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Abstract

We present a freeform modeling framework for unstructured trian-
gle meshes which is based on constraint shape optimization. The
goal is to simplify the user interaction even for quite complex
freeform or multiresolution modifications. The user first sets vari-
ous boundary constraints to define a custom tailored (abstract) basis
function which is adjusted to a given design task. The actual mod-
ification is then controlled by moving one single 9-dof manipula-
tor object. The technique can handle arbitrary support regions and
piecewise boundary conditions with smoothness ranging continu-
ously from C0 to C2. To more naturally adapt the modification to
the shape of the support region, the deformed surface can be tuned
to bend with anisotropic stiffness. We are able to achieve real-time
response in an interactive design session even for complex meshes
by precomputing a set of scalar-valued basis functions that corre-
spond to the degrees of freedom of the manipulator by which the
user controls the modification.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
Techniques

Keywords: surface editing, freeform design, user interaction

1 Introduction

Computer aided geometric design techniques have become an im-
portant key technology in the industrial design and development
process. The availability of digital 3D models during the various
stages of the design process triggers a large number of applications
ranging from numerical simulation and assembly planning to de-
sign studies and product presentation. This variety of applications
implies that there are many different (and sometimes contradict-
ing) requirements for how these 3D models have to be accessed
in an interactive design session. Especially in the earlier (concep-
tual) design stages, the major bottleneck is still the freeform design
metaphor which should allow the user to convey an imaginary shape
to the computer system in an intuitive fashion.

The fundamental problem here is that the space of possible geomet-
ric shapes is extremely high dimensional and has a very complex
structure with esthetically pleasing shapes sometimes lying surpris-
ingly close to unacceptable shapes. The designer has to explore this
rich space of shapes by just pressing buttons or clicking and drag-
ging 2D positions on the screen. More sophisticated interaction

technology like haptic input devices, immersive displays [Schkolne
et al. 2001], or two-handed input metaphors [Llamas et al. 2003] are
available today but they did not replace the well-established PC-
based working place as it can be found in every industrial design
company.

In an interactive design session, the user usually drags control ver-
tices which have three degrees of freedom (translation) or he moves
more general manipulator objects having six (translation and rota-
tion) or nine (plus scaling) degrees of freedom. For complex shape
modifications several control handles have to be dragged sequen-
tially or simultaneously. This rudimentary interface is the reason
why it takes highly skilled experts to operate a CAD system. Never-
theless it is the widely accepted standard and implemented in many
NURBS or subdivision based modeling frameworks.

Let S be the given shape that the designer wants to modify into
another shape S′ and let us assume that S and S′ do not differ too
much. Obviously, every extreme modification can be decomposed
into a sequence of smaller modifications and this is what designers
usually do – even traditional designers working with real clay, not
just CAD designers.

If we accept that interactive design is about dragging manipulators
and verifying the result by visual feedback then any shape modifi-
cation can be characterized by

S′ = S +B(δC) (1)

where B represents an abstract basis function and δC somehow rep-
resents the change of position and orientation of the control handles.
For a modeling tool based on NURBS surfaces, e.g., B could be the
set of tensor-product basis functions and δC the displacement vec-
tors by which we shift the corresponding control vertices.

A shape modification is complex if the update B(δC) is complex.
This can be achieved by either providing a complicated handle ob-
ject with many degrees of freedom or by using special basis func-
tions that are adapted to the desired modification. Since our goal
is to keep the user interaction simple, the possible types of modifi-
cations that we can apply to the object S are hence limited by the
abstract basis functions that our system associates with the control
handles.

In the case of NURBS or subdivision surfaces, this means that with
each elementary modification we can add a smooth bump with rect-
angular or polygonal support to the surface. Every more sophis-
ticated modeling operation has to be built from these elementary
modifications.

An important limitation with most of the existing modeling frame-
works is that the underlying mathematical surface representation is
tightly linked to the type and number of control handles. This prob-
lem is more than obvious if our geometry representation is based
on unstructured triangle meshes since here, shifting a (control) ver-
tex just adds a tiny hat function to the surface. In order to perform
some non-trivial modification one has to manually move a larger
number of control vertices simultaneously. In the setting of (1) this
would correspond to a highly complex δC, i.e. a highly complex
user interaction.



