EUROGRAPHICS 2011 / M. Chen and O. Deussen

(Guest Editors)

Procedural Modeling of Interconnected Structures

Lars Krecklau and Leif Kobbelt

RWTH Aachen University, Germany

Abstract

The complexity and detail of geometric scenes that are used in today’s computer animated films and interactive
games have reached a level where the manual creation by traditional 3D modeling tools has become infeasible.
This is why procedural modeling concepts have been developed which generate highly complex 3D models by
automatically executing a set of formal construction rules. Well-known examples are variants of L-systems which
describe the bottom-up growth process of plants and shape grammars which define architectural buildings by
decomposing blocks in a top-down fashion. However, none of these approaches allows for the easy generation
of interconnected structures such as bridges or roller coasters where a functional interaction between rigid and
deformable parts of an object is needed. Our approach mainly relies on the top-down decomposition principle
of shape grammars to create an arbitrarily complex but well structured layout. During this process, potential at-
taching points are collected in containers which represent the set of candidates to establish interconnections. Our
grammar then uses either abstract connection patterns or geometric queries fo determine elements in those con-
tainers that are to be connected. The two different types of connections that our system supports are rigid object
chains and deformable beams. The former type is constructed by inverse kinematics, the latter by spline interpo-
lation. We demonstrate the descriptive power of our grammar by example models of bridges, roller coasters, and
wall-mounted catenaries.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Languages—I.3.5 [Com-
puter Graphics]: Geometric algorithms, languages, and systems—I.3.7 [Computer Graphics]: Three-Dimensional

Volume 30 (2011), Number 2

Graphics and Realism—

1. Introduction

Modeling highly complex 3D scenes with rich detail is
one of the most important topics for movie production and
nowadays also for the game industry [WMV™08]. Proce-
dural modeling has become a well established approach
when realistically looking landscapes [EMP*02], architec-
ture [MWH*06], or plants [PHL*09] have to be generated.

In general, procedural models describe a scene by a tex-
tual grammar consisting of several rules which recursively
replace non-terminal input symbols by a sequence of new
terminal or non-terminal output symbols. There exist several
different strategies of evaluating a grammar with regard to
3D content creation. String replacement, e.g., is commonly
used for plant modeling. In this case, the evaluation of the
grammar is based on a given input text. After some iteration
steps of modifying the text the resulting string is visually in-
terpreted. This convention is best suited to model the growth

(© 2010 The Author(s)

Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Figure 1: Our system presents a novel method to easily de-
scribe complex interconnected structures with a high level of
detail like this roller coaster.

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

process of plants. Another approach for 3D content creation
based on rules are shape grammars. Here rules are applied to
replace a certain shape in the current scene by one or several
others. Usually, the new shapes represent a higher level of
detail, e.g. a box is replaced by four smaller ones. Since this
approach corresponds to the idea of modeling in a coarse-to-
fine fashion, it is preferably used in architectural modeling.

A drawback of both strategies is, however, that they do
not support the definition of connections between existing
objects in the scene. Such connections are very important
for the creation of complex structures that are often seen in
the real world, e.g. bridge constructions, architectural fram-
ings or roller coasters to mention only a few. Another im-
portant observation regarding complex interconnected struc-
tures is, that we have to deal with two different classes of
objects, namely rigid objects, such as metal joints, that are
contained within a bounding box and deformable objects,
like bended steel girders or beams, which can be modeled
by a sequence of trilinear freeform deformation (FFD) cages.
While high level mechanisms are used to layout the coarse
scene of rigid and deformable objects, splitting operations
on the boxes and the FFDs will produce the fine details.

Our modeling strategy is based on a simple idea. First,
we collect meaningful locations in containers, like possible
connection points on a steel girder. Then, we use the ele-
ments of the containers to create mappings between two lo-
cations which satisfy a number of relations between a source
and a target location. Alternatively, geometric queries can be
used to define those relations. Finally, an inverse kinematics
(IK) algorithm calculates a chain of rigid objects between the
source and the target location or a spline is used to generate
a deformable beam between the end points.

For a fast and easy scene assembly, our procedural mod-
eling setup is based on the following key points:

Containers — During the scene generation, meaningful
connection points are collected that can be utilized later on
to establish relations between source and target locations to
construct geometric connections. Furthermore, our system
also uses containers to define freeform spline curves or to
define avoidance areas that may prevent two end locations
of a relation from being connected.

Rigid & Deformable — Our paper presents an easy scene
description that allows us to apply the well-known splitting
operators from previous approaches to rigid as well as to
deformable objects. Therefore, no new concepts have to be
learned by the user in order to generate the fine details of the
geometry in our scenes.

Inverse Kinematics — Our grammar provides an intuitive
way to define how two end locations will be connected by a
chain of rigid objects. The user just has to set the degrees of
freedoms in terms of translational and rotational joints and
our system will automatically generate a plausible layout of
boxes by using an inverse kinematics algorithm.

Curves — Our system uses spline curves as a tool to gener-
ate a continuous sequence of trilinear freeform deformation
cages. In our approach, the control points will be extended
to form rectangular cross sections along the curve that gives
a high level control over the roll of the FFDs along the curve
which would not be the case, if only control points would be
interpolated.

