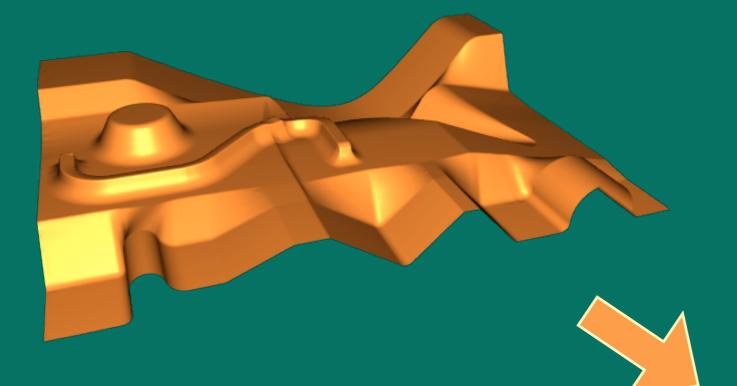
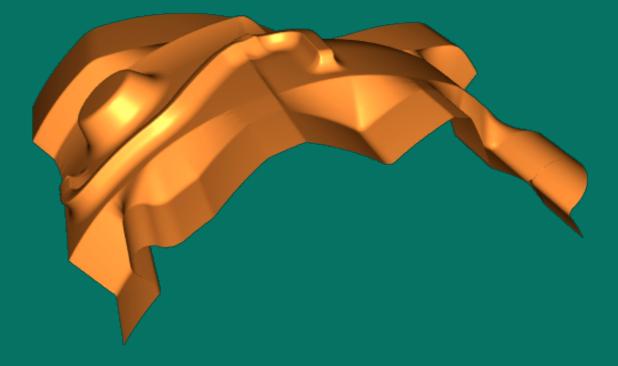
An Intuitive Framework for Real-Time Freeform Modeling

Mario Botsch Leif Kobbelt

Shape Deformation



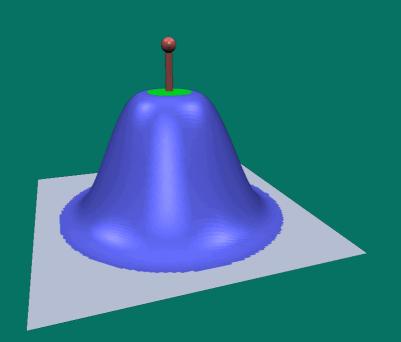
Complex shapes Complex deformations



User Interaction

Very limited user interface
2D screen & mouse

Intuitive metaphor needed
 Control points / handles



Shape Deformation

• Move control handle to edit surface $S' = S + B\left(\delta C\right)$

Complex modification B (δC) ?
Either complex user interaction δC
Or complex basis functions B

Shape Deformation

Keep user interaction simple
Non-expert users
Limited user interface

• Need custom-tailored basis functions B

- Arbitrary support
- Smoothness
- Surface stiffness & bending

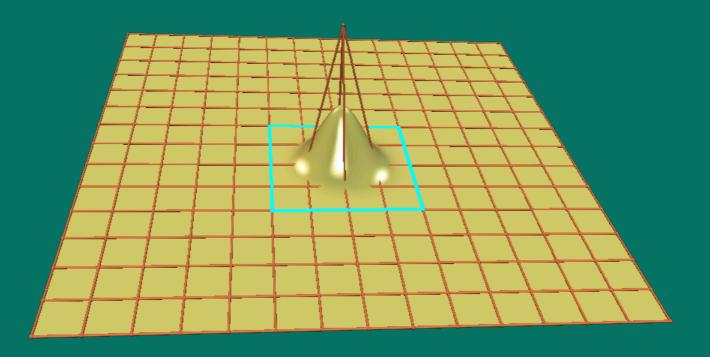
Introduction

- Related Work
- Boundary constraint modeling
- Results
- Conclusion

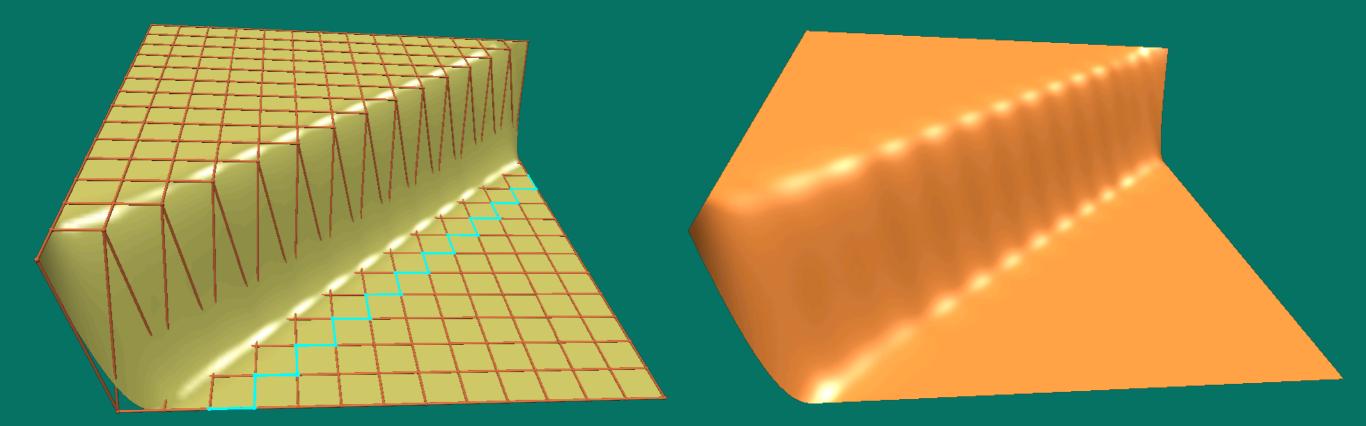
Related Work

- NURBS & Subdivision surfaces
- Freeform Deformation
- Distance-Based Deformation
- Boundary Constraint Modeling

