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Abstract based on a scalar valued oracle which indicates the degree
The decimation of highly detailed meshes has emerged redundancy of a particular vertex, edge, or triangle.
as an important issue in many computer graphics reDepending on the target application, different choices for
lated fields. A whole library of different algorithms hasthis oracle are appropriate but this does not affect the al-
been proposed in the literature. By carefully investigatgorithmic structure of the scheme.
ing such algorithms, we can derive a generic structur®©n the most abstract level, there are two different basic
for mesh reduction schemes which is analogous to a claapproaches to find a coarser approximation of a given
of greedy-algorithms for heuristic optimization. Particu-polygonal mesh. The one is to build the new mesh with-
lar instances of this algorithmic template allow to adaptout necessarily inheriting the topology of the original and
to specific target application¥Ve present a new mesh re-the other is to obtain the new mesh by (iteratively) modi-
duction algorithnwhich clearly reflects this meta schemefying the original without changing the topology.
and efficiently generates decimated high quality meshétaving a topologically simplified model of the original
while observing global error bounds. mesh is useful in applications where the topology itself
does not carry crucial information. For example, when
rendering remote objects, small holes can be removed

I ntroduction . : ithout affecting the quality but for a finite element sim-
In several areas of computer graphics and geometric mo F

: ; ation on the same object the holes might be important
eling, the representation of surface geometry by polyt-0 obtain reliable results
gonal meshes is a well established standard. Howev? :

the complexity of the obiect models has increased m 'this paper we will analyzecrementamesh reduction,
plexity ) shas| S UG algorithms that reduce the mesh complexity by the

faster than the through-put of today’s graphics hardW‘”“Eerative application of simple topological operations in-

Hence, in order to be able to display and modify geome stead of completely reorganizing the mesh. We will iden-

ric objects within reasonable response time_s, itis NECERR the slots where custom tailored predicates or opera-
sary to reduce the amount of data by removing redundaﬁ) s can be inserted and will give recommendations when

ibr\]forr;?:?stleog;:‘?nrﬂig:]aggltﬁemtzsrrﬁzz.undanc in this con- to use which. We then present an original mesh reduction
P Y algorithm based on these considerations. The algorithm

text obviously depends on the application for which th?s fast according to Schroeder’s recent definition [17] yet

(rjneocslmritegrgﬁtsgslségtti)setﬁze;. -I;zi?rglact?cl)lz srpr?)?kilzg’ tﬂ&‘ﬁows global error control with respect to the geometric
p P bp o hIglausdorf'f distance. The scheme is validated in the result

modified mesh has to stay within a prescribed tolerancseec,[ion by showing and discussing some examples
to the original data. From an optical point of view, local '

flatness of the mesh might be a better indicator for redun-

dancy. It is natural that applications as different as rerRelevant algorithmic aspects

dering and finite element analysis put their emphasis alSthe topology preserving mesh reduction schemes typ-
on the preservation of different aspects in the simplifiettally use a simple operation which removes a small
geometric shape. submesh and retriangulates the remaining hole. Some
In the last years, a host of proposed algorithms for mesthemes use local optimization to find the best retriangu-
reduction has been applied successfully to level of detd#tion. To control the decimation process, a scalar valued
generation [14, 2], progressive transmission [6], and rgredicate induces a priority ordering on the set of can-
verse engineering [1]. See [15] for an overview of someidates for being removed. This predicate can be based
relevant literature. purely on distance measures between the original and the
We consider most of the suggested algorithms as generaduced mesh or it can additionally take local flatness into
templatesleaving the freedom to plug in specific in-account.

stances of predicates. For example, each algorithm This macroscopic description matches most of the known



incremental mesh reduction schemes. Due to the ovdrave to be determined by local optimization. If we treat
whelming variety of different algorithms that have beenhe two half-edge mates as separate entities then the only
proposed in the literature, there are several authors wigdecision is whether a particular collapse is to be per-
attempted to identify important features and classify thtormed or not. Moreover, the reduction operation does
different approaches accordingly [16, 15, 3]. We do notot “invent” new geometry by letting some heuristic de-
want to add another survey but we just give an abridgedde about the position af The vertices of the decimated
overview. We will focus on three fundamental ingredi-mesh are always a proper subset of the original vertices.
ents that are necessary (and sufficient) to build your owhhe half-edge collapse can be understood as a vertex re-
mesh reduction algorithm. The ingredients ate@olog- moval without the freedom of chosing the triangulation
ical operatorto modify the mesh locally, distance mea- or as an edge collapse without the freedom of setting the
sureto check whether the maximum tolerance is not viposition of the new vertex.

olated, and dairness criterionto evaluate the quality of Figure 1 shows the submeshes involved in the basic topo-
the current mesh. logical operations.