Figure 1: In our modeling metaphor, we define a custom tailored basis function by selecting a support region (blue) and a handle region
(green). The smoothness conditions at the inner and outer boundary can be controlled independently and continuously blended between C0

and C2. From left to right we show the initial configuration, C2 at inner and outer boundary, C0 at inner and C2 at outer, as well as C2 at inner
and C0 at outer boundary. The blue, green and gray regions correspond to the sets of vertices p, h, and f in equation (5), respectively.

This is why for polygon meshes, control handle based modification
metaphors have been developed which are mostly independent from
the underlying tessellation of the surface. This means we simplify
the structure of C in (1) by making B slightly more complicated.

Freeform deformation [Sederberg and Parry 1986; Coquillart 1990;
MacCracken and Joy 1996] is probably one of the most prominent
examples where shifting a control vertex in a spatial grid causes
a deformation of the embedding space around a 3D model and
thereby induces a global modification on the model itself. While
this is a very intuitive modeling metaphor, is does not provide sig-
nificantly more degrees of freedom (bumps over simple support re-
gions). Moreover, the support of the modification is sometimes dif-
ficult to predict as it is determined by intersecting a volumetric basis
function’s support with the modified surface.

The purpose of this short paper is to describe another modeling
metaphor which provides the maximum flexibility with respect to
the set of potential basis functions. The idea is to help the designer
to define his own custom tailored basis function that is optimally
adapted to the intended modification. Then this basis function is
associated with a manipulator object that the user can move inter-
actively to do the actual shape editing operation in real-time.

Our goal is to provide as many degrees of freedom as possible
for the definition of the basis function B to offer enough flexibil-
ity for non-trivial modifications. Yet, we always keep in mind that
the resulting shape modeling system should be simple and intuitive
enough for an average (not specialized) user. Hence, after the defi-
nition of the boundary constraints, the user interaction is restricted
to moving a single manipulator object C.

While we are integrating various known geometry processing con-
cepts into our freeform modeling framework, we also extend these
techniques to meet the central requirements of our modeling sys-
tem. The two major innovations are that we obtain flexible shape
control by using an anisotropic discretization of the energy func-
tional which determines how the surface bends under deformation
and that by precomputing a set of linear basis functions, we eas-
ily achieve real-time feedback even when modifying large surface
areas.

2 The modeling metaphor

In Eq. (1) we represented an arbitrary freeform modification by an
abstract basis function B which is added to an existing shape S. In
order to specify this basis function for a particular modification we
have to define its support, i.e., the region of the surface S that should
be affected by this modification and its characteristic shape.

Flexibility with respect to the support of B means that we can se-
lect an arbitrary region, convex or non-convex with smooth or non-
smooth boundary, and which can be aligned to any feature on the
surface. A simple way to let the user define this region is by letting
him draw directly on the surface either the outline of the region or
the complete region (with some painting tool).

The characteristic shape of the basis function B is most intuitively
defined by terms like smoothness, stiffness, or fullness. Here,
smoothness is a property that describes how the deformed part of
the surface connects with the unmodified part, stiffness or tension
describes how the curvature is distributed (equally distributed vs.
clustered near the constraints), and fullness rates the relation be-
tween height and volume of the basis function (pointed vs. blobby).

To control stiffness and smoothness, we let the user select either
the interior of the support region or (a segment) of its boundary and
then provide a simple slider to increase or decrease the respective
parameter. Even if the mathematical meaning of these terms might
not be obvious for the non-expert user, the visual feedback when
moving the slider still allows him to quickly set the corresponding
scalar parameters according to his design intend.

In order to map the control of the modification to a 9-dof manipula-
tor object, the user selects another region, the handle region, in the
interior of the support region (cf. Fig. 1, left). The manipulator is
then rigidly attached to this surface patch and hence moving the ma-
nipulator moves the surface patch accordingly. The remaining part
of the surface, i.e., support region minus handle region is supposed
to smoothly bend according to the translation, rotation and scaling
of the handle region. The fullness of the basis function B can hence
be controlled by the size and the shape of the handle region.

