Piecewise Linear Approximation of Signed Distance Fields

Jianhua Wu,

Leif Kobbelt

Computer Graphics Group, RWTH Aachen, Germany

Abstract

The signed distance field of a surface can effec-
tively support many geometry processing tasks such
as decimation, smoothing, and Boolean operations
since it provides efficient access to distance (error)
estimates. In this paper we present an algorithm to
compute a piecewise linear, not necessarily contin-
uous approximation of the signed distance field for
a given object. Our approach is based on an adap-
tive hierarchical space partition that stores a linear
distance function in every leaf node. We provide
positive and negative criteria for selecting the split-
ting planes. Consequently the algorithm adapts the
leaf cells of the space partition to the geometric
shape of the underlying model better than previous
methods. This results in a hierarchical represen-
tation with comparably low memory consumption
and which allows for fast evaluation of the distance
field function.

1 Introduction

The design of efficient algorithms always has to be
accompanied by the design of suitable data repre-
sentations. In 3D computer graphics applications
the data to be processed usually consists of geomet-
ric objects or scene descriptions. The two major
categories for representing this data are parametric
and implicit.

In the parametric case, a surface is given as the
range of a function f : R? — R> and hence points
on the surface can easily be generated by just eval-
uating f. As a consequence, parametric representa-
tions are mostly used for computations on the sur-
face since most 3D problems can be reduced to 2D
problems in the parameter domain.

An implicit representation defines a surface as
the kernel of a function f : R®> — R, i.e., as the set
of points (z,y, z) such that f(z,y,2) = 0. This
simplifies geometric queries such as inside/outside
tests to mere function evaluations. Although there
are many different choices for the function f to rep-
resent a given surface, the most common one is
the signed distance function which assigns to every

point in space its Euclidean distance to the surface.

In this paper we consider scenarios where a
geometry processing algorithm is equipped with
an additional representation of the signed distance
function to obtain direct access to implicit shape in-
formation. Typical applications are, e.g., mesh dec-
imation or mesh fairing where one frequently has
to check the current deviation from the originally
given surface. Here the error estimates can be found
by evaluating the implicit representation while the
actual processing is performed on an explicit repre-
sentation. One eminent example [20] has been pub-
lished recently. In this setup it is easy to identify
the major requirements that an implicit representa-
tion has to satisfy.

e Approximation power: For freeform shapes
the implicit representation usually provides
only an approximation of the original surface.
Hence an explicit to implicit conversion al-
gorithm has to take the maximum error toler-
ance as an input parameter. The approximation
power of a representation measures the rate by
which the memory consumption increases if
the tolerance is decreased.

e Adaptivity: To minimize the memory require-
ments one is also interested in a representation
that adapts to the shape of the underlying ob-
ject. In its simplest form, adaptivity of an im-
plicit representation means that high accuracy
is guaranteed only in the vicinity of the surface
itself. Far away from the surface the approx-
imation of the signed distance function does
not have to be as precise. More subtle adap-
tivity further takes the fact into account that
flat surface regions can be approximated much
easier than highly curved regions.

e Efficiency: A critical property is the complex-
ity of the evaluation algorithm. The ideal sit-
uation would be constant complexity but this
usually contradicts the goal of adaptivity. By
using hierarchical representations it is at least
possible to bound the complexity by the loga-
rithm of the precision tolerance.

VMYV 2003

Munich, Germany, November 19-21, 2003

(@) (b)

(©)

(d

Figure 1: Fora given polygon mesh surface (a) we compute a binary space partition (BSP) tree and (b) assign a linear distance function

to every leaf cell. Figure (c) shows the discontinuous zero-set of the resulting piecewise linear scalar field and (d) shows another zero-set

with a smaller approximation error and hence a finer space partition. Our goal in this paper is, for a given error tolerance, to choose the

BSP splitting planes in an effective way.