Topological operators

The classical scheme of [18] removes a single vertex

and retriangulates its crown. Thus, in every step, a patch > > >
of n triangles (the valence of) is replaced by a new
patch withn — 2 triangles. In general, a local edge-

swapping optimization is necessary to guarantee a rea-

sonable quality of the retriangulated patch.
In [6], edgesp q are collapsed into a new vertexvhich : .

removes two triangles from the mesh. This operation ¢ Fg;;es el' Vertex-removal, Edge-collapse, and Half-Edge-
also be understood as submesh removal and retriangula- '
tion. In this case the local connectivity of the retriangula-
tion is fixed but the optimal location far is determined Distance measures

by a local energy minimization heuristic. In most technical applications there is a predefined tol-
We could cut out larger submeshes from the originarance which bounds the maximum deviation of the ap-
mesh but this would require a more sophisticated treaproximating mesh from the original one. To make a re-
ment of special cases. duction scheme useful in practical real-world applica-
A nice property of the basic vertex-removal and edgetions it has to guarantee such tolerance globally over
collapse operators is that consistency preservation is ealg whole surface. All schemes that base the decision
to guarantee. We just have to check the injectivity ofvhether vertices are redundant or not merely on the local
the crown of the vertex or the edgep q respectively. curvature can never satisfy this requirement. In general
The rejection of all operations that would lead to comthere is an obvious trade-off between tightness and com-
plex vertices or edges is the reason why most incrementalitational complexity of the geometric error estimation.
schemes do not change the global topology of a mesh. A straight forward solution to (over-) estimate the current
Our observation when testing different reduction schemesror during the reduction process is to compute the de-
on a variety of meshed models is that the underlying topa4ation of the submesH’ that replaces the mesh in
logical operator on which an algorithm is based does néheith step of the reduction and to accumulate these con-
have a significant impact on the results. The quality of th&ibutions locally [17, 3]. In general, this leads to a very
resulting mesh turns out to be much more sensitive to thmarse but conservative estimate of the true error. Accu-
criteria which decidevhereto apply the next reduction mulating not only the pure distance but an error quadric
operation. Hence, we recommend to make the topologichbunding the region of allowable deviation, leads to much
operator itself as simple as possible, i.e., by eliminatingetter results [5].

all geometric degrees of freedom. Several authors try to estimate the true geometric devi-
Concluding from these considerations, we suggest the uggon of the two meshes in a more sophisticated man-
of what we call théhalf-edge collapséA commonway to ner by computing the two-sided Hausdorff distance be-
store orientable triangle meshes is the half-edge structusgeen the meshes [9]. One way to cope with the compu-
[13] where an undirected ed@aqg is represented by two tational complexity and the many special cases, is to scat-
directed halvep — q andq — p. Collapsing the half- ter sample points on both meshes and compute Euclid-
edgep — g means to pull the vertey into p and to ian distances between pairs of points [8]. Alternatively,
remove the triangles that have become singular. both one-sided Hausdorff distances can be estimated by
This topological operator's major advantage is that it doesomputing distances between the scattered points on one
not contain any unset degrees of freedom which woulchesh and the triangles of the other [3].




very interesting but also rather complex approach (ifiolate a prescribed tolerance
A t ting but al th I h (ifiolat bed tol
computed exactly) is the construction of offset-meshes

which enclose aimplification enveloparound the sur- IS =Pllec < e 1)

face [4]. Since the correct computation of the offSely, oy setting, the surfacs is a triangle mesh with ver-
meshes is quite complicated, simple heuristics have to kﬁ%esV(S) being a (minimal) subset &. Since a glob-
applied to obtain reasonable and conservative approximgyy optimal solution for this problem is very difficult to
tions. o o _find, we have to be satisfied with a local minimum.