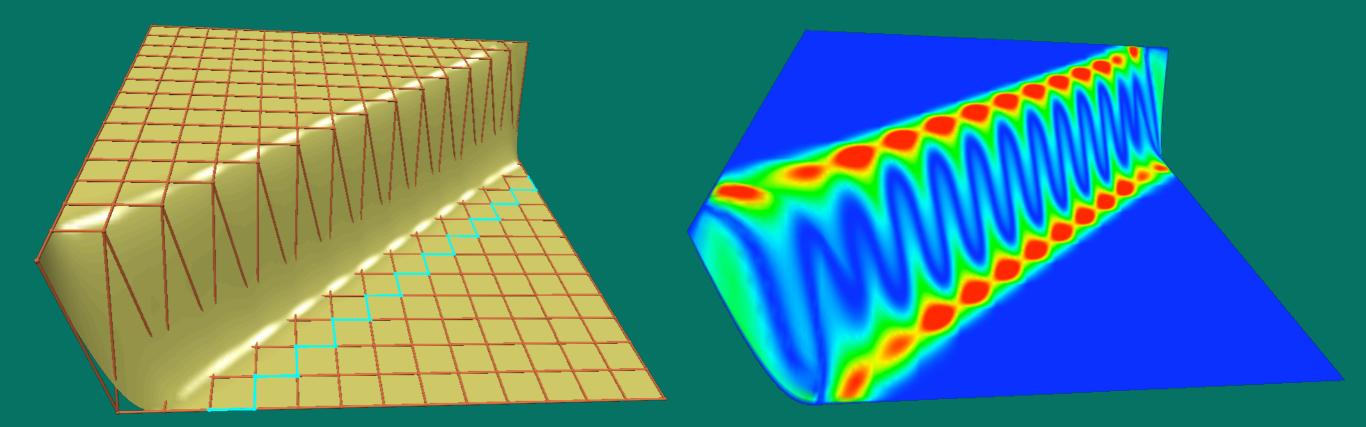
- Basis functions are smooth bumps
 - Simple B, complex δC
 - Fixed support



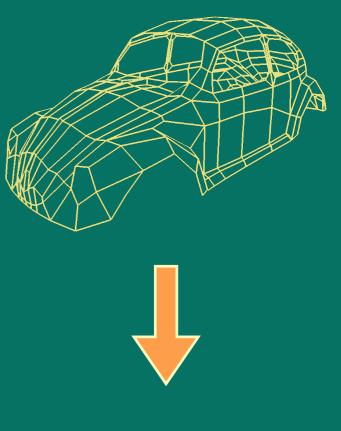
- Basis functions are smooth bumps
 - Simple B, complex δC
 - Fixed support



- Basis functions are smooth bumps
 - Simple B, complex δC
 - Fixed support



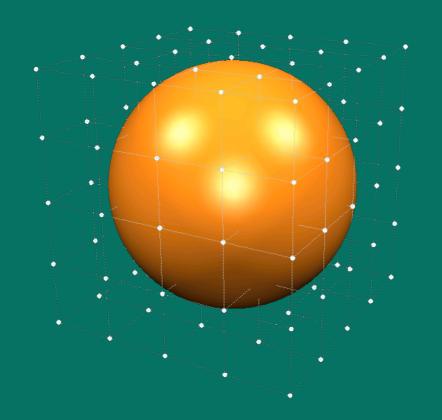
- Fixed basis functions
 - Support
 - Number & position
- Bound to control points
 - Initial patch layout crucial
 - Requires experts!
- De-couple deformation basis from surface representations!

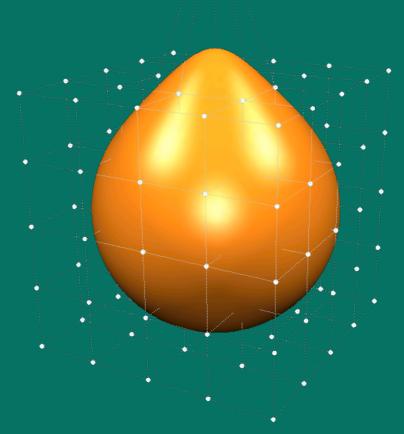


RITHAACHEN

Freeform Deformation

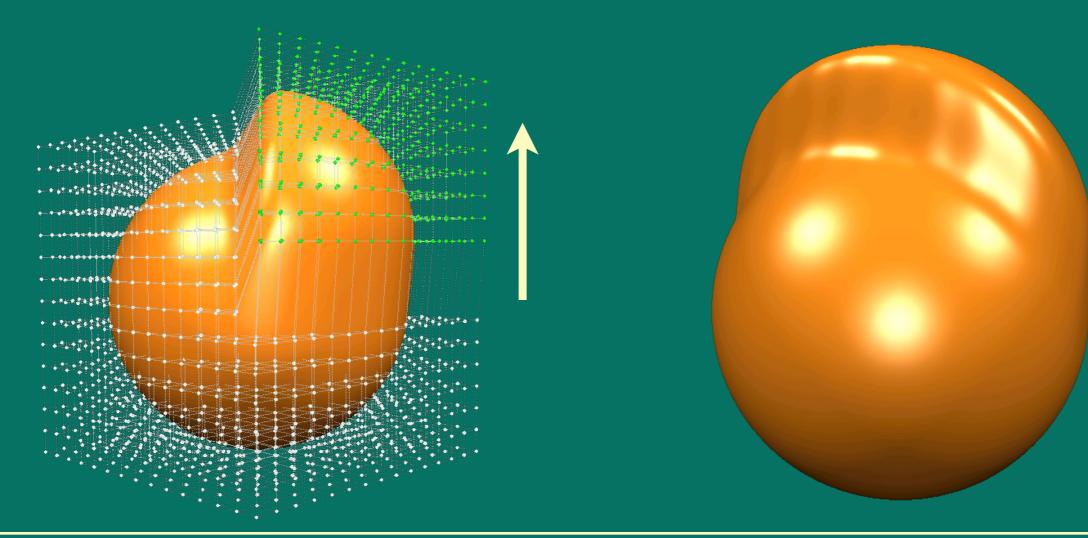
- Deform space around object
 - Tri-variate tensor-product spline
 - Simple B, complex δC





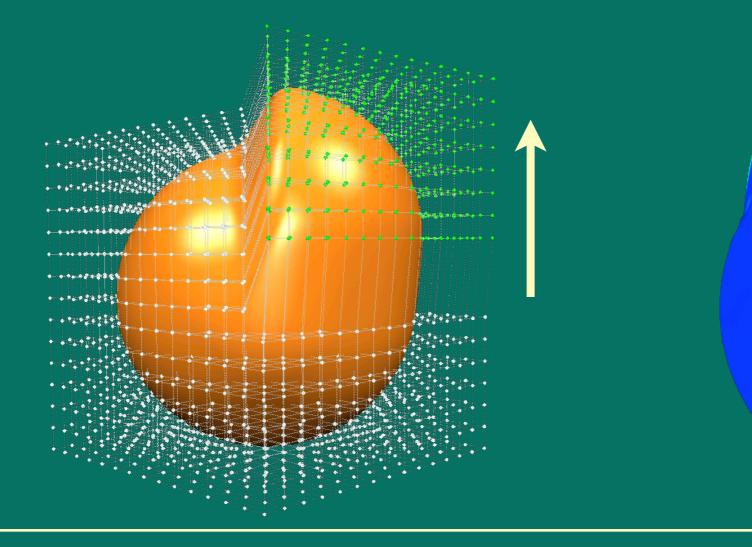
Freeform Deformation

- Deform space around object
 - Tri-variate tensor-product spline
 - Simple B, complex δC