1.1. Related Work

Procedural modeling approaches have become well es-
tablished for plant modeling after Lindenmayer and
Prusinkiewicz have introduced L-Systems into graphics
[PL96]. A LOGO-style turtle is used for the visual inter-
pretation of the resulting text string. Furthermore, several
extensions have been developed to enhance the expressive
power of the textual grammar like parameters, stochastic
rule application or string-based context-sensitivity, which is
used to simulate information flow within a plant [PHHM97].
The concept of self-sensitivity was introduced for the auto-
matic creation of street networks [PMO1]. The plant mod-
eling language cpfg [PHMO0O, PKMHOO] provides mecha-
nisms called open L-System (OLS) for a more sophisticated
environmental-sensitivity [PJM94, MP96]. The communica-
tion between an OLS and external modules goes via a fixed
set of parameters. Since our approach needs to define IK
systems of a dynamic size, an OLS would need to create
a separate external module for every possible number of el-
ements in an IK chain of joints. Furthermore, L-systems are
designed for growth processes where each step is determined
in a parallel and greedy fashion with no planning ahead and
no backtracking optimizations. In order to produce intercon-
nected structures, the OLS formalism would have to be ex-
tended at least by the capability of passing parameter lists
to a module that define the degrees of freedom of a rigid
chain. Additionally, the replacement strategy would have to
be changed to guarantee that certain objects are created be-
fore others in order to apply geometrically queries on fully
generated geometry.

Instead on working on text strings, decomposition of
shapes into other shapes better fits for the generation of
man-made structures like architecture [WWSRO3]. Stiny pi-
oneered the concept of rule-based shape replacement by in-
troducing shape grammars [Sti75,Sti80]. This basic idea was
then transferred to the creation of procedural buildings with
help of the CGA shape modeling language [MWH™06]. In
their work, Miiller et. al. present a modeling strategy of plac-
ing mass models in a first step. Those are refined by split-
ting rules leading to detailed building geometry. Occlusion
queries are taken into account to avoid the creation of ob-
jects like windows when they would be partly hidden by
an intersecting wall. We basically rely on the concepts of
CGA shape as this formalism turned out to work well for the
creation of man-made structures like buildings. By slightly
modifying the modeling strategy, we are then able to provide
a mechanism for the generation of interconnected structures.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

b]

Figure 2: (a) Decomposition rules provide an easy mech-
anism to create man-made structures like facades. (b) Con-
trolling a rectangular LOGO-style turtle generating complex
tree structures by successively spanning trilinear FFDs. (c)
Close-up of (b).

There are several other procedural modeling approaches
for specific problems like noise functions for procedural
terrains [EMP*02] or wall grammars for simple 2.5D fa-
cades [LGO6]. The creation of building interiors, e.g., can
be achieved by recursive splitting [HBWO06]. Galin et al.
presented a system for the generation of more complex
roads by approximating the anisotropic shortest path prob-
lem [GPMG10]. During the generation, a cost function al-
lows for an automatic placement of tunnels and bridges. Ap-
plying a physical simulation of the elements that are placed
by a grammar like CGA shape, Whiting et al. are able to op-
timize a certain set of parameters in order to create stable
configurations of masonry buildings [WODO09]. Ganster et
al. combine different modeling strategies in a visual frame-
work [GKO7] whereas Krecklau et al. present the unified
procedural modeling language G? which handles multiple
non-terminal classes [KPK10] such as boxes or freeform de-
formations (FFDs) [SP86]. Our system is also capable of
creating FFD based deformable objects, but in contrast to
G, we use high level modeling primitives such as spline
curves [PT97] to define sequences of FFDs between two
given end locations.

Furthermore, our approach was inspired by the practical
application of inverse kinematics, which is usually applied
in character animation or robot control [MWSO05]. Based on
the assumption, that a set of rigid objects is given and that
each of these objects is at least connected to one other object
of the set by a rotational or a translational joint, IK algo-
rithms numerically solve the problem of finding a valid joint
configuration such that a subset of the rigid objects can be
placed at specific positions and orientations in the scene. Our
approach uses an IK algorithm [Bus04] for an easy definition
of box based rigid chains between two end locations as an al-
ternative to the deformable interconnections. Both concepts
are unified in our modeling grammar for an intuitive and fast
creation of interconnected structures that would be hard or
even impossible to achieve with existing grammar systems.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

[a] [b] l [e]

Figure 3: Our approach presents operations for an easy
handling of interconnected structures. When precise connec-
tions have to be established, the user can choose to create a
simple FFD (a), a deformable beam (b) or a rigid chain (c).

2. Procedural Modeling

In general, a context-free formal grammar is a 4-tuple
(N,T,P,S), where N is a set of non-terminal symbols, T is a
set of terminal symbols, P is a set of production rules of the
form N — (NUT)* and S € N is the start symbol. When-
ever a non-terminal symbol matches the left-hand side of a
production rule, that rule can be applied and the symbol will
be replaced by the right-hand side of the rule.

Basically, our procedural modeling language builds upon
the idea of CGA shape by Miiller et al. [MWH™06] which
has been successfully used for the easy creation of man-
made structures like buildings. In their work, they simplify
the concept of general shape grammars by associating a tex-
tual non-terminal symbol with a scope, which can be seen as
a bounding box in 3D space that may contain an arbitrary ge-
ometry. The right-hand side of a rule in CGA shape contains
a sequence of operators that are applied to the scope. The
most important operators to mention here are local transfor-
mations, like a translation or a rotation, to simulate LOGO-
style turtle movements or splitting operators that subdivide
the scope into smaller scopes, like dividing the scope along
the local x-axis into parts that have approximately the same
width (cf. Figure 2.a). Operators that generate new scopes in
3D space also have to set the attached non-terminal symbol
in order to further process the scope by a certain rule.