In rendering applications, more specialized reductioprgm this point of view, incremental mesh reduction
schemes base the error metric not on intrinsic geometrignemes appear ggedyalgorithms for the optimization
measures in object space but (dependent on the currepbyiem. Just like for classical knapsack problems [19],
view) on visual measures in screen space [7, 12]. e have arobjective functionvhich is the number of re-
Although the two-sided Hausdorff distance fits the intus,qved vertices and we havecapacity functionwhich

itive notion of the deviation of one geometric object froMefiects how far from exhausting the maximum tolerance
the other very well, it is not appropriate for most of theihe current decimated mesh still is (the remaining “un-
typical input data to mesh reduction algorithms. used” tolerance). In fact, most mesh reduction schemes
The reason for this is that in general only W¥eticesof oy those reduction steps first which cause the mini-
j[he given mesh represent actually measured points. T m waste of capacity (i.e., the minimum increase in ap-
Is true for Ias_er-range_ scanned_ ‘?'?‘ta a_md data_\ Obt"’"nﬁﬂ)ximation error) and this would be an optimal greedy-
from mechanical probing. The initial triangulation thatyecision since it provides the most benefit for minimal
recovers the neighborhood relations in the input to our rgsestment. Notice that every reduction step removes a
duction glgonthm_ has typllcall_y been generated by a Pr&onstant number of vertices (usually one).

processing algorithm wh|ch_ !tself is based on heu”St'FIowever, the mesh reduction problem is more complex
decisions (and not on specific knowledge about the obra, the knapsack problem. The reason for this is that in
ject). Hence, there is no point in approximating the wholg,g jierative algorithm, future reduction steps depend on
piecewise linear surface but it is enough to approximalg,jier decisions. Hence, the simple greedy approach can-
the discrete data points themselves. As a consequenggy |ead to a globally optimal solution. This is the point
the one-sided Hausdorff distance between the discrete $@{en fajress criteria are introduced to steer the algo-
of data points and the current decimated mesh matchgg,m Wwe can exploit meta-knowledge about the prob-
the_ intended concept of geometric deviation best. lem, i.e., the knowledge that the points to be approxi-
This error measure also corresponds to the standard sgfsteq Jie on a reasonably smooth surface and that the
ting in sqattered data gpproxmatlon. Ge_nerally, surfaces, o se approximation should also be as smooth as pos-
(the decimated mesh in our case) are fitted to scattergfe This is why the ordering of the potential reduction
points in space. There is no reason why connecting thgqns according to local curvature leads to better results
data points and additionally taking into account the Consgmpared to the pure approximation error minimization.
tinuum of points on this piecewise linear (pre-) reconyy gher words, the use of a faimess oracle turns the plain
struction of the surface should lead to better results.  4qnhill decision of the greedy algorithm into an "edu-
One positive effect of approximative two-sided Hausdorfg 5404 guess’”.

distance based error metrics is that it has a stabilizing "F—‘rom this abstract point of view, we can clearly distin-
fluence on the intermediate optimization performed dutsish between the different functions that control an in-
ing the reduction. This however can also be achieved QYemental mesh reduction algorithm: we have dost
using a proper fairness criterion (cf. next section) with the, nction measuring the remaining complexity of the
additional advantage that weight parameters are providﬁqlesh, we have @apacity functionenforcing the pre-
which have an intuitively predictable effect on the resultg.(iped tolerance, and we havgaidance predicateat-

ing the potential reduction steps according to the extent
Fairnesscriteria to which the reduction would affect the fairness of the
Several algorithms in this field do not clearly distinguishdecimated mesh.
between theapproximation errorthat is introduced by Algorithmically, we have to implement a binary oracle
one reduction step and the effect on flagness qual- (yes/no) which checks whether a particular reduction step
ity of the resulting mesh. Both are usually combined invould violate the maximum tolerance. This oracle merely
the predicate by which potential reduction steps are ratedecides whether a given vertex or edge belongs to the
Analyzing the nature of the problem and the incrementalandidate sebf legal reduction steps. Within the can-
approaches to its solution reveals deeper insight. didate set, we assign priorities according to the fairness
Formalizing the mesh reduction problem as a scattergatedicate. In each greedy-step we pick that reduction step
data problem, our goal is to construct a surf&c@hose which improves the fairness most or at least decreases it
maximum distance to the given data poifitsdoes not least.