Freeform Deformation

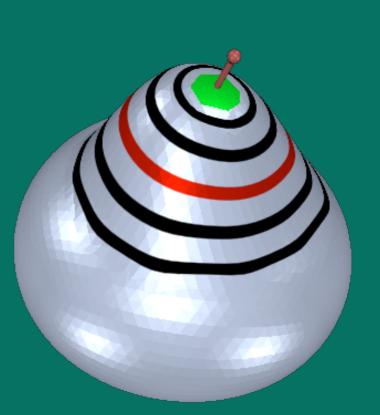
- Deform space around object
 - Tri-variate tensor-product spline
 - Simple B, complex δC



Distance-Based Propagation

Propagate handle transformation
 Euclidean / geodesic distance

Surface properties?Interpolation constraints?



Distance-Based Propagation

Distance Distance Smooth interpolation

RNTHAACHEN

Boundary Constraint Modeling

- Constrained energy minimization
 - Moreton & Sequin 1992
 - Welch & Witkin 1992
 - Kobbelt et al. 1998
- Boundary element method
 James & Pai 1999
- Alternative detail representation
 - Sorkine et al. 2004
 - Yu et al. 2004

Introduction

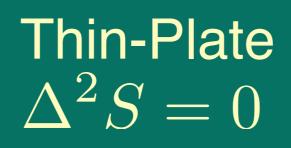
- Related Work
- Boundary constraint modeling
- Results
- Conclusion

Boundary Constraint Modeling

- Prescribe boundary constraints
 - Vertex positions
 - Vertex continuities
- Constraint energy minimization $E_k(S) = \int F_k(S_{u^k}, S_{u^{k-1}v}, \dots, S_{v^k})$
- Euler-Lagrange PDE: $\Delta^k(S) = 0$

Energy Functionals

$\begin{array}{l} \text{Membrane} \\ \Delta S = 0 \end{array}$



$MVS \\ \Delta^3 S = 0$

RNHAACHEN

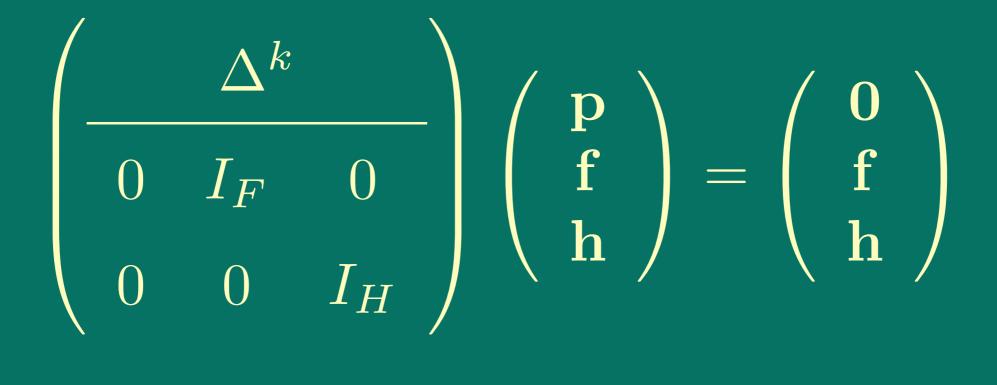
Modeling Metaphor [Kobbelt et al. 98]

- Support region (blue)
- Handle regions (green)
- Fixed vertices (gray)

Linear System

[Kobbelt et al. 98]

 $\mathbf{h} = \{h_1, \dots, h_H\} \quad (k \text{ rings only})$ $\mathbf{p} = \{p_1, \dots, p_P\}$ $\mathbf{f} = \{f_1, \dots, f_F\} \quad (k \text{ rings only})$

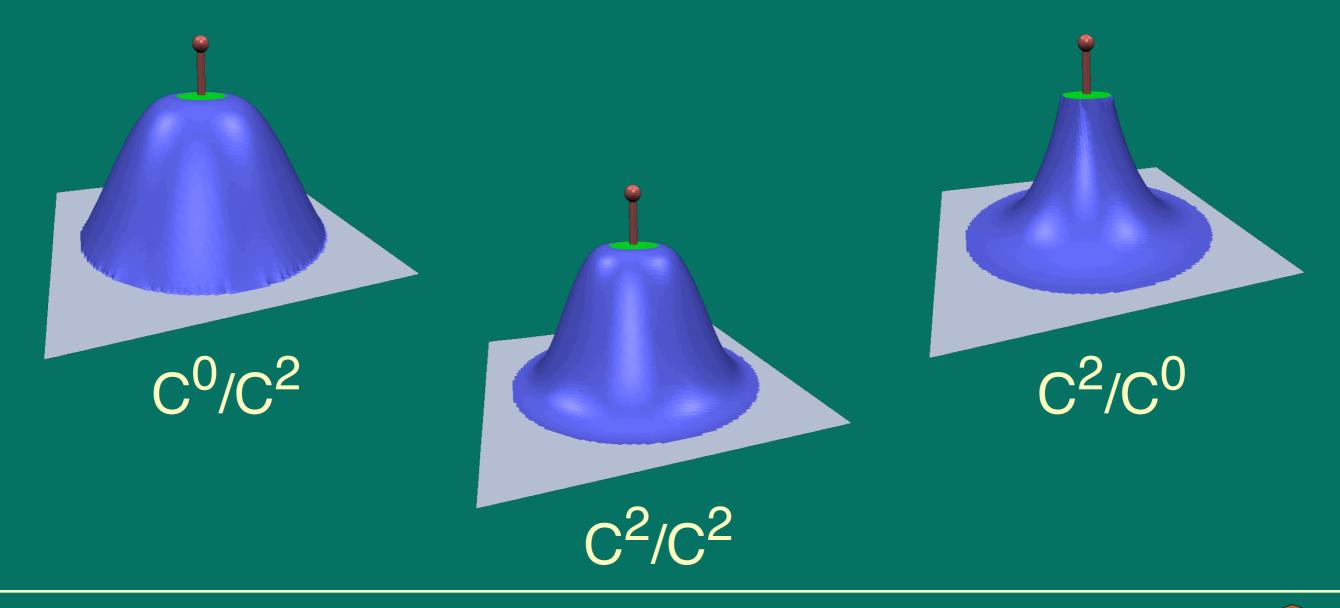


Industrial Evaluation

- [Kobbelt et al. 98] targeted primarily at conceptual design
- More control for engineering applications:
 - Specify boundary smoothness
 - Anisotropic bending behavior

Boundary Smoothness

How smooth does the deformed region blend with the fixed part?