The principle of using scopes only as boxes is not suffi-
cient, if interconnected structures have to be generated that
contain deformed pieces such as steel girders or beams.
Therefore, we adopt the idea of increasing the degrees of
freedom of the scope from a box to a trilinear freeform de-
formation (FFD) as it was presented in the generalized gram-
mar (G?) by Krecklau et al. [KPK10]. In addition to the
previously explained concept of splitting boxes in order to
create buildings, they also show how to generate complex
tree structures by controlling a rectangularly shaped turtle
through space and spanning FFDs between these rectangles
(cf. Figure 2.b). We rely on the syntax of G?, because it
provides useful features such as implicit class and operator
attributes or a method to encapsulate several rules to build
modules that can be easily reused throughout the grammar.

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

[a]

Q.
%

B =\
T‘,at\s\a\e A

Figure 4: (a) A rigid object chain is defined by translational (09,0,,04) and rotational (01,03) joints with one degree of
freedom where some are fixed (00,04) and some are free (81,0,,03). The free parameters are optimized to yield the smallest
distance between an end effector E and a target pose T. (b-c) The Jacobian of the system is used to estimate the effect at the
end effector, if the corresponding value © changes. (b) Derivation principle for a translational joint. (c) Derivation principle

for a rotational joint.

While it turned out that boxes are easy to handle for the
creation of precise structures in a strict coarse-to-fine fash-
ion and FFDs can handle growth processes that start at a
certain location and expand in random but guided direc-
tions, our approach aims for a whole new class of objects.
We present a system that provides easy operations to estab-
lish connections between semantically meaningful locations
in the scene. Our paper describes two completely different
ways of generating geometry between two arbitrary loca-
tions in space. First, a chain of rigid objects can be created
automatically between the locations by applying an inverse
kinematics algorithm (cf. Figure 3.c). Details of the rigid ob-
jects are then easily generated in the manner of CGA shape.
Alternatively, deformable connections are represented by a
sequence of trilinear FFDs which are defined by a spline
curve that interpolates the locations (cf. Figure 3.b). In or-
der to generate details along the deformed connections we
adapt the splitting concept of the boxes and apply them in a
similar way to the FFD cages (cf. Figure 11.c).

3. Inverse Kinematics

A rigid chain system is a sequence of revolute (rotational)
and prismatic (translational) joints. The joints in our kine-
matic system only have one degree of freedom (DoF) which
is a scalar value 0 representing an angle of a revolute joint
for a rotation around a fixed axis or representing a length of a
prismatic joint for a translation along a certain vector. More
complex behaviors can be simulated by using a combination
of these joints (cf. Figure 4.a).

Each translational joint can be expressed by a rigid trans-
formation 7'(6) € R4 consisting of an identity matrix
1 € R**3 as rotational part and a translation vector f € R3*!
that is scaled by the length 0:

I 7+0
re=ly 7

Each rotational joint can be expressed by a rigid transfor-

mation 7'(0) € R*** consisting of a zero vector 7 as transla-

tional part and a rotation matrix R € R3*3 which is defined
by a rotation axis ¢ and the angle 6:

7(0) = {R(‘;’)’e) ﬂ

If a set of parameters ® = {0, ,08,_1} is applied to a
sequence of n rigid transformations, this will result in an end
effector E € R**4:

f®)=T,_1(8y—1)*---*xTy(6g) = E

Changing the parameters 6; corresponds to the idea of
forward kinematics [MWS05] which perfectly matches the
concept of the LOGO-style turtle movement that is used for
procedural modeling, because both systems rely on the idea
of defining a path by just using relative transformations.

In terms of interconnected structures, we have to solve the
problem, that we have only given the wanted target pose T
of the end effector E' and the sequence of rigid transforma-
tions where only a subset @ C @ are free parameters that
have to be optimized by the solver while ® \ @ are fixed
parameters that are necessary to fully describe the shape of
the rigid chain. Finding the values for the free parameters
0; € @ is a hard problem, because f is highly non-linear due
to the rotations. Inverse kinematics algorithms are numerical
methods that solve f~ ! (E) = @ by iteratively updating the
parameters @ by AP (cf. Figure 4.b,c). The algorithms usu-
ally terminate, when the distance AE between the current
end effector E and the target pose T falls below a certain
threshold. Further details on inverse kinematics can be taken
from the book of Spong et. al. [MWSO05].

4. Freeform Curves

Since the primitive scopes of our system can be trilinear
FFDs which have many degree of freedom, we need higher
order operations for their creation. Therefore, our system is
capable of sweeping rectangles along a spline curve thereby
creating a sequence of FFDs between a rectangle and its suc-
cessor (cf. Figure 5). A curve that is parameterized in the in-

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

Figure 5: (a) Deformable beams are created by sweeping
rectangles along a spline curve. (b) The interpolation of nor-
mals yields an intuitive control over the roll of the rectangle.

terval ¢ € [0, 1] with n control points P; and basis functions
N; is described by the following formula:

