rial nodes, but the uniforms required might depend on all of them.
To overcome these problems and to add more flexibility when pro-
gramming new shaders an advanced rendering interface has been
added.

4.2 Advanced Rendering Interface

With the introduction of the advanced rendering interfaces the ac-
tual rendering code moves from the scene graph nodes to dedicated
rendering plug-ins. This implies that render plug-ins would have to
manage the different visualization modes of the individual object
types. As a result, new object types would require modifications
made to all available renderers. To avoid this restriction, a func-
tion which returns so called render objects is provided by the scene
graph nodes. The idea of these objects is that graphic cards only
support a fixed set of primitives, i.e. triangles, lines, etc. Therefore,
it would be sufficient for the scene graph nodes to generate the re-
quired primitive buffers and provide them in a unified data structure.
The render objects then contain pointers to OpenGL buffers which
include the data to be rendered. Furthermore, they provide informa-
tion about how the data is organized in the buffer (normals, colors,
etc.), which kind of primitive (triangle, point, line, etc.) should be
rendered and the material, texture, or other states which have to be
applied during the rendering process of an object. Therefore, one
node has to provide more than one render object, e.g. if more than
one texture or state is used in the object.

These render objects enable a unified draw procedure as the ren-
derer itself can traverse the scene graph, collect the required ren-
der objects from the nodes, and start an optimization phase when
all data is available. In this optimization the renderer can sort the
render objects such that the number of state switches (shaders, tex-
tures,...) is minimized. Afterwards, the scene is drawn in that opti-
mized order.

To simplify the creation of new renderer plug-ins, this process is
implemented in a renderer base class. It consists of several steps:

1. The scene graph is traversed to collect the render objects.

2. The render objects are sorted and some initial OpenGL states
are set.

3. Each render object is processed in newly determined order
by binding its buffers, setting the required uniforms for the
shaders, e.g. matrices, lighting parameters, etc., and perform-
ing the actual draw call.

Note that this setup allows full control of all state changes from
within the renderer which allows for the implementation of more
sophisticated, modern rendering techniques such as deferred shad-
ing. When all objects are drawn, all OpenGL states are reset to their
defaults in order to prevent interference with other components of
the application.

Due to these predefined functions a simple standard renderer is
only a few lines of code calling the different stages. Still it is a small
amount of additional code that is required to replace parts of the
pipeline (e.g. replace the sorting algorithm) in order to create more
advanced renderers. This flexible architecture allows for imple-
menting highly modular renderers customized to meet the require-
ments of specific hardware configurations, e.g. surround-screen
projection systems such as the CAVE [14], and different applica-
tions, e.g. non-photorealistic visualizations. Figure 2 shows the
data flow of the advanced rendering pipeline.

Draw Callback

Collect Ren-

Get buffer data

der Objects

Bind Buffers]

Set Uniforms,
Shaders, States

Render Object

(Y ()

[Sort)

Render

Post Processors
Final Image

Figure 2: Data flow of the advanced rendering pipeline.

To simplify the construction of shaders, OpenFlipper provides
a shader generator that uses template shader code files that can be
customized by the renderer plug-ins. These shader template files
contain markers which are replaced by custom code blocks at run-
time via so called shader modifiers. Basic variables like the cur-
rent view/projection matrices or materials are automatically added
to these template files. Therefore, all required uniform variables are
passed to the shader by the rendering system so that the developer
does not have to be concerned with their setup. Of course, it is
still possible to write entirely customized shaders and to use them
in the pipeline. To avoid unnecessary switching and compilation
of shaders, a shader cache manages the efficient handling of the
shaders, i.e. if a shader is used twice, it will only be compiled and
linked once and reused for multiple render objects to avoid over-
head.

This interface allows for creating advanced renderer plug-ins like
Dual Depth Peeling [9] that require to create additional render tar-
gets and shaders to compute transparency in the scene without hav-
ing to render the objects back to front. Therefore, the plug-in needs
full control over the shaders and buffers while rendering several
passes of the same scene with different shader setups. Our imple-
mentation follows closely the one described in [9].