By applying such algorithms to a highly detailed noisyallows to put more emphasis on either the local approx-
mesh (cf. Figure 2), we can actually see how the mesh imation errorE(p) (function value), the local distortion
smoothed out first (noise removal increases fairness) afit{p) (1st order derivatives), or the local curvatuffep)
then slowly degenerates (decreasing fairness). (2nd order derivatives) by simply adjusting the weight co-
efficients accordingly. For example, if the reduced mesh
should preserve as much detail as possible with a pre-
scribed number of triangles thershould be setto a large
value (and the tolerance to infinity). A largdeads to re-
duced meshes which are suitable for finite element analy-
sis since better conditioned triangles are preferredidf
Figure 2:Fairness optimization during iterative mesh reduc-th_e leading coefficient t_hen the m_eshes will be optimized
tion. with respect to outer fairness which is important for ren-
dering and display.

We now turn our attention to the explicit definition of the Of cOUrse, the right choice for the weight coefficients
fairness functional. This functional obviously depend§’ andy str(_)ngly_ depends on the initial mesh SINERS) .

on the application for which the decimated mesh is t noteven mvarla_thlth respect to scaling. If the rankmg
be used. We will try to systematically develop a generi((,’f the different falrness aspects ShQUId be guaran@eed In-
functional anyway which can be adapted to particular Obcjepen_dently of th? objeg:t to be deumate_d tb.ascadmg
jectives by weighting factors. the fa|rnes_s functlor)al is more approprlate._ to compare
The topological reduction operators modify the surfac o p_otentlal reduction operations, we can f|r_st compare
locally. Hence, we have to base our fairness functional o eir impact on the sum of the surrounding dihedral an-
local surface properties. From differential geometry wé esS(p). If those are approximately e_qual the_n we com-
know that the first and second fundamental form chara®2'® the average roundness of the adjacent triadt(ip
terize the behavior of a surface sufficiently well for mos nd so on. -

applications. Here, the first fundamental form account he example in F|gure 3 clearly shows Fhat the qual-
for the local distortion within a parameterized surface, i.dY measureS(p) (middle) makes the algorithm produce
the mapping of lengths and angles, while the second fu _eshss that"clo_sely follow the outer geometry but do not
damental form provides complete information about th ave “round trlan_gles. Increasing the weight ffi(p)

local curvatures. causes the resulting mesh to becpme more stable but
These concepts from differential geometry can be tran@rgerjumps of the normal vector might occur.

ferred to the discrete setting of triangular meshes [11
Either local low order polynomial interpolants [20, 10] or
geometric analogies lead to semantically equivalent che
acterizations.

Assigning parameter valués;, v;) to the direct neigh-
borsp; of a vertexp allows us to construct a local least
squares fitting quadratic polynomial. The coefficients of
this polynomial can be considered as Taylor coefficients
of a local expansion. Having derivative information up to
the second order is enough to reconstruct the fundamen-
tal forms locally. This provides access to approximations
of all relevant geometric properties. . _ _ _ )
Since local interpolation requires the solution of a (smallff'guré 3:The mesh on the left is decimated by using a fair-
linear system, we can optimize the performance of the r&€Ss functional which punishes large dihedral angles (jdd
duction algorithm by using geometrical analogies to es?—r strong_ly distorted triangles (right). NO'FICE how the imiiza-
timate the local fairness of first and second order. Fq'onl.Of d'S?ret-e-Curlvaturetcauses the triangles to streltaiga
example the roundness of the triangles, i.e., the ratio or?e Nes of minimat curvature.

inner circle radius to the longest edge can be used to esfir addition to these geometric fairness measures there is
mate the local distortion and the dihedral angles betweefiso the possibility of taking color information into ac-

adjacent triangles to measure the local curvature. count which might be associated with the triangles or the
Combining these local surface properties into one fungrertices [6].
tional

A new mesh reduction algorithm
F(S) = Z a E(p) + B R(p) +7 S(p) According to our analysis of the relevant components in

peS incremental mesh reduction schemes, we designed our



own algorithm to verify our recommendations. The refor the sake of simplicity.

sult is an effective and efficient algorithm which allowsSince more and more vertices are removed from the
fairness control by intuitive parameters. mesh, this redistribution becomes more and more com-
As the topological operation we use the half-edge coplex. Hence, we have to optimize this step in order to
lapse. The reason for this decision is that we want tachieve reasonable performance. Since we want to find
strictly separate the topological operation from the gethe minimum distance of a set of points fronfam of
ometrical aspects of fairness and approximation erratriangles we can exploit the special configuration.