In the following sections we are proposing an im-
plicit representation that is able to approximate the
signed distance function of a given surface up to any
prescribed precision (cf. Figure 1). As input format,
we are focussing on polygon meshes but in princi-
ple it would be easy to generalize the construction
to arbitrary input data. The major features of our
representation are that ...

e ... we use a piecewise linear instead of a piece-
wise tri-linear representation since both have
the same approximation power but linear func-
tions need less coefficients and are faster to
evaluate.

. we are not requiring the approximate dis-
tance field to be a continuous function. Again,
this does not have any effect on the approx-
imation power but it decouples neighboring
cells since no C° boundary conditions have
to be taken into account. In particular we do
not need any balancing mechanism that prop-
agates local refinement operations into neigh-
boring cells to bound the level jump in a hier-
archical representation.

we use a general BSP tree which means
that the splitting planes that define the parti-
tion cells do not have to be axis aligned. As a
consequence the partition can adapt even bet-
ter to the surface since, from a certain refine-
ment level on, most splits will cut the surface
in normal direction rather than in tangential di-
rection. We derive geometric heuristics that
promote good splits and prevent bad ones.

666

2 Related works

Over the last years many volumetric geometry rep-
resentations have been proposed in the field of im-
plicit modeling and volume graphics and many al-
gorithms have been developed to convert parametric
representations into implicit ones [15, 24, 20, 26]
and vice versa [18, 16, 14]. Interested readers can
find detailed overviews in [5, 8, 21].

In this paper, we are focusing on representa-
tions that approximate the signed distance field by
a trivariate piecewise polynomial function defined
over a space partition. The most basic data struc-
ture till now is a uniform 3D grid [s;;x] that stores a
scalar value at each grid node (i, 7, k). This discrete
data is interpolated into the voxel cells by tri-linear
functions [18].

Since for signed distance fields the accuracy in
the vicinity of the (zero-) surface is usually more
important than further away from the surface, the
uniform grid is not memory efficient because the
spatial scalar field is sampled with the same rate
everywhere and this makes it difficult to deal with
high-resolution/precision objects. This redundancy
can be avoided by adapting the sampling density to
the distance from the surface [25]. The three col-
ors “white”, “black”, and “gray” are assigned to
cells that are completely inside, completely outside,
or intersect the surface, respectively. Then starting
from some initial cell decomposition, the gray cells
are recursively refined until a prescribed error toler-
ance is met. If we stick to cubical voxel cells then

this approach leads to adaptively refined octrees, the
so-called 3-color-octrees [22].

To further reduce the redundancy, we can restrict
the local refinement to those cells for which the tri-
linear interplant deviates more than the prescribed
tolerance from the actual distance field. This re-
striction leads to even better adaptivity since ex-
treme refinement is only necessary in the vicinity
of the highly curved surface regions [11].

Besides these variations of voxel-based piece-
wise tri-linear distance field representations there
are alternatives like the permission grid [27] where
piecewise constant functions are used or wavelet-
based representations with higher order basis func-
tions [19]. While the approximation power of piece-
wise constant functions is not sufficient for practical
precision requirements, higher order functions pro-
vide good approximation. However, since the cor-
responding basis functions span over several neigh-
boring voxels, the inter-dependencies between these
voxels make it necessary that a whole neighborhood
of cells has to be refined to guarantee consistency.
This is called balancing and in practice it usually
causes the generation of many redundant cells.

3 Overview

We compute an approximation of the signed dis-
tance function by taking the major requirements
mentioned in the introduction into account.

First of all we want to achieve sufficient approxi-
mation power. In practice, piecewise tri-linear func-
tions have been used successfully. We however pre-
fer to use piecewise linear functions instead. These
have the same approximation order but need less co-
efficients and consequently they are faster to evalu-
ate and need less memory. In 2D, continuous piece-
wise linear functions have already been applied suc-
cessfully to approximate the distance functions of
curves [23, 17]. A linear function in 3D is given
by a normal vector n and an offset value d (vs. 8
scalar values for a tri-linear function). In our im-
plementation we quantize the possible orientations
of the normal vectors to 16 bit by using the refined-
octahedron-indexing scheme of [7] and the offset d
as another 2 Bytes.