4.3 Post-Processors

To enable flexible rendering effects, OpenFlipper provides an addi-
tional rendering stage, the post-processing. This stage is run on the
output of the renderers, i.e. frame buffers, depth buffers, etc. Post-
processor plug-ins usually perform image processing algorithms
executed on a rendered image but could equally be used to adapt
the image to different output devices. Post-processor plug-ins have
access to the OpenGL context and can therefore use all available
buffers as their input. There are typically two different scenarios
that require post-processing:

e Executing image based algorithms which analyze or enhance
the images such as the detection of sharp features/corners that
may then be accentuated in the final image.

e Reprocessing the images to be displayed on different output
media.

One example for the latter is to split the image into segments and
stream them to multiple displays (like a video wall consisting of an
array of monitors). In this case, the post processor takes care of the
splitting operation, compresses the image into a format compatible
with the target platform and sends them, e.g. via network, to the
display devices. Therefore, the renderers do not need to know any-
thing about the final processing step, except for possible adaptations
of the frame buffer’s resolution when rendering for high-resolution
targets.

4.4 Stereo Support

Another configuration in need of post-processing steps is to gener-
ate output used on stereoscopic displays. Therefore, the available
rendering plug-ins support a number of techniques for stereoscopy.
Currently OpenFlipper supports three different modes:

e OpenGL stereo: In this mode, one image for each eye is ren-
dered. Depending on the available hardware these images
can either be displayed at the same time using e.g. polariza-
tion filters (passive stereo) or in an alternating way via shutter
glasses (active stereo).

e Anaglyph stereo: As many devices do not support direct
stereo rendering, OpenFlipper provides means for anaglyphic
stereoscopy (see Figure 3 left).

e Auto stereoscopic displays: This is a special mode for some
auto stereoscopic displays. They take as input a color image
and a depth image and compute an (approximated) 3D view.
This additional mode is produced by a simple post processor
plug-in which combines the color and depth buffer in one final
image (Figure 3 right).

Figure 3: Left: Anaglyph stereo output. Right: Combined output of
the color and depth image for auto stereoscopic displays.

One common problem of the interaction in virtual worlds when
viewing geometry is the rendering of the mouse pointer. The level
of immersion heavily depends on how plausible the rendering of
different scene components appears for the human perception. If
the scene is rendered and perceived in 3D while e.g. a mouse
pointer’s positions are restricted to 2D, the user perceives this as
highly irritating and the sensation of depth is severely affected.
OpenFlipper already includes a pointer infrastructure to render vi-
sual pointers at the correct depth. The correct depth is computed
automatically such that the pointer is rendered at the same depth as
the object behind it. The renderer plug-ins can also get the pointer
information and replace the representation with a customized one.

5 SELECTION METAPHORS

The selection of individual entities or groups of entities of objects is
a fundamental metaphor widely used in visualization and geometry
processing applications. Selections are used to determine regions
of interest e.g. to be subject to further editing and/or processing of
algorithms. The presented framework supports handling objects of
different kinds, such as polygonal meshes, polynomial curves and
surfaces (B-splines), volumetric meshes, and many more. Some
selection metaphors can be transfered trivially to different kinds
of objects, e.g. the selection of vertices of a polygonal mesh and
the selection of control points of a B-spline curve. However, this
does not apply to all metaphors in general. In many cases, each
of these object types consists of characteristic entities that need
special handling when it comes to selections. For instance, when
selecting a point on a B-spline curve, one might want to specify
whether one is interested in selecting the actual point on the curve
(thus in the curve’s embedding space) or rather determine the cor-
responding pre-image in the curve’s parameter space. In practice,
both metaphors require two different selection modes.

From a software-architectural point of view, we solved this issue
by splitting up OpenFlipper’s selection unit into a hierarchical tree
of functionally differing selection layers. At the core is the base se-
lection plug-in that implements—independent from specific object
types—a set of elementary metaphors that are commonly shared
among most object types, see Section 5.1 for details. In a higher
level, there is a set of object specific selection plug-ins. In these
plug-ins the individual functionalities tailored to the specific object
types is implemented. Apart from informing the application about
the supported object dependent entity types, i.e. vertices, edges,
etc., they also manage which of the basic selection metaphors, pro-
vided by the selection base plug-in, should be accessible for each
entity type. The actual selection is also implemented in these plug-
ins. Furthermore, one may add individual, object specific selection
metaphors in these plug-ins.

The two different layers are described in more detail in Sec-
tions 5.1 and 5.2. Figure 4 depicts the underlying hierarchy of the
mentioned selection layers.