RNTHAACHEN

Boundary Smoothness

• Δ^k surfaces can do up to C^{k-1} • Real-valued smoothness $c(p) \in [0, k-1]$

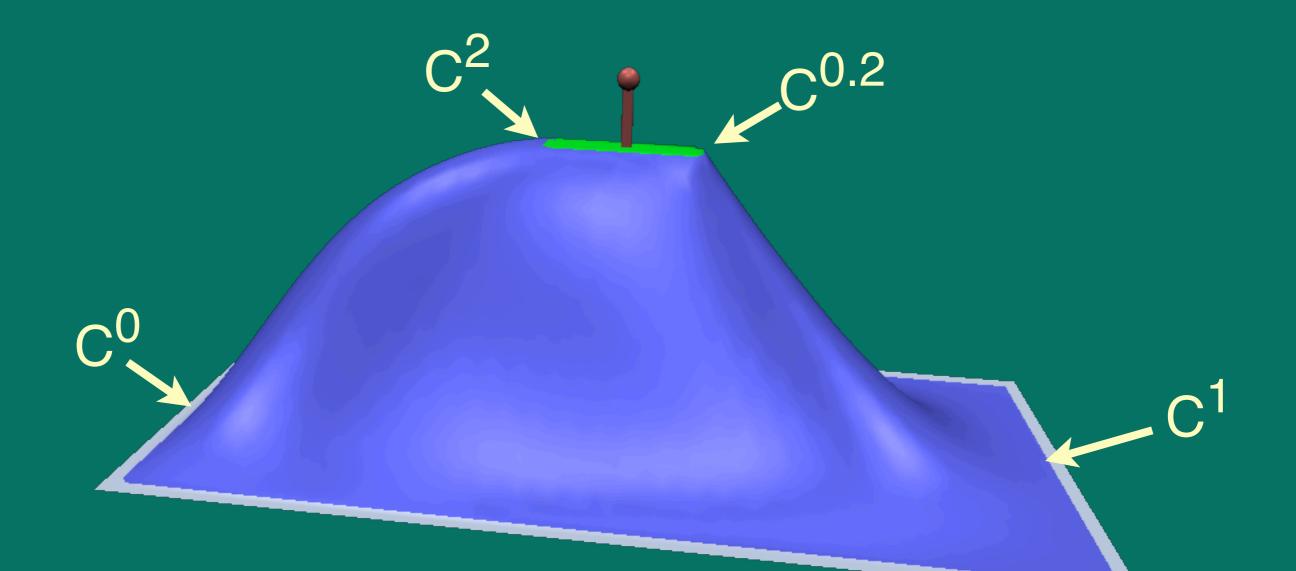
Adjust recursive Laplace definition

$$\bar{\Delta}^{3}(p) = \Delta \left(\lambda_{2}(p) \Delta \left(\lambda_{1}(p) \Delta (p) \right) \right)$$

$$0 \qquad [0,1] \qquad \blacktriangleright C^{0+\lambda_{1}(p)}$$

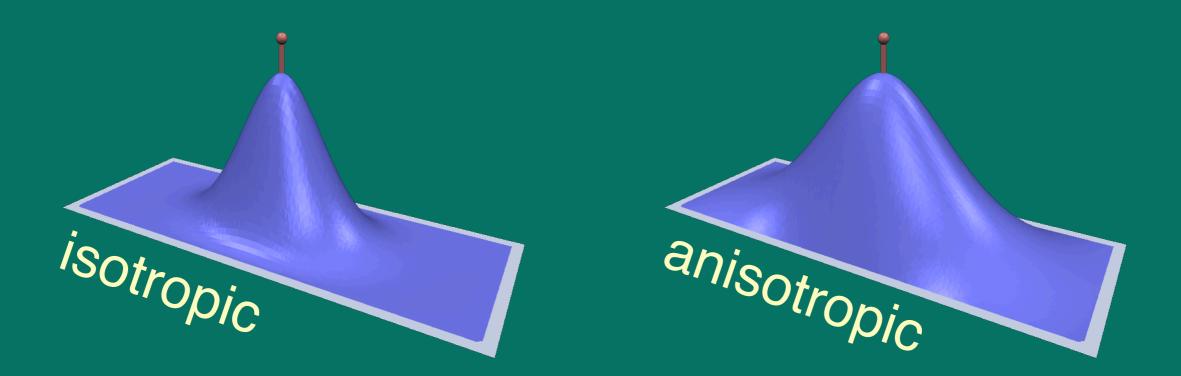
$$[0,1] \qquad 1 \qquad \blacktriangleright C^{1+\lambda_{2}(p)}$$