The modeling metaphor as we described it so far, i.e. the definition
of an abstract basis function B which is then controlled by a simple
manipulator object, provides a flexible tool for freeform shape edit-
ing. We can easily integrate this metaphor into a multiresolution
modeling framework in order to preserve the local detail informa-
tion of an object when applying a global modification.

For this we need a decomposition operator which separates the
high-frequency detail from the low-frequency global shape. The
freeform modeling technique is then applied to the low-frequency
component and finally the detail information is added back to the
modified surface by a reconstruction operator. The multiresolution
decomposition and reconstruction can be hidden from the user such
that he seems to interact with the detailed surface while the fre-
quency of the modification is controlled by the size of the support
region.



Figure 2: The order k of the energy functional defines the stiffness of the surface in the support region and the maximum smoothness Ck−1 of
the boundary conditions. From left to right: membrane surface (k = 1), thin-plate surface (k = 2), minimal curvature variation (k = 3).

3 The mathematical realization

The mathematical techniques that we need in order to implement
the design metaphor described in the last section have to be flexible
enough to allow for arbitrary support and characteristics but they
also have to be efficient enough to give real-time responses when
the user moves the manipulator.

Smooth deformation of a surface with respect to boundary condi-
tions is most elegantly modelled by an energy minimization prin-
ciple [Moreton and Sequin 1992; Welch and Witkin 1992; Kobbelt
et al. 1998; Du and Qin 2000]. The surface is assumed to behave
like a physical skin which stretches and bends as forces are acting
on it. Mathematically this behavior can be captured by an energy
functional which penalizes stretch or bending. Then the optimal
surface is the one that minimizes this energy while satisfying all the
prescribed boundary conditions. The advantage of this formulation
is that it allows us to take arbitrary boundary conditions into ac-
count and the optimal solution is known to have certain smoothness
properties. When changing the boundary conditions, the optimal
surface changes accordingly and this is why we call this approach
boundary constraint modeling (BCM).

An alternative approach which mimics boundary constraint model-
ing is to compute a blending function that propagates the constraints
into the interior of the support region [Singh and Fiume 1998; Ben-
dels and Klein 2003; Pauly et al. 2003]. While these methods are
extremely efficient, they usually do not provide the full generality
since they often assume a certain topology or shape of the support
region.

Linear system derivation

For efficiency reasons the energy functionals that are used most of-
ten are quadratic functionals with the generic form [Kobbelt 1997]

Ek(S) =
∫

Fk (Su...u,Su...uv, . . . ,Sv...v) (2)

where the expressions S∗ stand for the partial derivatives of order
k with respect to a surface parametrization S : Ω → IR3 which is
locally as close as possible to isometric.

In order to actually compute the solution to the above optimization
problem one usually applies variational calculus to derive the cor-
responding Euler-Lagrange equation which characterizes the mini-
mizers of (2). For the most common quadratic energy functionals,
the resulting linear differential equation has the form

∆k S(x) = 0, x ∈ Ω\δΩ

∆ j S(x) = b j(x), x ∈ δΩ, j < k
(3)

where ∆ is the Laplace operator and the boundary constraints b j
of order j < k on δΩ imply a non-trivial solution. For k = 1 this
equation characterizes membrane surfaces which minimize surface
area, for k = 2 it characterizes thin plate surfaces which minimize
surface bending and for k = 3 we obtain surfaces that minimize the
variation of linearized curvature (cf. Fig. 2). Higher order equations
are usually not recommended because of numerical instabilities.