Selection Base

Provide elementary
metaphors and

gather custom
metaphors

|

Polygonal

Mesh i
Select entities of
polygonal meshes

|

Further type
selection plug-ins

B-spline ‘ ‘ Skeleton ‘ ‘

Select entities of
B-spline curves

Select entities
of skeletons

Figure 4: Hierarchy of selection layers in OpenFlipper

5.1 Basic Selection Layer

This layer is independent from specific object types. It provides
basic selection metaphors that are commonly shared across multiple
object types. Furthermore, it keeps track of all available primitive
types as well as custom selection metaphors provided by the object
specific selection plug-ins. The set of basic metaphors currently
comprises the following operations: Toggle, Surface and Volume
Lasso, Sphere, Flood Fill, Boundary, Connected Component.

5.2 Object Specific Selection Layer

This layer contains a set of object specific selection plug-ins—one
for each object type. During the initialization stage these plug-ins
inform the selection base plug-in about the individual entities en-
abled for selection (e.g., in the case of 2D polygonal meshes, ver-
tices, edges, and faces). In a subsequent step they inform the base
selection plug-in about which basic selection metaphor should be
enabled for which entity. Additionally, further custom selection
metaphors can be added optionally.

Then, while the user interacts with OpenFlipper, whenever
a primitive as well as a metaphor is activated for selection, all
mouse events are intercepted by the selection base and propagated
through all object specific selection plug-ins.

5.3 Selection Data Flow

The object specific selection plug-ins provide information about
all available custom selection metaphors, i.e. metaphors not pro-
vided by the selection base plug-in. It also provides a mapping of
each primitive type to the available metaphors that indicates which
metaphor should be enabled for use with a particular entity type. All
available primitive types and associated metaphors will then appear
in OpenFlipper’s GUI as buttons on a tool bar:

PAAAZ AL XERE B2

If the user activates a primitive type and a metaphor and clicks
into the scene, the base plug-in will intercept the event triggered by
the input device, determine the currently activated primitive type as
well as the selection metaphor and passes this information on to all
object specific selection plug-ins. The object specific plug-ins per-
form the actual picking and, where necessary, the algorithms used
for the currently active selection metaphor. They directly modify
the states of the respective objects in the scene. After the selection
operation is done, they trigger a scene update in order to display
the selections. Figure 5 schematically shows the underlying call
sequence of a selection operation.

Core/GUI I

BaseSelection I ‘ TypeSelection I

setPrimitiveTypes()
Pl

,,,,,,,,,,,,,, >
setCustomMetaphors()
- 7

mouseEvent()
selection(metaphor, primitive)
—

performSelection()

Figure 5: Data flow of a selection operation. All available primitive
types and associated selection metaphors are registered in the ini-
tialization stage. Selection events triggered by input devices are then
passed from the core to the base selection plug-in that triggers the
actual selection operation in the object specific plug-ins.

6 REMOTE CONTROL

An important feature of virtual reality applications and especially
cooperative applications is to synchronize states between differ-
ent instances of the system. OpenFlipper supports synchronization
across networks as well as an entire remote control interface us-
ing the integrated scripting environment. Section 6.1 describes the
basic features and implementation of the scripting system, while
Section 6.2 shows its utilization for network synchronization.

6.1 Scripting Interface

OpenFlipper comes with a powerful scripting system. The script-
ing language is a JavaScript dialect following the ECMA-262 stan-
dard [7]. The Qt scripting implementation of this standard is used
as a basis for our implementation. Using this interface has the major
advantage that exporting functions from the C++ interface of plug-
ins to the scripting system only requires the exposure of a function
using the public slot qualifier.

The scripting system can be used for various tasks. First of all
it is possible to start OpenFlipper in batch mode executing an au-
tomated script e.g. to evaluate a series of settings for an algorithm.
Secondly, one can control the rendering algorithms to automatically
create sets of visualizations or to create live user demonstrations for
various output devices. This also simplifies the creation of visual
results as one can script the whole process and trigger viewer snap-
shots in an automated fashion. These snapshots, for instance, can
be converted to a video afterwards.

The user interface can also be modified by the scripting interface.
It is possible to load additional user interface windows from scripts.
This allows for adapting the UI to the user’s individual needs with-
out requiring to restart the application.