In order to avoid the balancing effect that causes
a local refinement operation to spread over neigh-
boring cells, we do not enforce any continuity of
the distance function between neighboring cells
which also differs from the previous 2D applica-

666

T T ek]
I
T
+ \wf:.lu %
q;H T ,},L
" e
E i mm—
£ EemEii N R —
i} v R
ql i
(a)
(c) (d)

Figure 2: The piecewise approximation of the signed distance
field to the contour shown in (c). The 3-color quadtree in (a) uses
102040 cells for a given approximation tolerance ¢ and produces
a C© piecewise bi-linear distance field. In (b) the same approx-
imation error can be obtained by using a piecewise linear C ~ 1
approximation. In this case the approximation can adapt to the lo-
cal curvature such that 895 cells are sufficient. In (d) we show a
BSP-tree decomposition. By using a linear distance function for
every cell we obtain the same approximation error with only 254
cells. For the selection of the splitting planes we used the medial

axis information as brown segments shown in (c).

tions [23, 17]. Using C ' continuous functions in-
stead of C does not affect the asymptotic approxi-
mation power but the additional degrees of freedom
usually lead to a space partition with significantly
fewer cells for the same approximation tolerance.

Trying to most flexibly adapt the size, shape and
orientation of the cells in the space partition, we are
using a general BSP-tree data structure. This allows
us to use both, the location and the orientation of the
splitting planes for the adaptation. In Figure 2 we
show a 2D example and demonstrate the effects of
the various improvements.

4 Generation steps

Given a polygonal mesh M as input surface plus
an error tolerance &, our goal is to generate an
nearly optimized piecewise linear approximation of
the corresponding signed distance field. For this we
have to choose the BSP splitting planes in an effec-
tive way such that the approximation errors within

each cell stays under the prescribed error bound
while using as few cells as possible. The recursive
algorithm is given by the pseudo-code in Fig. 3. Ini-
tially we call the procedure with an empty root node
T and the complete mesh M as input parameters.

CREATE (tree T, mesh M) :

Find a linear function f that approximates the distance
function to M and estimate the approximation error §
if(6 >¢)

select a splitting plane P;

split M into Mye gt and Myigne by P;

T.plane = P;

CREATE (T.left_child, Mycs+);

CREATE (T.right_child, Myight);

Fi gure 3: Pseudo-code for the generation algorithm.

In the generation algorithm, there are two ma-
jor sub-procedures: (1) how to approximate the
distance function to a mesh M by a linear func-
tion f with minimum error and (2) how to select a
proper BSP splitting plane that generates an opti-
mal space/shape partition. These issues will be ad-
dressed in the following sections.

4.1 Least squares linear approximation

For the mesh M that lies within some cell of the
BSP tree, we need to compute a linear function f
that approximates M’s distance function. Here we
use the standard least squares approach to the point
set {P;, i = 1...n} formed by all vertices in
M. The center of gravity is P and the point vari-
ance set is {Q; = (xi,yi,zi)T =P —-DP, i
1 ... n}. Then from the covariance matrix of {Q; }
we compute three real eigenvalues A1 > A2 > A3
and we denote the corresponding eigenvectors by
Vi, Va, Vs respectively. The normal direction
N of the optimal approximation plane in the least
squares sense is then given by V3 (direction of min-
imal variance). To derive the optimal offset value d
we compute d; = NT P; for all mesh vertices and
set d = (max{d;} + min{d;})/2. Now the func-
tion f(X) = NT X — d approximates the signed
distance function up to a factor of 1. This factor
can be determined by comparing N to the average
normal direction across the mesh patch M.
Moreover we immediately find an estimate for
the approximation error which is § = (max{d;} —
min{d; })/2 where we exploit the fact that triangles
lie within the convex hull of their corner vertices.
Notice, however, that this estimate is only valid over
that part of the plane N7 X = d that is covered by
the orthogonal projection of the mesh M. In most

666

of the practical configurations this region will cover
the whole cell for which the distance field approx-
imation is computed. In some exceptional cases it
can happen that the cell extends beyond this region
which makes further refinement necessary. This is
explained in detail in section 4.3.