) = iol Ni(0)P,

For the precise details on this function we want to refer
the reader to The NURBS Book [PT97]. Creating rectangles
at the sample points to span trilinear FFDs can be done in
several ways. For a natural behavior, the generated rectan-
gles have their center in C(¢) and are spanned orthogonal to
the tangent, which is the first derivative C’(¢) of the curve.
The rotation of the rectangle around the tangent has still to
be determined. In order to get full control over the roll of
the rectangle, e.g. producing arbitrary twists of the rectan-
gle along the curve, we extend the definition of the control
points P;:

f)i = [P)ﬁpyaPZvNXaN)ﬁNZ?W?H}T
———— ——

position normal ~ size

We address Cp(t) as the positional part, Cy(¢) as the nor-
mal part and Cg(¢) as the size part of the curve at parameter .
Note that the normal vector Cy(¢) is normalized after the in-
terpolation in order to guarantee unit length. The local rect-
angle will have its center at Cp(¢). The local right direction
R and the local up direction U are then calculated as follows:

GV xChr) _ RXCh)
[Cn (1) x Cp(n)] [Rx Cp(1)]
Note that U # Cy(¢) in most cases, because the interpo-

lated normal Cy/(¢) is just used to determine the roll around
the tangent direction.

5. Containers

By recursively replacing non-terminal scopes in the scene, a
lot of detail can be created in a controlled way. Parameters
are used to vary the behavior of the rules thereby changing
the look of the generated scene. This is sufficient as long as
the relation between objects or parts is unidirectional in the
sense of a recursive replacement (parent — child). If inter-
connected structures have to be modeled, it is very intuitive
to create independent architectural objects first and later es-
tablish connections between meaningful locations that are

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

SA:Box (c:Rect[])->repeatX(1l, :$B(Index));
{
$B:Box (i:Int)
[i%2 == 0] -> renderColor(1,0,0); c.push(Front);
[-> renderColor(1l,1,1);

Figure 6: Containers are used to store rectangles which
are the end locations for creating interconnected structures.
In the grammar, index is an implicit operator attribute and
front is an implicit class attribute [KPK10].

defined by the individual objects. Please note, that this would
not be possible with a simple coarse-to-fine modeling strat-
egy, since the connections are generated between existing
objects in the scene and do not result from a decomposition
or growth process as presented in previous approaches.

5.1. Collecting Meaningful Objects

In order to collect geometrically meaningful objects during
the evaluation process, we introduce the concept of con-
tainers. In general, a container could be any data struc-
ture to hold geometric objects like a tree or a list. In our
implementation, containers are multidimensional lists that
are easy to handle, when fixed connection patterns have
to be defined later on. Formally, containers are handled
just as any other parameter in the grammar and can be
passed to any rule or operator. Their definition can be un-
derstood analogously to the definition of a multidimensional
array in C++: name:type[]--- []. Since our lists are dy-
namic, new elements can be pushed into a container by us-
ing name.push (element) Or name.push () where the lat-
ter one automatically appends a new element with its de-
fault value. Furthermore, a convenient syntax to directly cre-
ate a list with n entries is to use a sequence of elements in
curly brackets: (e, -+, e, } (cf. Figure 6). Accessing an el-
ement of a container is also defined analogously to C++:
name [index|]--- [index,]. Note that a default value will
be returned, if any index is out of range.

5.2. Utilizing Stored Objects

Since we want to generate interconnections that are either
rigid boxes or deformable freeform deformations, the most
natural way to specify the end locations is done via the com-
mon 2D counterpart of the scopes which are rectangles. In
this chapter, we will therefore address rectangle containers
as a very important special case of general containers.

In order to make our system very flexible, we uncouple
the actual operator that generates an interconnection from

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

$Connect:Box (A:Rect[], B:Rect[])->
[£fd(pattern (A[i],B[i] ,[A.size ()]),$Rule); |Linear]
|ffd(pattern (A[i],B[1%2==0?i+1:i-1], [A.size()]),$Rule); |[Cross |

Figure 7: Mappings are defined for the creation of fixed
patterns which could end up in regular parallel or regular
cross connections. In the grammar, i is an implicit opera-
tor attribute that returns the current value of the counter
[KPKI10]. Note, that i is the short version of i[0], if only
one counter is provided.

the function that defines which rectangle instances have to
be connected. In this chapter, we first explain two possible
options that define the correspondences, i.e. a fixed pattern
or geometrical queries. Formally, the functions return a pair
containing the start and end location in form of a rectangle:

Pair := (source:Rect, target:Rect)

A simple visualization is achieved by spanning a FFD for
each pair in a given pair container. The newly created non
terminal FFDs will then be associated with the rule next:

ffd(correspondences:Pair[], next:Rule)

The second part of this chapter will then focus on two
operators that create the complex interconnections by pro-
ducing a deformable beam or a rigid chain.

5.2.1. Fixed Patterns

The first function simplifies the creation of non-trivial in-
terconnected structures by defining how the elements of a
container have to be connected:

Pair[] pattern(source:Rect, target:Rect, counters:Int[])

Just as with a one dimensional array, one can think of a
loop that iterates over a container and for each source rectan-
gle with index i, it determines a target rectangle based on the
index i. Figure 7 shows two possible mappings between two
containers A and B. The linear connection pattern is defined
as a mapping i — i whereas the cross connection pattern is
defined as a mapping i — (i%2==0?i+1:i—1). Weuse
the conditional operator from C++ that turned out to be very
convenient for our purposes:

condition ? value if true : value if false

If the container is structured into more than one dimen-
sion and the connection pattern becomes more complex, it
is useful to provide cascaded loops. Therefore, the third pa-
rameter of the operator is a list that defines the number of
elements n; for each of the m cascaded loops:

for (ip=0;ig<ng;ipg++) - - for (i,—1=0;im_1<npm—1;ip—1+t+) {}

Figure 8: Shooting a ray to find rectangles to connect with.
(a) Defining an elliptical conical volume along the shooting
direction to reduce the number of potential target rectan-
gles. (b) The ray intersects a rectangle in the volume, so that
the target rectangle (red) lies inside the hit rectangle (green)
with its center at the intersection point. (c) If no rectangle
is hit directly, among all other rectangles in the volume, the
one closest to the ray is chosen with respect to the angle .