To simplify the creation of scripts, algorithms can emit notifica-
tions that contain information about the current state of their exe-
cution. This information contains the ready-to-use scripting com-
mands, that would be required to run the current operation with
the currently applied parameters. For example, when performing
a selection on a complex model in the scene, the entire command—
including the set of indices of the selected entities—is written into
OpenFlipper’s internal logger. This command can then be copied
into a script file so that the exact selection operation on that partic-
ular model can be reproduced from within an automated script.

6.2 Network Synchronization

OpenFlipper is equipped with a network interface used to trans-
fer scripting commands between different instances of OpenFlip-
per. This interface uses the TCP/IP network protocol and is thus
capable of synchronizing multiple OpenFlipper instances running
on separate machines and/or platforms sharing the same network as
well as multiple instances on a single machine. The user determines
whether an instance acts as server or client. Operations performed
on server instances are sent out to the associated clients which then
invoke the respective operation locally. Therefore, instances can be
synchronized in various ways. A common application is the syn-
chronization of the view. This is accomplished by simply exchang-
ing scene parameters (such as camera and projection parameters,
etc.). For collaborative work, one can also visualize the view pa-
rameters of a server instance represented as a viewing frustum be-
ing displayed within the scenes of connected OpenFlipper instances
as depicted in Figure 6.

Figure 6: The current view of a connected remote viewer is rendered
as a viewing frustum.

Furthermore, as the scripting also allows to send more complex
commands like selection operations, execution of algorithms, or the
previously mentioned modifications to the user interface, the dis-
tributed synchronization of a multitude of OpenFlipper’s functions
can be achieved using the network interface. If some commands are
not to be sent or received, they can simply be filtered out from the
stream of scripting commands.

When dealing with computationally intense operations, the net-
work interface can be used to distribute the work load among the
connected remote instances of OpenFlipper. In order for the pro-
cessing to be as efficient as possible, in these scenarios, work load
packages have to be delegated to the clients in a rather smart way.
The flexibility and adaptability of OpenFlipper’s network interface
facilitates this task.

The implementation of OpenFlipper’s network system offers an
integrated auto discovery system for instances running in the local
network. The role, i.e. server/client/both, of each instance can be
configured on-the-fly.

7 INPUT HANDLING

Interaction with virtual environments can be done using a multitude
of diverse input devices. As OpenFlipper is intended to be usable
on a variety of platforms scaling from laptops to high-performance

systems using a single displays, large high-resolution monitor con-
figurations, or projection systems, the framework needs a flexible
input device handling.

As OpenFlipper is based on the Qt library [5], the standard input
of mouse and keyboard events is handled by the library. Never-
theless, the plug-in architecture of OpenFlipper enables easy inte-
gration of various other input devices which are more common in
virtual environments.

There are two ways of integration for new input devices. The
first possibility is to determine a mapping of the device’s events to
standard input events (e.g. mouse movements, key press events). At
the example of the Wiimote, the remote control of Nintendo’s Wii
console, a direct mapping of its movement and button press events
onto the corresponding mouse events provides a convenient way of
fully integrating the Wiimote as input device in OpenFlipper. This
mapping is transparent to all plug-ins in a way that no additional
handling of new input events is required—they still deal with mouse
events the usual way.

The second possibility is to map events of the input device di-
rectly to actions in OpenFlipper. For instance, one can map the
signals of a 3D input device, such as the SpaceNavigator [1] or the
Wii remote control, directly to camera or object movements. One
prominent example for this is the handling of infrared head tracking
systems. These systems track the users head position and orienta-
tion in 3D space via a set of reflective markers mounted on the
head, e.g. a helmet or glasses. The computed position and orien-
tation is then used to update the projection matrices accordingly.
Furthermore, one can utilize additional tracking targets in the setup
to move and manipulate objects within the scene. The rendering
can be configured so that objects are attached to markers to provide
the impression of being mounted on top of the marker in 3D space.

The integration of such extended input devices is conveniently
implemented in a single plug-in that gathers all data emitted from
the device, if necessary performs some preprocessing on it, and for-
wards the data to other plug-ins using OpenFlipper’s event system.
This significantly reduces computational overhead and the overall
latency of the system.