4.2 BSP splitting plane selection

We present three different strategies for the selec-
tion of the splitting planes. The first strategy uses a
simple and fast heuristic. In the second strategy we
use the medial axis of the given surface to find split-
ting planes that lead to an improved segmentation
of the surface and in the third strategy we addition-
ally disallow splitting planes that lead to problem-
atic configurations where the mesh falls into several
components.

Strategy A:

A natural candidate for the splitting plane can
be derived from the above least square approxima-
tion. The eigenvector V1 indicates the direction of
maximum variance and yields the (statistically most
efficient) splitting plane’s normal vector Np. The
offset value dp is adjusted such that some balanc-
ing criterion is met, e.g., the resulting sub-meshes
Mg and Myign: have the same number of ver-
tices or the same surface area, or we set dp such
that the splitting plane contains the center point P.

Strategy B:

The least squares approach computes the statis-
tical distribution of the mesh vertices in R® but it
does not take the geometric shape of the mesh into
account. As in Fig. 4 it is a good heuristic to seg-
ment the mesh along curvature maxima since this
produces subpatches M. and Mg With max-
imum expected flatness. It can be detected by look-
ing at the medial axis (MA) [6, 1] of the surface:
for each curvature maximum there is a branch of
the medial axis that points to it.

at

at

Q@
COG a2

Figure 4: Comparing strategy A (left) and B (right) shows that
the piecewise linear approximation after the split is tighter if the

medial axis (MA) is used to determine the split direction.

Computing the exact medial axis is difficult and
unstable [13, 2], hence we use the sphere grow-

ing method [4] to compute discrete sample points
on the medial axis. Before recursive BSP gener-
ation, we store for each mesh vertex V; the tuple
(Cs,ws, bi, j), where Cj, representing a MA sam-
ple, is the center of the smaller sphere among two
possible maximum spheres touching V;; j is the in-
dex of another vertex touching that sphere; w; is the
sum the triangle areas adjacent to V; to compensate
for varying vertex density in the input mesh M; b;
is a flag indicating if this MA sample lies inside or
outside the object.

During the recursive procedure, the new split-
ting plane candidate is the least squares plane fit-
ting to the MA samples which is most likely to
split the mesh in a highly curved region. To reduce
the disturbing effects that occur when the MA falls
into several components (inside and outside the sur-
face) we classify the samples by flags b; and only
use those ones that belong to the majority. Even
if it may happen that the medial axis has several
inside (outside) components this heuristic leads to
sufficiently reliable results once the partition is fine
enough such that only one major curvature maxi-
mum lies within a cell.

A weighted least squares fitting is used to com-
pute the splitting plane by MA samples, i.e., we
start by computing the weighted average:

é: szCz/sz

and then define the weighted variance set as
{Q: = w; (C; — C)} to form a covariance ma-
trix. The resulting least squares plane puts more
emphasis on MA samples which belong to mesh
vertices in sparsely sampled regions and less em-
phasis on samples from denser regions. The weight
coefficient in fact guarantee a constant impact per
surface area. The improvement of the approxima-
tion due to the MA based splitting plane selection
strategy is demonstrated in Fig. 8. If the ratio of
largest eigenvalue of the weighted covariance ma-
trix to the smallest one falls below some threshold
(25 in our implementation), we consider the medial
axis information not as reliable and simply fall back
to selection strategy A.