In the sense of implicit operator attributes as they were
presented by Krecklau et al. [KPK10], the first two param-
eters of the operator can now use the indices to define the
actual mapping.

5.2.2. Geometrical Queries

The second function assumes, that a number of possible
target rectangles have been defined by another procedural
model. Conceptually, the operator takes a source rectangle
B as a basis and shoots a ray 7 into some target direction to
define a connection pair:

Pair shoot (source:Rect, targets:Rect[],
yaw:Float, pitch:Float,
alpha:Float, beta:Float, range:Float)

Figure 8 depicts the volume that is spanned to determine
a target rectangle from the container. Basically, the shoot-
ing direction 7 is defined by a yaw and a pitch angle. This
is an intuitive choice, because seen from the local coordi-
nate system of B it describes the direction by turning left or
right (yaw) and afterwards turning up or down (pitch). For
each rectangle T in the target container, we determine the
closest sub rectangle S that has the same size as B, the same
orientation as T, and completely lies in T. Letting V be the
vector pointing from the center of B to the center of S, we
define 7 to be the angle between v and 7 (cf. Figure 8.c). If
the vector V is longer than a given maximum distance or it
lies outside the elliptical cone that is spanned by o and 3
(cf. Figure 8.a), we skip the rectangle S. The connection will
then be established from B to the sub rectangle S that has the
smallest angular deviation Y from the shooting direction 7.
If there are more than one possible S with the same devia-
tion vy, we take the one with the shortest vector V. Note, that
our system could easily adopt other geometrical queries as a
function returning the pair construct.

5.2.3. Deformable Beams

Spanning trilinear FFDs between two end rectangles is most
of the time not sufficient for the creation of many real world
examples, e.g. if a rope or cable has to be spanned between
two end points. Therefore, our system extends the previous

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

definitions by a stiffness value of the material and a gravity
value that creates a plausible sag of a deformable beam:
beam (correspondences:Pair[], next:Rule,

stiffness:Float, gravity:Float,
step:Float, threshold:Float)

The operator will automatically create the following five
rectangles whose position, normal and size will be interpo-
lated in the sense of Chapter 4. Based on the two end rectan-
gles, two additional rectangles will be inserted by creating a
copy of the end rectangles and moving the copy along their
normal direction with respect to the defined stiffness value.
The resulting tangents guarantee, that the orientation of the
first and last rectangle of the interpolating spline are oriented
in the same way as the given end rectangles. Additionally, a
fifth rectangle will be inserted in the middle of the parameter
domain. It will be moved down along the world y-axis with
respect to the gravity value in order to simulate plausible
sags that usually occur when cables or ropes are spanned be-
tween two points. Typical examples for such a scenario are
power lines, cabin lift cables or other deformable supporting
structures.

In order to let this operator behave analogously to the re-
peat operator of CGA shape, the curve has to be arc length
parameterized. We approximate the arc length by recursively
inserting sampling points. Whenever the distance between
two successive samples lies above a certain threshold, new
sample points will be inserted. Based on this piecewise linear
approximation, the curve is then resampled uniformly with
a step width given by the second last parameter, to create the
cross sectional rectangles (cf. Figure 5).

5.2.4. Rigid Chains

In contrast to deformable beams, there is another class of real
world examples that is better modeled with rigid intercon-
nections, e.g. bridges, cranes and other complex steel con-
structions. We provide an operator that automatically creates
a chain of rigid segments between the two end rectangles:

chain (correspondences:Pair[], segments:Segment[])

Segment := (type:Enum, value:Float, next:Rule,) |
(type:Enum, start:Float, min:Float,
max:Float, next:Rule)

Every created segment can get another non-terminal sym-
bol attached to it and could thereby be processed in another
way. For the calculation of the rigid chain, we first transform
the local coordinate system of the second rectangle into the
local coordinate system of the first rectangle, so that we can
build up the rigid chain from the origin. The segments are
then defined by a sequence of transformations analogously
to Chapter 3, where a fixed segment is defined by a 3-Tuple
and a free segment is defined by a 5-Tuple. In both cases, one
of the six types of transformation has to be chosen, which
can be either a translation or a rotation along the local x-,
y- or z-axis. The second parameter of a fixed segment is the
scalar value that is used for the chosen transformation type.
In contrast, for a free segment, the user has to specify a start
value (commonly set to 0), a minimum value and a maxi-
mum value that is allowed for the optimization. By setting

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

the minimum or the maximum to infinity, the user can dis-
able the lower or upper bound of the joint, respectively. Note,
that if it is not possible to generate a rigid chain between the
end rectangles, the operator will skip the current pair.

5.2.5. Modeling Curves

The freeform modeling process of arbitrary spline curves is
achieved by controlling the box scope in the usual fashion,
i.e. applying transformations like a rotation or a translation
to it, and at certain positions storing a face of the box in a
rectangle container. Afterwards, the container can be passed
to the curve operator which will automatically generate a
sequence of FFD scopes:

curve (control:Rect[], closed:Bool, next:Rule,
step:Float, threshold:Float)

The parameters for the step size and for the arc length
threshold can be understood analogously to the creation of
the deformable beams. In addition, a flag can be set to in-
terprete the rectangle container as a closed curve and a non-
terminal symbol is defined to further process the resulting
freeform deformation scopes.