Mixing the straight greedy paradigm with local optimiza-The midplane between adjacent triangles, i.e. the plane
tions (in more flexible operators) does neither improvevhich is spanned by the common edge and the average
the performance of the algorithm nor does it lead to betterormal vector, splits the space into two half-spaces. To
results in general. Another reason why we prefer the halflecide which triangle is closer to a given vertex, we just
edge collapse is that no new points are generated. Thiave to check on which side of this plane the vertex lies.
makes progressive transmission of meshes more effectiVbe whole fan of triangles among which the cloud of ver-
and is crucial for integrated level of detail extraction. tices has to be distributed defines a pencil of midplanes
In a preprocessing phase all potential half-edge collapséd. Figure 5). The most efficient way to distribute the
have to be evaluated and ranked according to the fairnegartices is to check each against one plane after the other
criterion. Only the legal collapses are stored in a priorityintil the right slot is found. Of course this algorithm is
queue in the order of decreasing fairness. Obviously, aftaot waterproof. Special configurations of mutually inter-
the execution of a collapse operation this queue has to becting planes might cause wrong assignments but this
updated by locally reevaluating the potential collapses. will only lead to conservative overestimations of the error
The estimation of the one-sided Hausdorff distance ba&nd hence the scheme will not fail to observe the maxi-
tween the original data points and the decimated meshum tolerance. In practical experiments with many dif-
is computationally very expensive. In fact, the schemérent meshes, this simplified distance computation never
spends most of the time computing distances betweégad to severe problems. Figure 6 shows the distance vec-
points and triangles. To speed up the process, we expltérs computed by our algorithm for a simple example.
the fact that vertices are removed iteratively by simpl&@he scheme fails to be correct only in very extreme con-
half-edge collapses. figurations and then it overestimates the error, hence the
When the edg q is collapsed into the vertgx, we have scheme behaves more carefully in dangerous regions.

to compute the distance qfto the resulting mesh. In or-
der to reduce the complexity of this operation we restrict
the area where we search for the minimum distance to
that submesh which is affected by the edge collapse (cf.
Figure 4). This overestimates the true minimum distance
in general but in the vast majority of the possible config-
urations it will give the true minimum distance. After the
closest triangle has been identified, we store the vertex in
a list associated with this triangle.

Figure 5:A pencil of planes dividing the space into slots where
sample points are assigned to the corresponding triangle.

Special attention has to be paid to boundary vertices
where the one-sided Hausdorff-distance fails to be a
proper model for the intuitive geometric intent. On the
boundaries we have to prevent vertices from sliding into
Figure 4:Hausdorff-distances of removed vertices are onlyh€ inner region of the surface. Although this would not
computed to the local region which is directly involved in anviolate the maximum tolerance, it ignores the additional
edge collapse (dark grey). knowledge about the local topology. Hence, for bound-
ary vertices we do not compute distances to triangles but
Now consider an arbitrary reduction sty — p dur- take distances to the decimated boundary polygon (cf.
ing the iteration. All triangles that are adjacenikithave Figure 6).
a list of associated vertices. In order to recompute thEhe same argument holds for inner surface vertices which
Hausdorff-distance after the collapse, all those verticdie on a feature line. These are, in some sense, singular
have to be redistributed among the remaining trianglesurves on surfaces and hence should be treated as such,
Again, we restrict our search to the modified region of.e. deviations from such linesithin the surface matter.
the mesh. The very rare cases in which another trianglkhis is very similar to the treatment of discontinuities in
happens to lie closer to an original data point are ignoretie color attributes.
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Figure 6:The restricted Hausdorff-distance coincides with the
true minimum distance in most cases. In the right picture th
distance vectors from the original data points to the tiiesg
of the reduced mesh are shown. Notice the different distanc
definition for the boundary vertices.