Once the splitting plane is found, we separate the
given mesh M into two sub-mesh parts together
with the MA samples. In order to guarantee that
they are not influencing each other after the split,
we remove the subset of MA samples (C';, w;, bs,)
where the two vertices V; and V; belong different

666

sub-meshes by setting the weight coefficients w; of
the corresponding samples to zero.

Strategy C:

Selection strategy B promotes good splits that
separate the mesh into sub-meshes with maximum
expected flatness. In the third strategy we add
another criterion that prevents bad splits. Here a
bad split is characterized by the property that one
of the sub-meshes M;.¢; and M,;gp: falls into
several components. Those splits are disadvanta-
geous since the least squares fitting described in
section 4.1 assumes that the mesh has just one con-
nected component. In fact the resulting linear ap-
proximation of the signed distance function is only
valid over the regions that are covered by the pro-
jection of the corresponding mesh. If the mesh has
several components, the distance estimate is invalid
in between the projections of these components (cf.
Fig. 5). In order to find a simple criterion to detect
bad splits, we observe that such splits typically cut
off a cap from an apical point of the surface. Hence
we have to identify all potentially bad splits and dis-
allow them in the recursive splitting procedure.

Figure 5: Left: the splitting plane (thin line P1) chops off a
‘cap’ in the low-right subspace leaf cell enclosed by P1 and P3
whose linear approximation (thick line al) is not proper although
its approximation error is within the tolerance; Right: After the
translation of that splitting plane to the parallel one (thin line P0),

the ‘cap’ can be avoided.

We extend the elegant 2D Hough transform
[3] into 3D. Given a plane P(z,y,z)
x cos(0) cos(¢) + y sin(f) cos(¢) + z sin(¢) —
¢ = 0 in Euclidean space, we can transform it into
Hough space where it is represented by a single
point with coordinates (6, ¢, c). Hence, a collec-
tion of planes in Euclidean space corresponds to a
collection of points in Hough space.

Let P be a vertex of the mesh surface M and N
its normal vector. According to the above discus-
sion we want to disallow all splits that cut through
the e-vicinity of P in almost tangential direction
where ¢ is the prescribed error tolerance. First we

compute the points P and P~ by shifting P in
positive and negative normal direction by €. All
almost tangential planes are characterized by the
fact that their first two Hough coordinates (¢, ¢) are
within some interval
[97;*1/,01‘+1/]><[¢i71/,d)7;+l/] @))]
where (0;, ¢;) are defined by the normal vector
N and v is some directional tolerance set by the
user. In our implementation we usually set this tol-
erance to v = w/12. If we fix a certain normal
vector and consider all parallel planes while we are
moving from P~ to P then the third coordinate c
varies from ¢~ (0, ¢) to ¢t (6, ¢). As a consequence
we can describe the set of potentially bad splitting
planes in the vicinity of the vertex P by the Hough
volume enclosed between the surfaces ¢~ (6, ¢) and
c (0, ¢) as (0, ¢) varies over the interval (1). The
union of all these volumes for every vertex P of
the mesh M defines the set of bad splitting planes
that should be avoided in the recursive procedure
(cf. Fig. 6).

We discretize the Hough space and then scan
convert the above volume. For the discretization we
do not need a very high resolution in € and ¢ direc-
tion. Since 6 runs over the interval [0, 2 7] while ¢
only runs over the interval [0, 7/2] we usually set
the corresponding resolution to 200 x 50. The res-
olution in c direction is more critical since if it is
chosen too low then the rasterization of the Hough
volumes will leave hardly any empty cells. Empty
cells, however, are used later to indicate that a cer-
tain splitting plane is not forbidden. In our imple-
mentation we use a resolution of 500.

ﬁ

YN

Figure 6: Computing the Hough map (2D).

During the recursive procedure, given a certain
splitting plane, we first check if the corresponding
raster cell in the discretized Hough map is empty.
If not we cannot use the selected plane, we have to
look for an alternative that is as close as possible.
We do this by searching in the Hough map in the ¢
direction for nearest empty cell. In Euclidean space
this corresponds to parallely moving the splitting

666

plane in normal direction. In case we cannot find
an empty cell for the current (6, ¢) coordinates, we
simply fall back to strategy B.