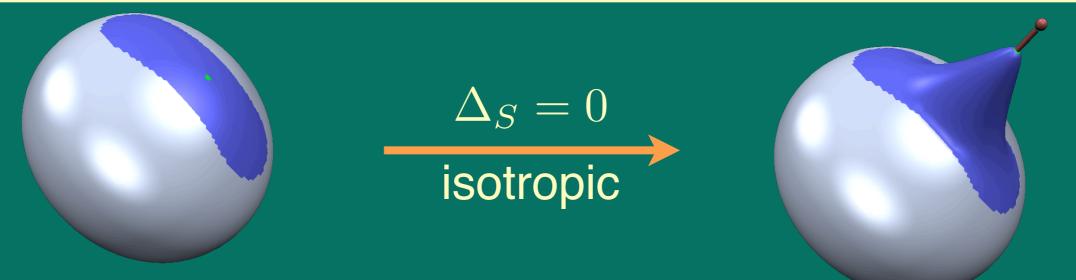
Boundary Smoothness

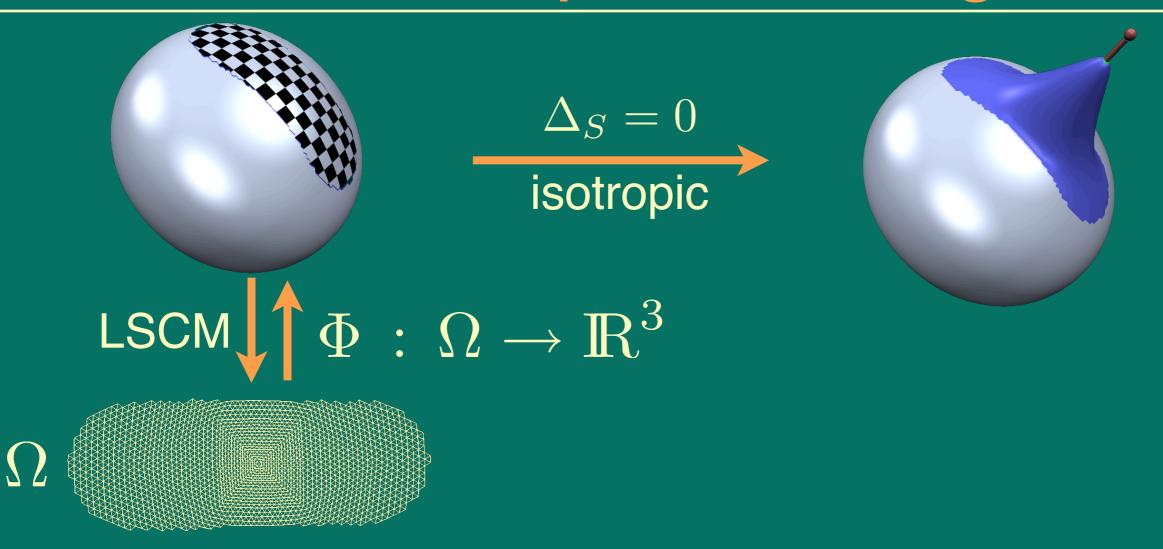


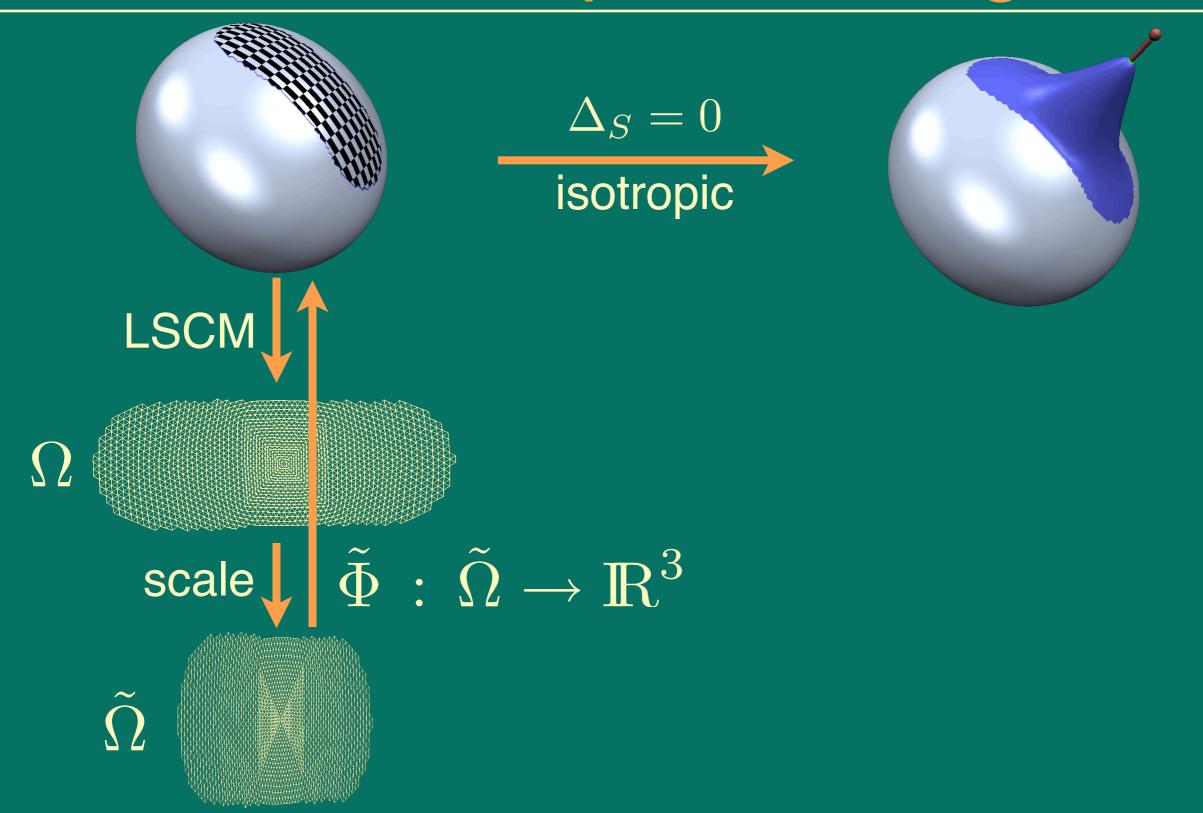
Segment-wise boundary smoothness

- Isotropic bending for standard Laplace
- Not intuitive for anisotropic support region
- Bending should adapt to support's shape