The types of boundary conditions that we can impose on (3) can
be up to Ck−1. Hence for k ≥ 2 we can choose between “hinged”
boundaries (C0, j = 0) and “clamped” boundaries (C1, j = 1).
Moreover we can continuously blend boundary conditions between
C0 and Ck−1 with a smoothness parameter c(p) ∈ [0,k−1] for con-
strained boundary vertices p by modifying the recursive definition
of the higher order Laplacian from [Kobbelt et al. 1998] to be

∆̄k(p) := ∆
(

λk−1(p) · ∆̄k−1(p)
)

λk(p) :=







1, c(p) > k
c(p)− k, k−1 ≤ c ≤ k

0, c(p) < k−1
.

Since we want to use a triangle mesh as the underlying surface rep-
resentation, we have to discretize the Laplace operator [Desbrun
et al. 1999; Meyer et al. 2003] by

∆(pi) :=
2

A(pi)
∑

p j∈N(pi)

(

cotαi j + cotβi j
)(

p j − pi
)

, (4)

where αi j = 6 (pi, p j−1, p j) and βi j = 6 (pi, p j+1, p j) for a vertex
pi and its one-ring neighbors p j and A(pi) denotes the Voronoi area
around the vertex pi. By this (3) becomes a sparse linear system





∆̄k
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p
f
h
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0
f
h



 , (5)

where p = (p1, . . . , pP) is the vector of free vertices in the interior of
the support region, f = ( f1, . . . , fF ) are the fixed vertices outside the
support region and h = (h1, . . . ,hH) are the vertices inside the han-
dle region. These sets of vertices correspond to the blue, gray and
green surface regions shown in Fig. 1, respectively. Since f and h
are fixed, they impose the boundary conditions on the system. No-
tice that only k + 1 rings of fixed vertices are used to prescribe Ck

boundary constraints. For the sake of simplicity we combined the
optimality conditions and the boundary conditions into one equa-
tion. In the following we refer to the matrix in (5) as L.

When the user moves the handle region, the vertices in h change
their position and provide a new right hand side for the linear sys-
tem. By solving (5) again we hence compute the vertex positions in
p as a linear function of h.



Anisotropic bending

If we use the standard discretization (4) of the Laplace operator then
the resulting optimal surface bends isotropically even if the support
region is anisotropic. Since the shape of the handle and support
regions are considered as design parameters when defining the ba-
sis function for a particular modification, we would rather like the
resulting surface to better adapt its bending behavior to the bound-
ary conditions. As shown in Fig. 3 the basis function looks more
natural if the impact of the handle region is propagated through the
support region in such a way that its “iso-contours” hit the outer
boundary everywhere with approximately the same slope.

This can be achieved by discretizing the Laplace operator (4) not
with respect to the mesh itself (Laplace-Beltrami) but rather with re-
spect to a special parametrization that “factors out” the anisotropy.
First we compute a conformal parametrization for the support re-
gion [Lévy et al. 2002; Ray and Levy 2003]. This yields a pla-
nar triangulation with the same connectivity as the support region.
Then we apply a principal axis transform and scale this planar tri-
angulation along its principal axes such that its diameter is approx-
imately the same in each direction. On this scaled triangulation we
finally compute the weights for the Laplace operator that we then
use in (5). Fig. 3 shows the effect of minimizing this anisotropic
energy functional.

Figure 3: Isotropic (left) and anisotropic basis functions (right) with
the corresponding parameter domains over which the Laplace op-
erator is discretized.

Precomputed basis functions

The technique as we described it so far requires to solve a linear
system for the free vertex positions whenever the manipulator (and
hence the handle region) moves. Although we can use a highly
efficient multi-grid solver for this task we still do not achieve a suf-
ficiently high frame rate, especially when minimum curvature vari-
ation surfaces (k = 3) are computed and the number of vertices in
the support region is on the order of 104 or higher.

By precomputing a special set of basis functions that directly cor-
respond to the degrees of freedom of the manipulator, we can sig-
nificantly reduce the per-frame computing costs. Since the solution
of (5) can be expressed explicitly in terms of the inverse matrix
L−1, this set of basis functions is represented by (a combination
of) column vectors of L−1. A similar technique was used in the
physically-based modeling system ArtDefo [James and Pai 1999],
where also a set of column vectors of an inverse matrix is precom-
puted in order to speed up the surface updating.