Note that for every raster cell of the Hough map,
we only need 1 bit to indicate if it is occupied or
not. Given the above resolution for the 3D Hough
map, we only need 610KB which does not cause
significant memory overhead for the algorithm.

4.3 Final linear approximation correction

In Section 4.1 we found that the linear approxima-
tion in each cell is only valid over the projection of
the corresponding mesh patch. In some rare cases,
it may happen that a cell is unnecessarily extended
such that this validity condition is not satisfied (cf.
Fig. 7). In this case some extra cell refinement is
necessary to prune the linear approximation prop-
erly. This is done as a post process after the recur-
sive BSP generation.

Figure 7: The mesh vertices are projected to the approximation
plane. If some corner G; is too far away from projected points,

the plane SP is used to split the cell.

For every leaf node we check the validity of the
linear approximation by projecting the vertices of
the corresponding mesh patch into the zero-plane.
We denote these projected points by {R;} and let
C be their center of gravity. We also compute the
zero-plane polygon by intersecting the zero-plane
with all splitting planes that define the current cell.
Let {G;} be the corners of this polygon. For every
corner G; we find the nearest point P, in {R;} in
the direction of N; = C' — G; and compute their
distance d. If it is larger than the prescribed toler-
ance €, we split the current cell along a plane that
is defined by P, and the normal vector /N; such that
all mesh vertices are lying on one side with a mini-
mum distance of . This generates an empty cell but
this cell is guaranteed to lie outside the error bound
€ as well as a non-empty cell(cf. Fig. 7). This pro-
cedure will be repeated in that non-empty cell until
the distance validity is guaranteed.

4.4 Discussions

The availability of several splitting plane selection
strategies allows the user to adjust the trade-off be-
tween processing speed and approximation quality.
Figure 8, and Table 1 show examples of how ef-
fective the medial axis (MA) heuristics is in reduc-
ing the number of cells in the space partition and
how much computing time is spent to achieve this.
Also these initial computation effort will be amor-
tized since once generated, the distance fields can
be used in many applications.

Figure 8: The zero-sets of the piecewise linear distance fields to
the Fan model generated without (left) and with (right) MA infor-
mation (strategy B).

strategy | time BSP tree average
(s) inner node linear func. error
A 8 1922 1853 0.01
A+B 240 641 605 0.009

Table 1: The performance of two piecewise linear distance fields
with same maximum error tolerance 0.03. The original model has

101,136 triangles and a bounding box diagonal length 7.6.

5 Results and applications

All the experiments have been performed on a com-
modity PC with P4 2.8 GHz CPU. If not specified
otherwise, error tolerances are given as a percentage
of the model’s bounding box main diagonal length.

The performance of our algorithm is summarized
in Table 2. The major parts are used to compute the
sample points on the medial axis and to create the
discretized Hough maps. Some typical zero-sets of
the linear distance field approximations are shown
in Fig. 1, 8 and 10.

Table 3 and Fig. 10 show various levels of piece-
wise linear distance fields to the Max model which
are computed for different error tolerances. The
storage of each node has been calculated as follows:
inner BSP nodes need 14 Bytes which stores a split-
ting plane in 4 Bytes (normals and offsets quantized
both in 2 Bytes), two children pointers in 8 Bytes

and another 2 Bytes tagging the leaf status of its two
children; A leaf node with linear function needs 4
Bytes to store that approximation plane. The aver-
age depth indicates the average distance evaluation
time and it is computed for all leaf cells that are not
empty. For a leaf cell ¢ with a depth d;, we clip the
linear function against the cell boundary and com-
pute the area A; of the resulting convex polygon.
Then the average depth of a BSP tree is depicted as
¥ (A;d;)/XA; and this depth value corresponds to
the expected path length that a distance query tra-
verses to find the proper leaf cell.

model faces e (%) time (min.)
(input) A+B A+B+C
Bunny 69,656 0.1 1.6 1.1
Bust 61,388 0.06 1.4 11.7
Fan 101,136 0.4 4.0 7.3
Horse 96,962 0.2 3.0 8.3
Max 99,999 0.5 32 6.5

Table 2: The running-times of the algorithm on diverse models

with different splitting selection strategies.