6. Use Cases

We present three different use cases including a bridge, a
catenary in a street and a roller coaster (also shown in our
accompanying video). The grammar snippets in this section
focus on the structural part of the model design.

Sydney Harbour Bridge (cf. Figure 9) — In this exam-
ple we reconstructed the structure of the Sydney Harbour
Bridge (Fig. 9.,9.f). A small grammar snippet is shown in
the top right of Figure 9. First, the main steel girders are cre-
ated by applying several splitting rules and transforming the
parts to fit a quadratic curve (Fig. 9.a). During the evalua-
tion, meaningful junctions are stored in three different con-
tainers for the side, the bottom and the top. Afterwards, a
fixed pattern, colored purple in the grammar, is applied to
create the interconnections of one layer (Fig. 9.c). In this
case, the rigid chain is very simple, because the end loca-
tions are well aligned. Consequently, only two free rotations
around the local y-axis are needed in combination with one
free translational joint which is associated to a rule that will
create the geometry of the interconnection. Note, that we use
a two dimensional container here to store the side junctions
of the two girders, i.e. the left side has index O whereas the
right side has index 1. Several layers can then be connected
in the same way (Fig. 9.d). Finally, the high details of the
interconnections are modeled and inserted.

Catenary in a Street (cf. Figure 10) — For this example
we first modeled different facades by the decomposition of
boxes (Fig. 10.d). We extended the rules by providing a con-
tainer of mounting areas that can be used by other objects.
In our case, we modeled a catenary that shoots four rays for

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

$Girder:Box (side:Rect[],bottom:Rect[],top:Rect[],flip:Bool)->...;
{) 1 \ ntainers}
$Layer:Box (bottom:Rect[] [],top:Rect[][],side:Rect[][])->

splitX ([

(2, 'Abs', $Girder (side.push(),bottom.push (), top.push(),false)),

(1, 'Rel', $NILBox) , I € m

(2, 'Abs', $Girder (side.push(),bottom.push (), top.push(),true))]);
chain(
pattern(side[0] [1],side[1] [1%3==07?1i: (i%3==12i+1:1i-1)], [side([0].size()]),
[('RY',0,-90,90,$NILBOX), ('TZ"',0,0,90,%Con), ('RY',0,-90,90, $NILBox)]);

iy

anl

Figure 9: Reconstruction of the Sydney Harbour Bridge (f). First, independent steel girders define connection points (a). Then,
fixed connection patterns are applied to generate complex structures (c,d). Finally, the details are generated (b) which results
in a virtual model of the bridge (e).

$Facade:Box (mount:Rect[])->...;
{ b rules use pt] 1t e er}
$Catenary:Box (mount:Rect[])->...; 1 ing he
{$Shooting:Box (yaw:Float, pitch:Float)->
chain ([shoot (Front,mount, yaw,pitch,20,10,15)], [
('Tz',0.15,%CatenaryToRotationX), //1. f 1 h € ha
('RX',0,-90,90,$%Cylinder),//1. ing)t i
I ne ut: ...->TZ->RY->TZ->RZ->TZ->RY->TZ
('RX',0,-90,90,8%Cylinder),//5. ing) ion
('T2',0.15,$RotationXToWall), 4. fixe 1 hay
1)
subrul t tail 1 1ges}
SCatenaryInStreet:Box (mount:Rect[])->
spawnBox ($Facade (mount)) ;
spawnBox ($Facade (mount)) ;
spawnBox ($Catenary (mount)) ;

Figure 10: Creation of a catenary that automatically connects with mounting areas on independently defined facades (a,b,d).
The connections are based on rigid chains that only have to define the degrees of freedom (c).

each side in direction of the facades (Fig. 10.a-10.b). In de- Roller Coaster (cf. Figure 11) — In our last example, we
tail, every connection is created by a rigid chain of 11 ele- created a complex support structure of a roller coaster. First,
ments. There are 4 fixed translational joints, colored red in we transformed the scope of a box several times in order
the grammar, which are not optimized but needed to cre- to store a rectangle as the ground and to place control rect-
ate the hinge geometry around the end locations (Fig 10.c, angles which result in the coarse layout of the basic roller
red). Furthermore, the 5 free rotational joints, colored green coaster track by generating FFDs along a spline (Fig. 11.a).
in the grammar, correspond to cylinder objects in the rigid We use FFDs instead of generalized cylinders [PL96] in or-
chain geometry (Fig 10.c, green). Finally, there are 2 free der to apply adaptive splitting for the generation of the de-
translational joints, colored blue in the grammar, to bridge tails similar to CGA Shape (Fig. 11.c). During this process,
the distance (Fig 10.c, blue). The catenary itself uses the de- the segments will also generate some avoidance areas that
formable beam principle to generate the bend of the hang- are queried in a condition [KPK10] when the red columns
ing cables. The scene can now be easily composed by first are created in the next step (Fig. 11.b, blue). The defined
creating several facades that fill the container of mounting spline is sampled again with larger distances to apply the
areas and afterwards the caternary is created. Note, that the shooting operator which builds the basic poles from the track
catenary is able to establish a connection to two neighboring to the ground (Fig. 11.b). The newly created red interconnec-
facades which have been generated by two different rule sets tions provide several junctions in a cascaded container that is
(Fig. 10.b). structured in 4 dimensions as depicted in Figures 11.d, 11.e.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