8 AUTOMATED TESTING

While developing applications, considerable effort has to be put in
the identification and resolution of software bugs. Especially in
highly interactive systems, composed of various plug-ins, this can
be time consuming as the interaction between plug-ins may have
unintended side effects. Additionally, these problems can become
worse, if the development team is distributed over several locations
and projects. To overcome this, we setup an automated testing sys-
tem with two stages of quality assurance: Unit, Smoke testing and
continuous integration. Section 8.1 describes the integrated testing
inside the framework, section 8.2 the infrastructure configured to
run the tests.

8.1 Testing Framework

The development pipeline of OpenFlipper is equipped with an in-
tegrated framework for testing many components at various imple-
mentational levels.

On the lowest level of tests, a series of unit tests is performed for
various low level functions independent of the core. This may be
the creation of spatial trees from polygonal meshes, sorting algo-
rithms or simply a random number generator. The functions which
are tested are required to run without any user interface or inter-
action. This level of testing uses the Google C++ testing frame-
work [3].

In the second level of testing, smoke tests make sure the main
application is able to start with different combinations of plug-ins.
At an early stage, these tests make sure that no memory corruptions

or interferences between plug-in functions are encountered during
the start-up process.

The tests are composed of two parts. First off, OpenFlipper is
run in batch mode, i.e. without user interface, for the purpose of
checking whether the core itself comes up correctly with the plug-
ins without GUI elements. They would return an error if plug-ins
cannot be loaded due to linking errors (missing symbols) or if plug-
ins conflict. If this first start up succeeds, OpenFlipper is run with
the user interface to see if the graphical part of the application also
works correctly and whether the plug-ins can expose their user in-
terface components to the core.

At the highest level of the testing framework lie the integration
tests. They check the correctness of algorithms and interaction
between plug-ins or even a whole work flow encoded as scripts.
Again, OpenFlipper can run in batch mode without a user interface
to check the basic components of algorithms or in graphical user
interface mode to check the GUI and rendering results. For ex-
ample, the cache optimizer class provides a smart way of caching
the entities of polygonal meshes for efficient rendering. The tests
on this unit can be run in batch mode to check whether the opti-
mization algorithm works with different parameters, but nothing is
actually rendered. In a next step, the algorithm is run again, but
this time the results are rendered, collected and compared against
a ground truth data set consisting of snapshots from previous appli-
cation runs provided by a developer. As the user interface can also
be included in the snapshots and is modifiable be the scripting, we
can include into the analysis. This way, it is possible to narrow the
possible error sources and see, if the underlying algorithm is broken
or something goes wrong during the rendering.

As OpenFlipper can also take snapshots via the scripting inter-
face, it is furthermore possible to check if rendered content suffers
from regressions. To check renderings for regressions, manually
generated snapshots of the expected results are taken as ground
truth and compared to the images resulting during the test runs.
These comparisons can be parameterized in different ways. The im-
age is not necessarily required to be exactly the same as the ground
truth. Therefore, it is reasonable to compare the images based on
a threshold with different criteria (color difference per pixel, bright-
ness, histogram of the image, etc.). If the difference exceeds the
threshold, the developer is obliged to check the result. If the outly-
ing result is still acceptable, it can be added to a pool of reference
images used for successive tests. In some cases it is even reasonable
to replace the initial ground truth image. This procedure allows for
easy recognition of changes in the renderings and therefore detects
regressions during the development of the application.

8.2 Infrastructure

To take advantage of this integrated testing environment, an auto-
mated infrastructure is required to run the tests. We use the con-
tinuous integration system Jenkins [4]. All check-ins into the code
repository are automatically analyzed on all supported platforms.
This ensures that the code compiles and executes correctly on all
supported operating systems and no regressions are introduced with
new code revisions.

Furthermore, the code is checked at different levels to keep it
as clean as possible. The lowest level is the static code analysis
(we use Cppcheck [2] for this). The code is analyzed with respect
to possible semantic and syntactic errors, compiler warnings, and
issues concerning code style. Afterwards, the code is compiled on
the different platforms and compilers (MSVC, gcc, clang). The
automatic testing process is schematically depicted in Figure 7.

A list of all located issues is sent to the developer who caused
them. This significantly improves the code quality and porta-
bility. Due to the automatic testing, we can support a rolling
release schedule as the repository is kept clean and of high
quality. Additionally, the continuous integration server auto-

matically creates setup bundles of all builds (if they succeed).