€ averg. max. averg. inner linear storage
(%) £ (%) depth depth cells func. (KB)

1 0.6 14 8.7 263 228 45
0.5 0.3 16 9.9 601 507 10.2
0.25 0.15 24 11.3 1545 1222 259
0.06 0.04 24 13.6 6468 6171 112.5
0.03 0.02 24 14.7 13908 13617 243.3

Table 3: The statistics of piecewise linear distance fields to the

Max model when decreasing the error tolerance.

The above results show that our piecewise linear
distance field approximation is compact and adapts
very well to the shape of the underlying surface.
We also have exploited this representation in vari-
ous applications by providing fast access to the dis-
tance estimates for a given model: Error bounded
mesh processing can be easily and efficiently im-
plemented. For decimation (cf. Fig 9), we have
similar results as the latest error-bounded method,
Permission Grids [27], while their grids need over
100 times more space than our compact representa-
tion. Global error control is achieved by checking
every atomic operator in the pre-computed approx-
imation. It is natural to extend this to error bounded
mesh smoothing. Surface extraction using [18, 16]
can be applied to our representation by evaluating
the distance function on a uniform grid (cf. Fig 10).
Level of detail models is a straightforward exten-
sion of our hierarchical representation (cf. Fig 10)
and volumetric CSG operators can also be applied.

666

Fi gure 9: The Bunny decimated by a QEM [12] based algorithm
with our distance field approximation to guarantee a global error
bound of 1% (left, 700 triangles, 7.1 sec.) and the standard QEM
algorithm without error control (right, 700 triangles, 2 sec.). The
corresponding Hausdorff errors are 0.93% and 1.5% respectively.

[27] simplified to 687 triangles with similar running time.

Figure 10: In the top row, from left to right are the zero-sets of
the piecewise linear distance fields to Max model with error toler-
ance 1%, 0.25% and 0.03%. The bottom row are meshes extracted
from the corresponding distance fields with 4004, 22324, 90092
triangles respectively (cf. Table 3).

6 Conclusions and future work

‘We proposed a new construction for the approxima-
tion of a signed distance function by a piecewise
linear function over a binary space partition. We
explained several splitting plane selection strategies
that promote good splits and prevent bad ones. We
show the efficiency of this generic geometry repre-
sentation with various results and some beneficial
geometry processing applications.

There are many directions for the development of
new algorithms based on this representation. So far
we used a uniform resampling step to extract sur-
faces or to apply CSG operations. In principle it
should be possible to avoid this resampling and ex-

666

tract explicit surface information directly from the
BSP. The major challenge for this is to to extract

the neighborhood relation between the BSP cells.
References

1] N. Amenta, M. Bern, M. Kamvysselis. A New Voronoi-Based Surface
Reconstruction Algorithm. Proceedings of ACM SIGGRAPH 1998,
425-421, 1998.

N. Amenta, S. Choi, R. Kolluri. The Power Crust, Unions of Balls,
and the Medial Axis Transform. Computational Geometry: Theory and
Application, 19(2-3):127-153, 2001.

D. Ballard. Generalized Hough Transforms to Detect Arbitrary Pat-
terns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(2):111-122, 1981.

S. Bischoff, L. Kobbelt. Ellipsoid Decomposition of 3D-models.
3DPVT Proceedings, 480-488, 2002.

J. Bloomenthal, etc. Introduction to Implicit Surfaces. Morgan Kauf-
mann Publishers Inc., 1997.

H. Blum. A Transformation for Extracting New Descriptor of Shape.
Models for the Perception of Speech and Visual Form, 362-380, MIT
Press, 1967.