$RollerCoaster:Box (ground:Rect[],avoid:Rect[]
track:Rect[],joints:Rect[]
size(1,1,1);t(10,10,10);rY(45);rz(33);
track.push (Front) ;

[reren =>

curve (track, true, : $Segment (avoid),1,0.1);
:))

curve (track, true, :$Pillars (ground,avoid, joints.push()),3,0.1);

l J
I
chain(
pattern (joints[i[0]] (0] [1(1]][2],oints[i[0]] (1] (1[1]][2],
[joints.size(),joints[1i[0]][0]).size()]), [
('Tz',0.2, :$JuntionToY), ('RY',0,-90,90, $NILBox),

('rz',0,0,10,:$YToY), //I
('RY',0,-90,90,$NILBox), ('T2',0.2, :$YToJuntion)]);

Figure 11: Complex example of a roller coaster that is defined by a spline curve (a,b). The details are produced by splitting
FFD cages (c). Complex connection patterns are defined from junctions that are stored in cascaded containers (d,e). A high
amount of detail is reached by using many small IK systems for the creation of the supporting structure (f).

D runs along the track. D, has two elements expressing the
right (0) and left (1) interconnections. D3 runs along each
interconnection. D4 has four elements expressing the sides
of the interconnection (front:0, right:1, back:2, left:3). One
pattern, colored purple in the grammar, is highlighted in the
bottom right of Figure 11.e. It is a two dimensional mapping
that establishes a connection for all elements i[0] along the
track and all elements i[1] along the current interconnection
from the right (0), back (2) junction to the left (1), back (2)
junction. With this well-structured container of the junctions
a lot of different patterns can be established (Fig. 11.f) which
finally results in a complex roller coaster model (Fig. 1).

7. Discussion

Implementation — Our application is implemented in C++
using OpenGL for the renderings as seen throughout this pa-
per. The grammar is parsed into an internal data structure us-
ing boost spirit [Spi10]. We run our application on an Intel
Core 17 with 2.67GHz with 6 GB ram and a GeForce GTX
470 with 1 GB. Since our application is not parallelized so
far, we only utilize one of the cores. The complex grammar
of Figure 11, which uses a lot of queries and IK systems,
takes about 6 seconds for the evaluation resulting in 1.4M
elements of the scenegraph with 6.8M triangles in total. The
rendering of the scenegraph is done in 1.7 seconds since a
lot of draw calls are needed. If we load the geometry to the
graphics card once, which takes also about 1.7 seconds, the
rendering can be done in real time with about 11 ms per
frame. Shadowmapping and screen space ambient occlusion
is used to enhance the visual appearance of the scene.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

Commercial Software — Based on the procedural frame-
work by Krecklau et al. [KPK10] our method can be eas-
ily integrated into professional modeling applications such
as Houdini from Side Effects Software Inc. which heavily
relies on a procedural methodology. The GenerativeCompo-
nents software from Bentley, which focuses on complex pa-
rameterized man-made structures, is another alternative that
could adopt our presented approach. In a similar way to our
modeling system, the geometry is saved by storing the al-
gorithms that were applied after each other resulting in a
very compact scene description. The system basically builds
upon the idea of establishing relations between certain pa-
rameters in the object description. Rigid chains between two
locations could be integrated as a script which is automati-
cally invoked whenever one of the locations in the relation is
changed. We further believe that our approach is a very use-
ful extension for the CityEngine from Procedural Inc., since
our approach already inherits the basic idea of producing the
details by adaptive splitting of boxes or, more general, of
freeform deformation cages.

Usability — Assuming that writing a shape grammar for
previous approaches is already known [MWH™* 06, KPK10],
containers are an easy to learn extension since they are simi-
larly utilized as usual parameters. The structure of the gram-
mar remains clear and human readable. This is especially
important, if other designers have to understand a given
grammar. Our presented operators give an intuitive option
to define interconnected structures by just collecting the end
locations, which would be hard to achieve with grammars
that rely on the principle of decomposition or growth.

Lars Krecklau and Leif Kobbelt / Procedural Modeling of Interconnected Structures

Fail Cases — If the defined rigid chain does not provide
enough degrees of freedom to reach the target location, the
IK system will fail and the resulting rigid chain will be end-
ing in free space (but as close as possible to the target loca-
tion). We regard such situations as design failures, which the
user can easily resolve by providing further degrees of free-
dom in the definition of the rigid chain. Our accompanying
video also shows a fail case during the creation process.

Limitations — Currently the containers are implemented as
simple cascaded lists. Although this structure simplifies the
creation of the structure patterns, applying queries on this
data structure has a linear time complexity. Hence, it would
be a great improvement to use data structures like octrees or
kd-trees which would reduce the query complexity to loga-
rithmic time. Grammars can already be created interactively
for architecture [LWWOS], but designing the interconnec-
tions with intuitive metaphors is not easy to achieve, since
abstract structures like connection patterns have to be han-
dled. For establishing the logical association between scene
objects, a graphical node system could be used.

8. Conclusion

This paper proposes a novel method to describe 3D objects
with complex interconnected structures. Procedural objects
provide containers storing meaningful rectangles as possible
end locations. Interconnections are then generated by apply-
ing a geometric query on the stored rectangles or by defin-
ing a pattern between elements of any containers. With the
automatic generation of rigid chains or deformable beams
between two end locations, a variety of different real world
examples can be easily modeled such as bridges, catenaries
or even complex roller coasters.