SVN Check-in

As OpenFlipper is modular, it
is convenient to create different
branches for each research project.
These branches usually contain
a different set of plug-ins. Plug-

ins created in the publicly available ‘ gee I ‘ Slane I ‘ msve I

part of the framework are simply i i i

linked to the individual branches Unit Tests

such that updates are automatically i i i

propagated. ‘ Smoke Tests I
In addition, the framework con- i i i

tains a license management Sys-
tem which supports the creation
of closed-source plug-ins and com-
mercial applications requiring only
a few lines of code which is de-
scribed in more detail in [20].

Integration
Tests/Algorithms

Figure 7: A schematic
overview of the auto-
mated testing pipeline.

9 RESULTS

Currently OpenFlipper is used in a variety of research and commer-
cial projects. Most of these projects deal with geometry processing
and interactive visualization of the results. To get a better insight
into the data, it has become more and more important to use im-
mersive displays and input metaphors to visualize and interact with
the objects. Therefore the original framework has been extended to
support the various output media used for virtual environments and
the corresponding input metaphors. In this section we want to show
some of the current application domains of the framework.

Generating visually plausible models of cities is usually quite
complicated. To simplify the generation process, OpenFlipper is
used to visualize point clouds gathered via laser scanners together
with generated meshes that represent the models generated from the
input data. Figure 8, left, shows a reconstruction from a laser scan.

Another application field of OpenFlipper is the processing and
visualization of data captured from infrared motion tracking sys-
tems that can be used to animate models. OpenFlipper supports
the visualization of this data both offline and online, i.e. real-time.
Figure 1, right, shows an example of an animated Armadillo mesh.

Figure 8: Left: The results of a 3D reconstruction of an urban scene.
Shown is a manifold polygonal mesh generated from a laser scan.
Right: The reconstruction of a desk using Microsoft’s Kinect.

In addition to infrared tracking systems, OpenFlipper provides
a plug-in that supports low-precision motion tracking obtained from
Microsoft’s Kinect. This plug-in gathers skeletal animations cap-
tured from the device and transfers them onto skeletons in the scene.
Furthermore, the depth information gathered with the tracking data
can be used to scan a real scene and map it onto a 3D model as
depicted in Figure 8, right.

Figure 9 shows OpenFlipper’s interface with multiple active
views. Each of these views uses a different renderer plug-in to draw
the image.

300G

Figure 9: OpenFlipper’'s multi-view interface with different active ren-
derers.

10 CONCLUSION AND FUTURE WORK

The presented framework is a portable and highly flexible plat-
form to easily develop powerful research and commercial appli-
cations. Its plug-in architecture provides a high degree of modu-
larity and reusability of the implemented algorithms across differ-
ent projects. Many essential algorithms are already available in the
publicly available code base and can be used as a starting point for
new projects.

Furthermore, OpenFlipper contains an easy-to-use scripting sys-
tem to automate a variety of processes including quality assurance
and continuous integration. This automation allows for rolling re-
leases with a minimal amount of human interference.

Although a lot of functionality for VR applications has already
been integrated into the framework there are still missing features.
For instance, we intend to integrate more input devices such as
tracking systems for head mounted displays into future releases.
Next to this, we want to render the Qt menus directly into the
OpenGL scene to provide a more immersed user interface experi-
ence. Furthermore, the implementation of more sophisticated ren-
dering algorithms which improve the image quality, e.g. for our
splat based rendering, is planned. Additionally, we want to write
renderer modules with OpenGL ES support to be able to support
mobile devices in the context of augmented reality scenarios.

In addition to the current use of OpenMP for cache optimization
and other geometry processing algorithms, we intend to improve
the multi-threading management inside the framework to make bet-
ter use of multi-core systems in combination with the scripting sys-
tem.

ACKNOWLEDGEMENTS

This project was funded by the DFG Cluster of Excellence UMIC
(DFG EXC 89). We would like to thank all OpenFlipper contribu-
tors for their useful suggestions and the provided implementations.
Furthermore, we thank Christopher Tenter for the implementation
of various aspects of OpenFlipper’s rendering infrastructure as well
as Torsten Sattler for contributing point cloud data sets.

REFERENCES

[1] 3Dconnexion SpaceNav. http://www.3dconnexion.de.

[2] Cppcheck, A tool for static C/C++ code analysis.
http://cppcheck.sourceforge.net.
[3] Google C++ Testing Framework.

http://code.google.com/p/googletest.