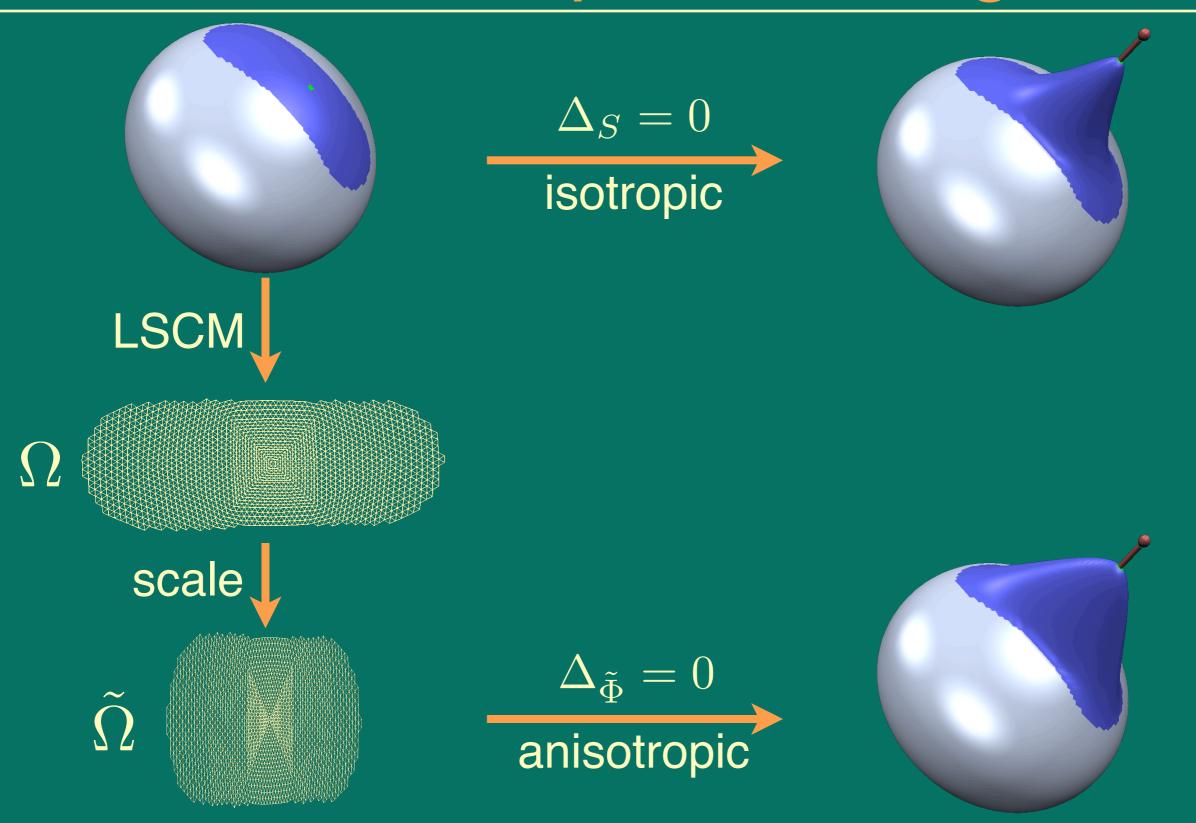








RVTHAACHEN



Real-Time Modeling

$$\begin{pmatrix} \bar{\Delta}^k \\ 0 & I_F & 0 \\ 0 & 0 & I_H \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ \mathbf{f} \\ \mathbf{h} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{f} \\ \mathbf{h} \end{pmatrix}$$

- Solve linear system each frame:
 <u>Too slow even for multi-grid solvers (#p>20k)</u>
- System changes if certain constraints change
- Precompute per-handle basis function

RNHAACHEN

System to be solved

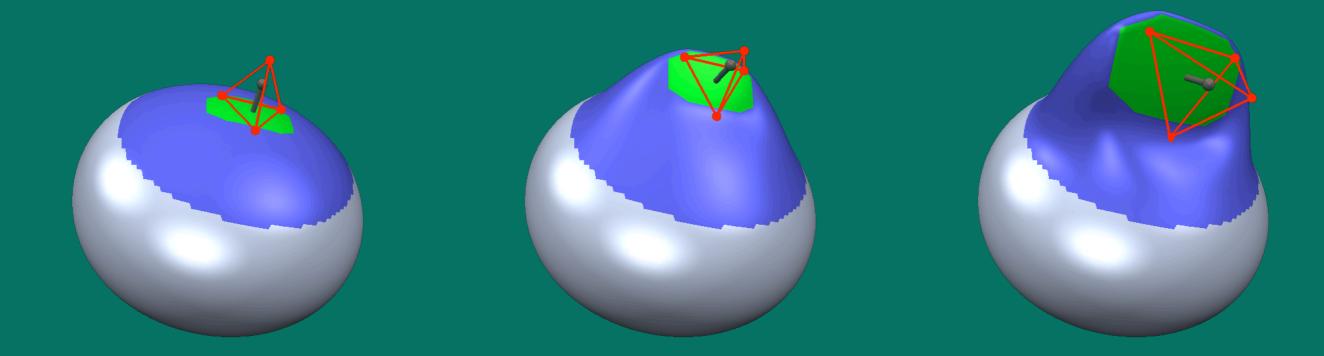
$$\underbrace{\begin{pmatrix} \bar{\Delta}^k \\ 0 & I_F & 0 \\ 0 & 0 & I_H \end{pmatrix}}_{=:L} \begin{pmatrix} \mathbf{p} \\ \mathbf{f} \\ \mathbf{h} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{f} \\ \mathbf{h} \end{pmatrix}$$

• Columns of inverse are bases $\begin{pmatrix} \mathbf{p} \\ \mathbf{f} \\ \mathbf{h} \end{pmatrix} = L^{-1} \begin{pmatrix} \mathbf{0} \\ \mathbf{f} \\ \mathbf{0} \end{pmatrix} + L^{-1} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{h} \end{pmatrix}$

Simple user interaction

Handle is transformed <u>affinely</u> only

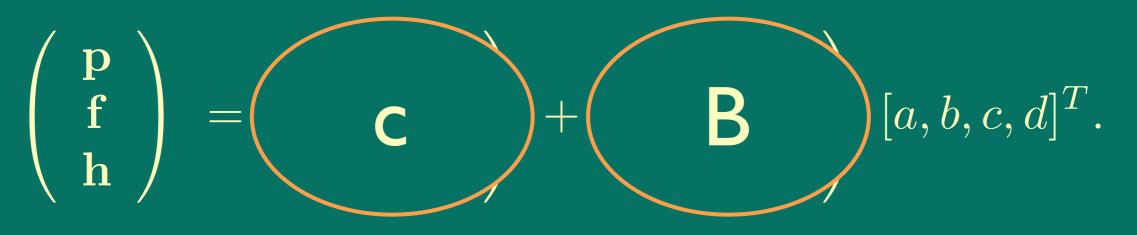
• Represent handle points w.r.t. affine frame $\mathbf{h} = \mathbf{Q} \ [a, b, c, d]^T$



$$\left(\begin{array}{c} \mathbf{p} \\ \mathbf{f} \\ \mathbf{h} \end{array}\right) = L^{-1} \left(\begin{array}{c} \mathbf{0} \\ \mathbf{f} \\ \mathbf{0} \end{array}\right) + L^{-1} \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \mathbf{h} \end{array}\right)$$

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{f} \\ \mathbf{h} \end{pmatrix} = L^{-1} \begin{pmatrix} \mathbf{0} \\ \mathbf{f} \\ \mathbf{0} \end{pmatrix} + L^{-1} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{Q} \end{pmatrix} [a, b, c, d]^T.$$