Acknowledgement

This work was supported in part by NRW State within the
B-IT Research School.

References

[Bus04] BuUsS S. R.: Introduction to Inverse Kinematics with
Jacobian Transpose, Pseudoinverse and Damped Least Squares
methods. Tech. rep., IEEE Journal of Robotics and Automation,
2004. 3

[EMP*02] EBERT D. S., MUSGRAVE K. F., PEACHEY D., PER-
LIN K., WORLEY S.: Texturing & Modeling: A Procedural Ap-
proach, Third Edition. Morgan Kaufmann, 2002. 1, 3

[GKO7] GANSTER B., KLEIN R.: An integrated framework for
procedural modeling. In SCCG 2007 (Apr. 2007), Sbert M.,
(Ed.), Comenius University, Bratislava, pp. 150-157. 3

[GPMG10] GALIN E., PEYTAVIE A., MARECHAL N., GUERIN
E.: Procedural generation of roads. Computer Graphics Forum
29,2 (2010), 429-438. 3

[HBW06] HAHN E., BOSE P., WHITEHEAD A.: Persistent real-
time building interior generation. In Sandbox ’06: Proceedings
of the 2006 ACM SIGGRAPH symposium on Videogames (NY,
USA, 2006), ACM, pp. 179-186. 3

[KPK10] KRECKLAU L., PAviCc D., KOBBELT L.: Generalized
use of non-terminal symbols for procedural modeling. Computer
Graphics Forum 29 (2010), 2291-2303. 3, 5,6, 8,9

[LG0O6] LARIVE M., GAILDRAT V.: Wall grammar for building
generation. In GRAPHITE 06 (NY, USA, 2006), ACM, pp. 429—
437.3

[LWWO08] Lipp M., WONKA P., WIMMER M.: Interactive visual
editing of grammars for procedural architecture. In SIGGRAPH
"08 (NY, USA, 2008), ACM, pp. 1-10. 10

[MP96] MECH R., PRUSINKIEWICZ P.: Visual models of plants
interacting with their environment. In SIGGRAPH ’96 (NY,
USA, 1996), ACM, pp. 397-410. 2

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
GooL L. V.: Procedural modeling of buildings. ACM TOG 25,
3(2006), 614-623. 1,2, 3,9

[MWSO05] MARK W. SPONG SETH HUTCHINSON M. V.: Robot
Modeling and Control. Wiley, 2005. 3, 4

[PHHM97] PRUSINKIEWICZ P., HAMMEL M., HANAN J.,
MECH R.: Visual models of plant development. 535-597. 2

[PHL*09] PALUBICKI W., HOREL K., LONGAY S., RUNIONS
A., LANE B., MECH R., PRUSINKIEWICZ P.: Self-organizing
tree models for image synthesis. ACM TOG 28, 3 (2009). 1

[PHMOO] PRUSINKIEWICZ P., HANAN J., MECH R.: An I-
system-based plant modeling language. In Applications of Graph
Transformations with Industrial Relevance, Lecture Notes in
Computer Science. 2000, pp. 258-261. 2

[PIM94] PRUSINKIEWICZ P., JAMES M., MECH R.: Synthetic
topiary. In SIGGRAPH '94 (NY, USA, 1994), ACM, pp. 351-
358. 2

[PKMHO0O] PRUSINKIEWICZ P., KARWOWSKI R., MECH R.,
HANAN J.: L-studio/cpfg: A software system for modeling
plants. In AGTIVE ’99: Proceedings of the International Work-
shop on Applications of Graph Transformations with Industrial
Relevance (London, UK, 2000), Springer-Verlag, pp. 457-464. 2

[PL96] PRUSINKIEWICZ P., LINDENMAYER A.: The algorith-
mic beauty of plants. Springer-Verlag New York, Inc., NY, USA,
1996. 2, 8

[PMO1] PARISH Y. I. H.,, MULLER P.: Procedural modeling
of cities. In SIGGRAPH '01 (NY, USA, 2001), ACM Press,
pp- 301-308. 2

[PT97] PIEGL L., TILLER W.: The NURBS book (2nd ed.).
Springer-Verlag New York, Inc., NY, USA, 1997. 3,5

[SP86] SEDERBERG T. W., PARRY S. R.: Free-form deformation
of solid geometric models. SIGGRAPH ’86 20, 4 (1986), 151—
160. 3

[Spil0] Boost spirit. http://spirit.sourceforge.net/, Jan., 2010. 9

[Sti75] STINY G.: Pictorial and Formal Aspects of Shape and
Shape Grammars. Birkhauser Verlag, Basel, 1975. 2

[Sti80] STINY G.: Introduction to shape and shape grammars.
Environment and Planning B 7 (1980), 343-361. 2

[WMV*08] WATSON B., MULLER P., VERYOVKA O., FULLER
A., WONKA P., SEXTON C.: Procedural urban modeling in prac-
tice. IEEE Computer Graphics and Applications 28, 3 (2008),
18-26. 1

[WODO09] WHITING E., OCHSENDORF J., DURAND F.: Proce-
dural modeling of structurally-sound masonry buildings. ACM
TOG 28,5 (2009), 112. 3

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY
W.: Instant architecture. ACM TOG 22, 3 (2003), 669-677. 2

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