[4] Jenkins, An extendable open source continuous integration server .
http://jenkins-ci.org.

[5] Qt cross-platform application and UI framework. http:/qt.digia.com.

[6] Fast triangle reordering for vertex locality and reduced overdraw.
ACM Transactions on Graphics (Proc. SIGGRAPH), 26(3), Aug.
2007.

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

Standard ECMA-262, ECMA Script Language Specification, 5th edi-
tion, 2009.

A. Backman. Colosseum3d authoring framework for virtual envi-
ronments. In In Proceedings of EUROGRAPHICS Workshop IPT and
EGVE Workshop, pages 225-226, 2005.

L. Bavoil and K. Myers. Order Independent Transparency With Dual
Depth Peeling. Technical report, NVIDIA Developer SDK 10, 2008.
J. Behr, U. Bockholt, and D. Fellner. Instantreality - a framework
for industrial augmented and virtual reality applications. In D. Ma,
X. Fan, J. Gausemeier, and M. Grafe, editors, Virtual Reality and Aug-
mented Reality in Industry, pages 91-99. Springer, 2011.

A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira. Vr juggler: a virtual platform for virtual reality application
development. In Virtual Reality, 2001. Proceedings. IEEE, pages 89
-96, march 2001.

M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh — a
generic and efficient polygon mesh data structure. In OpenSG Sympo-
sium, 2002.

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia. Meshlab: an open-source mesh processing tool. In Sixth
Eurographics Italian Chapter Conference, pages 129-136, 2008.

C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen
projection-based virtual reality: the design and implementation of the
cave. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, SIGGRAPH 93, pages 135-142,
New York, NY, USA, 1993. ACM.

R. Dachselt, M. Hinz, and K. Meissner. Contigra: an xml-based ar-
chitecture for component-oriented 3d applications. In Proceedings of
the seventh international conference on 3D Web technology, Web3D
’02, pages 155-163, New York, NY, USA, 2002. ACM.

P. Grimm, F. Nagl, and D. Abawi. IP3D - A Component-based Archi-
tecture for Image-based 3D Applications. In SEARIS@IEEEVR2010
Proceedings, IEEE VR 2010 Workshop. ISBN 978-3-8322-8989.8,
pages 47-52, 2010.

R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho. Lua-an
extensible extension language. Software: Practice and Experience,
26(6):635-652, 1996.

M. Kremer, D. Bommes, and L. Kobbelt. Openvolumemesh - a versa-
tile index-based data structure for 3d polytopal complexes. In X. Jiao
and J.-C. Weill, editors, Proceedings of the 21st International Meshing
Roundtable, pages 531-548, Berlin, 2012. Springer-Verlag.

P. Martz. OpenSceneGraph Quick Start Guide. Skew Matrix Software,
2007.

J. Mobius and L. Kobbelt. Openflipper: An open source geometry
processing and rendering framework. In Proceedings of the 7th inter-
national conference on Curves and Surfaces, pages 488-500, Berlin,
Heidelberg, 2012. Springer-Verlag.

R. Pavlik and J. Vance. Vr jugglua: A framework for vr applications
combining lua, openscenegraph, and vr juggler. In Software Engi-
neering and Architectures for Realtime Interactive Systems (SEARIS),
2012 5th Workshop on, pages 29 =35, march 2012.

D. Rantzau, U. Lang, R. Lang, H. Nebel, A. Wierse, and R. Ruehle.
Collaborative and interactive visualization in a distributed high perfor-
mance software environment. In M. Chen, P. Townsend, and J. Vince,
editors, High Performance Computing for Computer Graphics and Vi-
sualisation, pages 207-216. Springer, 1996.

D. Reiners. A flexible and extensible traversal framework for scene-
graph systems. In Proc. Ist OpenSG Symposium, 2002.

W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The design and
implementation of an object-oriented toolkit for 3d graphics and visu-
alization. In Proceedings of the 7th conference on Visualization ’96,
VIS °96, pages 93—ff., Los Alamitos, CA, USA, 1996. IEEE Computer
Society Press.

N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring
photo collections in 3d. ACM Trans. Graph., 25(3):835-846, July
2006.

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, SIGGRAPH °01, pages 371-378, New York,
NY, USA, 2001. ACM.