M. Botsch, A. Wiratanaya, L. Kobbelt. Efficient High Quality Render-
ing of Point Sampled Geometry. Eurographics Workshop on Rendering,
2002.

M. Chen, A. Kaufman, R. Yagel. Volume Graphics. Springer-Verlag,
2000.

J. Cohen, A. Varshney, D. Manocha, G. Turk, etc. Simplification En-
velopes. Proceedings of ACM SIGGRAPH 1996, 119-128, 1996.

B. Curless, M. Levoy. A Volumetric Method for Building Complex
Models from Range Images. Proceedings of ACM SIGGRAPH 1996,
303-312, 1996.

S. Frisken, R. Perry, A. Rockwood, T. Jones. Adaptively Sampled Dis-
tance Fields: A general representation of shape for computer graphics.
Proceedings of ACM SIGGRAPH 2000, 249-254, 2000.

M. Garland, P. Heckbert. Surface Simplification Using Quadric Error
Metrics. Proceedings of ACM SIGGRAPH 1997, 209-216, 1997.

P. Giblin, B. Kimia. A Formal Classification of 3D Medial Axis Points
and Their Local Geometry. Proceedings of Computer Vision and Pat-
tern Recognition(CVPR), 2000.

T. Ju, F. Lasasso, S. Schaefer, J. Warren. Dual Contouring of Her-
mite Data. ACM Transaction on Graphics (SIGGRAPH 2002 Proc.),
21(3):339-346, 2002.

A. Kaufman. Efficient Algorithms for 3D Scan-conversion of Paramet-
ric Curves, Surfaces, and Volumes. Computer Graphics (Proceedings
of ACM SIGGRAPH 87), 21(4):171-179, July 1987.

L. Kobbelt, M. Botsch, U. Schwanecke, H. Seidel. Feature Sensi-
tive Surface Extraction from Volume Data. Proceedings of ACM SIG-
GRAPH 2001, 57-66, 2001.

D. Laney, M. Duchaineau, N. Max. A Selective Refinement Approach
for Computing the Distance Functions of Curves. Eurographics - IEEE
TCVG Symposium on Visualization Proceedings, May 2001.

W. Lorensen, H. Cline. Marching Cubes: A High Resolution 3d Surface
Construction Algorithm. Computer Graphics (Proceedings of ACM
SIGGRAPH 87), 21(4):163-169, July 1987.

K. Nguyen, D. Saupe. Rapid High Quality Compression of Volume
Data for Visualization. Computer Graphics Forum (Eurographics 2001
Proc.), 20(3), 2001.

F. Nooruddin, G. Turk. Simplification and Repair of Polygonal Models
Using Volumetric Techniques. IEEE Transactions on Visualization and
Computer Graphics, 9(2):191-205, 2003.

S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer-Verlag, 2003.

H. Samet. The Design and Analysis of Spatial Data Structures,
Addison-Wesley, 1994.

G. Taubin, R. Ronfard. Implicit Simplicial Models for Adaptive Curve
Reconstruction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(3):311-325, March 1996.

L. Velho, J. Gomez. Approximate Conversion of Parametric to Im-
plicit Surfaces. Computer Graphics Forum (Eurographics’96 Proc.),
15(3):327-337, 1996.

J. Wilhelms, A. Gelder. Octrees for Fast Isosurface Generation. Com-
puter Graphics, 24(5):57-62, 1990.

G. Yngve, G. Turk. Robust Creation of Implicit Surfaces from Polygo-
nal Meshes. [EEE Tr on Visuali: and C Graph-
ics, 8(4):346-359, 2002.

S. Zelinka, M. Garland. Permission Grids: Practical, Error-Bounded
Simplification. ACM Transactions on Graphics, 21(2), April 2002.

[2]

3]

[17]

[18]

[19]

125

[26]

p

[27