Precomputed Basis Functions



Solve linear system
3 times (const. part) → c ∈ ℝ^{N×3}
4 times per handle → B ∈ ℝ^{N×4}

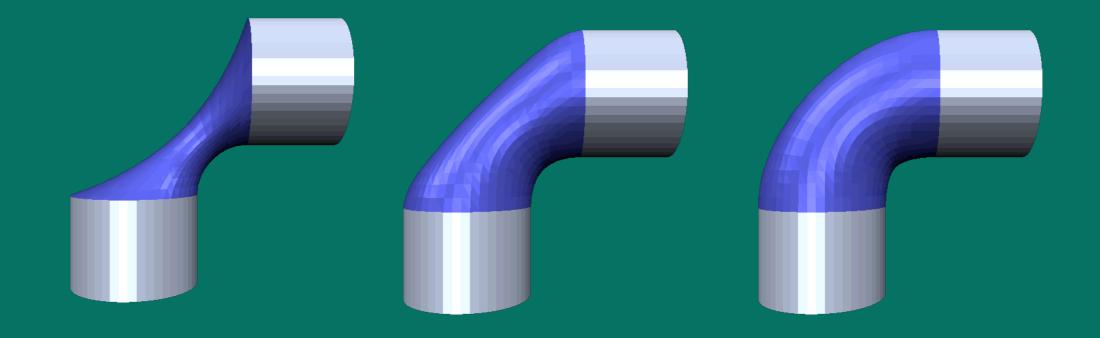
Moderate precomputation times
10k: 1 sec, 50k: 9s, O(#p)

Precomputed Basis Functions

• Real-time per-frame solution $\mathbf{p}' = \mathbf{c} + \mathbf{B} \left[a', b', c', d' \right]^T$

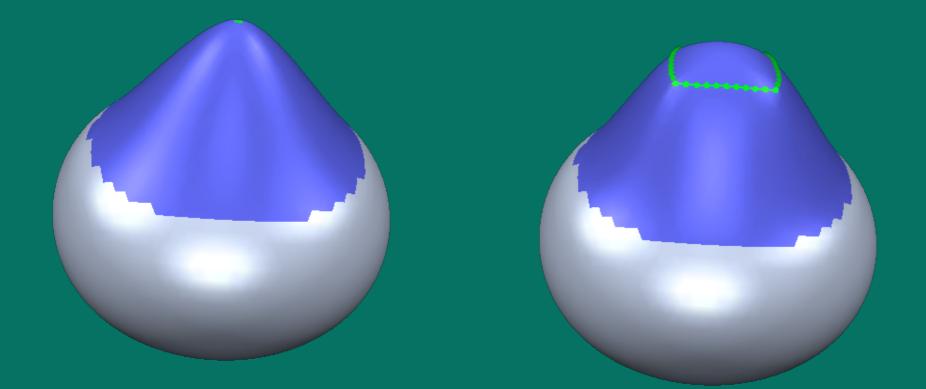
• Custom-tailored basis function $S' = S + \mathbf{B} \underbrace{\left[\delta a, \delta b, \delta c, \delta d\right]}_{\delta C}^{T}$

Energy functional (stiffness)

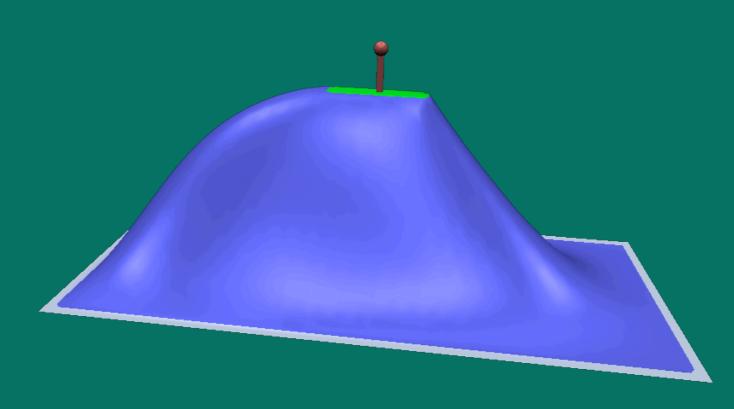


Computer Graphics Group Mario Botsch

- Energy functional (stiffness)
- Support & handle (fullness)

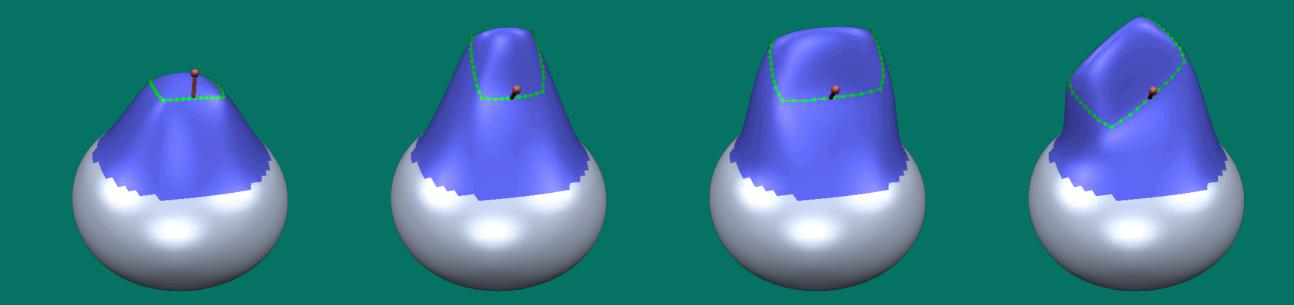


- Energy functional (stiffness)
- Support & handle (fullness)
- Boundary smoothness



- Energy functional (stiffness)
- Support & handle (fullness)
- Boundary smoothness
- Isotropic / anisotropic

- Energy functional (stiffness)
- Support & handle (fullness)
- Boundary smoothness
- Isotropic / anisotropic
- Arbitrary affine handle transformation