First we observe that the explicit solution of (5) is




p
f
h
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f
h



 = L−1
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f
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h



 (6)

with the first term on the right hand side being constant and the
second term depending on the vertices in the handle region.

During interactive shape editing we are using a 9-dof manipulator
which provides an intuitive interface to control an affine map T that
is applied to the handle region. If we pick four affinely independent
vertices a, b, c, and d from the handle region then these define an
affine frame and there exists a matrix Q ∈ IRH×4 of affine combi-
nations such that

h = Q [a,b,c,d]T .

Due to affine invariance, applying an affine map T (controlled by
the manipulator) to the handle vertices h, is then equivalent to ap-
plying T to the affine frame, i.e.

T (Q [a,b,c,d]T ) = Q T ([a,b,c,d]T ).

As a consequence we can rewrite the non-constant term in (6) as




p
f
h



 = L−1





0
f
0



 + L−1





0
0
Q



 [a,b,c,d]T .

This however means that we only have to solve the system (5) in
a pre-processing step for 7 different right hand sides: the three
columns of [0, f,0]T and the four columns of [0,0,Q]T . The
latter allows us to precompute the “basis function” matrix B =
L−1[0,0,Q]T . Then for every frame we simply apply the manip-
ulator transformation to the four handle points a, b, c, and d and
add the current displacement vectors B [a,b,c,d]T to the constant
part in (6).

4 Results

We integrated our freeform modeling metaphor into a multireso-
lution mesh editing framework like the one described in [Kobbelt
et al. 1998]. The decomposition and editing operators are both
based on BCM and the representation of high-frequency detail is
implemented in terms of normal displacement vectors [Kobbelt
et al. 1999].

A real world example is shown in Fig. 5, where the sillboard of a car
is to be lowered. Exploiting the flexibility provided by continuous
boundary smoothness avoids the generation of an unwanted point
of inflection along the feature line and the anisotropic Laplace dis-
cretization propagates the displacement naturally over the support
region. Features are preserved due to multiresolution decomposi-
tion and reconstruction (hidden from the user).

Notice that multiple independent handle regions each controlled by
their own manipulator object are no problem for the setup described

Figure 4: Example of a non-disc shaped modification using multi-
ple handles. The left cap (green) is defined as a handle component
that is not to be moved. The actual modification is done by defining
additional handle components as rings (green).



Figure 5: Multiresolution modification of the sillboard using flexible boundary conditions and anisotropic Laplacian: An unwanted point of
inflection (center left) is avoided by reducing the smoothness constraint near the handle region to C0 continuity. Switching from the isotropic
discretization of the Laplace operator (center right) to the anisotropic one finally leads to the intended natural displacement propagation.

in this paper. All we have to do is to split h into several compo-
nents and precompute the corresponding four basis functions for
each of them. By this it is even possible to generate modifications
with a support region that is not topologically equivalent to a disk.
We simply exclude some regions from the deformable area by la-
belling them as special handle regions that cannot be moved (cf.
Fig. 4). More complex support regions can be used if we restrict to
the isotropic Laplacian because this avoids the parametrization step
(cf. Sect. 3).

The last example shows a complex modification of a car’s hood
(cf. Fig. 6, 250k triangles). Here we use multiple handle regions
placed at the wheel houses and the grill, enabling us to stretch the
hood while keeping the wheel houses circular. The support region
of this modification contains 35k vertices, the complete precom-
putation (multigrid hierarchy, basis functions, multiresolution hier-
archy) took less than 15s. The actual surface editing can be done
with 12 fps, where only 25ms are required to compute the BCM
surface and the remaining time is used for detail reconstruction and
rendering.

In an industrial evaluation the presented modeling system proved to
be both sufficiently flexible as well as very intuitive, enabling also
the non-experts to perform their desired shape modifications. Due
to the precomputed basis functions, deformations even on complex
models could be performed in real-time.

Figure 6: Stretching the hood using multiple independent handle
components. Notice that rigidly preserving the circular shape of
the wheel houses would be very difficult using a volumetric defor-
mation tool like freeform deformation.
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