Results
We show several decimated meshes generated by our
gorithm. Figure 7 demonstrates the effectiveness of ol
scheme. The original mesh is reduced to alibBib of
the original data. The corresponding computing times al
given in Table 1. All times are benchmarked on a SGI
R10000, 195 MHz.
Figure 9 shows a whole sequence of decimated meshi
It demonstrates the effect of the different fairness func
tionals. Using the dihedral angle criterion (middle row)
causes a concentration of the triangles in regions of hic
curvature where the triangles stretch along the minimui
curvature direction. Flat regions are strongly decimate
without caring about the occurrence of long thin trian-
gles. Optimizing the aspect ratio of the triangles instea
leads to a more equalized distribution of the triangles an
avoids extreme configurations (lower row). However, thi
number of remaining triangles for the same tolerance |
larger.
As we expect, the choice of the fairness criterion ha
some impact on the obtainable degree of reduction for
given tolerance (cf. Table 2). Ordering the potential edg
collapses according to the dihedral angle criterion (orde
2) typically leads to the least number of triangles. This ef-
fect can be interpreted as the “educated guessing” whidhigure 7:Reduced meshes derived from a rather complex
pushes the downhill algorithm into the right direction. Or-model (top, 871,414 triangles). The absolute approximatt
dering the reduction candidate set according to the aspégnces arg-10~* (middle, 7,402 triangles) arid ~* (bottom,
ratio of the triangles (order 1) usually allows even les§458 triangles). Cf. Table 1 for the bounding box size.
reduction than the pure ordering by increasing approxi-
mation error (order 0).
A casual attempt to explain this behavior is the follow-Hence this guidance function is not chosen optimally (cf.
ing: all the objects we used to test our algorithm repFigure 8).
resented (piecewise) smooth objects. Hence, the affinifhe majority of the computational costs of the algorithm
of the algorithm to preserve the local flatness of the suis due to the fact that updating the fairness and the devi-
faces by minimizing dihedral angles is a suitable modedtion of the current mesh requires a local recalculation of
for the data. The roundness of the triangles, however, the corresponding values after each edge collapse. Re-
a bad model since the tight approximation of a smootHuction schemes which base the redundancy oracle on
surface by equilateral (and equally sized) triangles worksonservative local overestimations are much faster but
well only for very special geometries, e.g., for spheredend to waste a significant amount of tolerance. Cf. the

y




(order 0) || bounding box| #A orig. | #A reduced| ¢ prescribed aactual| time (sec.)

dragon .20x.14%x.09 | 871,414 7,402 .0005 | .000499 584.9
dragon .20x.14x.09 | 871,414 4,458 .001 | .000998 666.4
bunny .15%x.15%.15 69,473 1,182 .001 | .000998 35.3
mechpart|| 81x 50x 26 7,942 438 5| .49646 2.64

Table 1:CPU times and reduction rates for different mesh modelsichidhe tight satisfaction of the prescribed error bounds.

Figure 8:The reference model for mesh reduction algorithms. For mateeeduction (middle) the roundness criterion leads to
the best results, for extreme reduction (right) the flatreiterion yields better results since the coarse mesh admgiter to the
original geometry.

|| #A | e actual | time (sec.) || #A | e actual | time (sec.)
order 0, = .05 || 2,089 .0498 1.82 order 0, = .0001 || 14,340 | .000099 19.8
order0e = .1 1,500 .0999 2.03 order 0, = .0005 2,697 | .000498 30.9
order O, = .25 837 .2492 2.37 order 0, = .001 1,182 | .000998 35.3
order 1 = .05 || 2,555 .0499 1.98 order 1, =.0001 || 16,328 | .000099 20.2
orderle=.1 1,784 .0998 2.26 order 1,6 = .0005 3,227 | .000499 33.2
order 1, = .25 872 .2492 2.76 order 1, = .001 1,505 | .000999 38.4
order 2, = .05 || 1,952 .0497 5.2 order 2, = .0001 || 12,843 | .000099 43.7
order2e = .1 1,357 .0991 6.04 order 2, = .0005 2,359 | .000499 86.4
order 2, = .25 704 .2491 7.51 order 2, = .001 1,019 | .000999 103.2

Table 2:Reduction rates and running times for the mechanicalable 3:Reduction rates and running times for the Stanford
part model (7,942 triangles) with different fairness aigeand  bunny model (69,473 triangles) with different fairnessesia
error bounds. The computational costs increase with therordand error bounds.

of the fairness functional since larger regions have to loatgul

after each reduction step.

the new reduction algorithm which we derived accord-
ingly.

e scheme in our currentimplementation generates very
good meshes according to the setting of the weight coeffi-
cients in our fairness functional. Separating the tolerance
Conclusions measure from the fairness measure makes the impact of
We presented a detailed analysis of a generic incrementhk coefficients on the result predictable and accessible
mesh reduction framework putting this specialized prolto the practical user. Although the scheme computes the
lem into the more general context of greedy optimizatiorglobal Hausdorff distance between the data points and
We identified the relevant components and justified ouhe decimated mesh it still achieves a performance which
recommendations for the choice of such predicates amoeets the Schroeder-bound [17]16f removed triangles
operators. A constructive proof for our claim is given byper day.

tables 1, 2, and 3 where prescribed error tolerances al
actually occurring maximum errors are given.
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