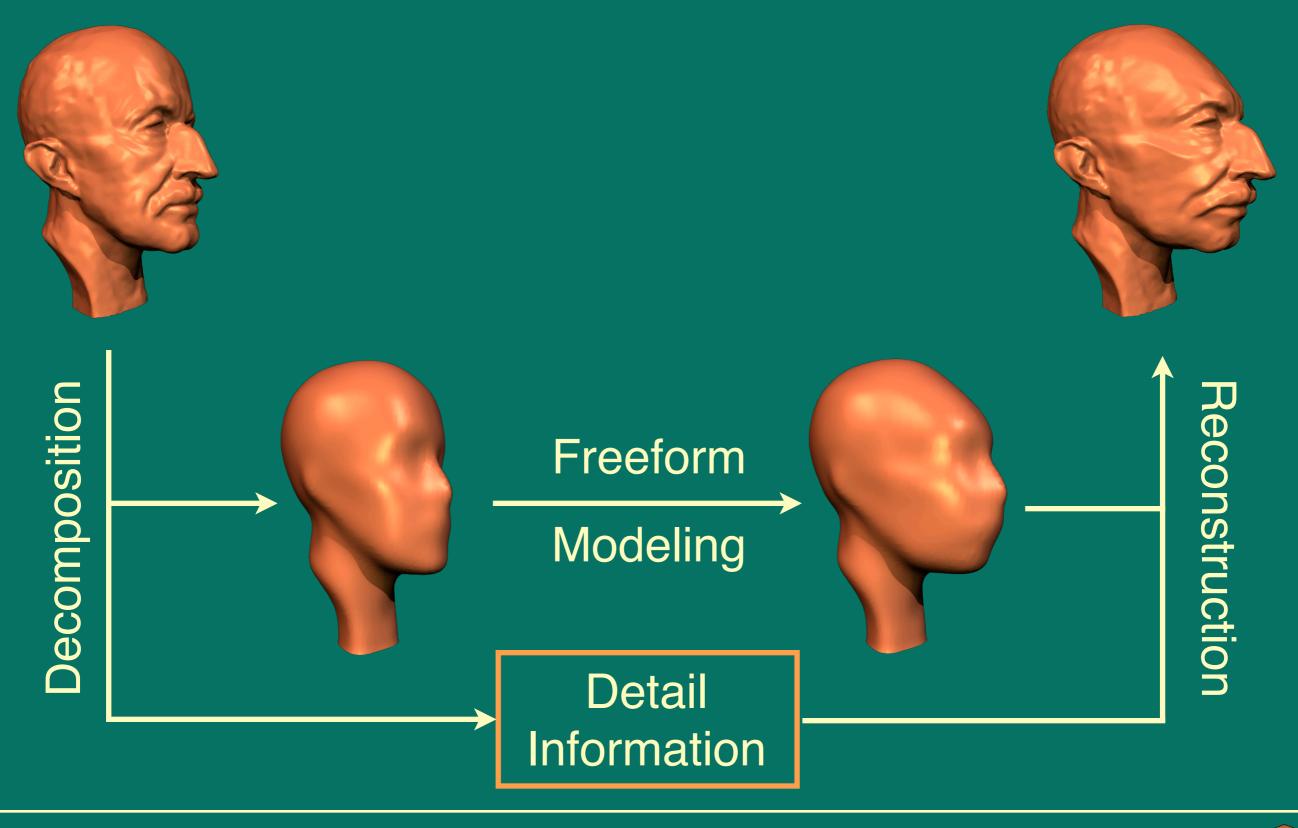
Introduction

- Related Work
- Boundary constraint modeling
- Results
- Conclusion

Multiresolution Modeling

- Freeform modeling builds <u>smooth</u> surfaces
- Real-world models have fine details
 Modify existing models
- Integrate into multiresolution framework

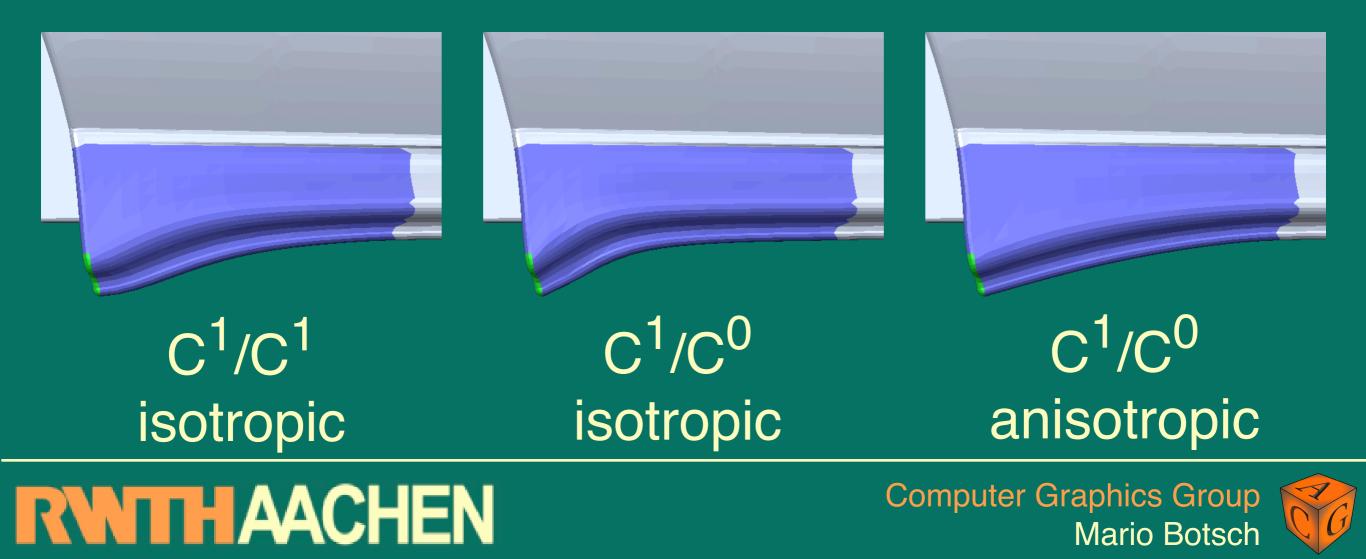
Multiresolution Modeling



RNHAACHEN

Computer Graphics Group Mario Botsch

Sillboard



Stretching the Hood

- Multiple handles
- Wheel houses stay circular

RNHAACHEN

Computer Graphics Group Mario Botsch

Conclusion

Custom-tailored basis functions
 Simple user interaction

Boundary constraint modeling
 Boundary smoothness
 Anisotropic bending

Precomputed basis functions
 Real-time deformations

Future Work

Topological flexibility Anisotropy requires parameterization Disk shaped support • Numerical improvements Robustness & efficiency Remeshing approach, SGP 2004

Computer Graphics Group

Mario Botsch

Dynamic remeshing

