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ABSTRACT:

The real time rendering of complex virtual city models has become more important in the last few years for many practical applications
like realistic navigation or urban planning. For maximum rendering performance, the complexity of the geometry or textures can be
reduced by decreasing the resolution until the data set can fully reside on the memory of the graphics card. This typically results in a low
quality of the virtual city model. Alternatively, a streaming algorithm can load the high quality data set from the hard drive. However,
this approach requires a large amount of persistent storage providing several gigabytes of static data. We present a system that uses a
texture atlas containing atomic tiles like windows, doors or wall patterns, and that combines those elements on-the-fly directly on the
graphics card. The presented approach benefits from a sophisticated randomization approach that produces lots of different facades
while the grammar description itself remains small. By using a ray casting apporach, we are able to trace through transparent windows
revealing procedurally generated rooms which further contributes to the realism of the rendering. The presented method enables real
time rendering of city models with a high level of detail for facades while still relying on a small memory footprint.

1 INTRODUCTION

1.1 Motivation

Visualizing a highly detailed 3D city model in real time is a chal-
lenging task with lots of application scenarios in the industry like
video games, 3D navigation or urban planning. The mass of data
describing the model requires a large amount of storage that can
grow beyond dozens of gigabytes, if the result has to be of a high
quality. As a highly detailed polygonal model of each building is
hart to obtain, a low resolution mesh using textures is typically
generated from the footprints which are often freely accessible
(OpenStreetMap, 2010). As long as real world facade images
are available, those can be streamed directly to the graphics card
using a mega texture approach (Mittring, 2008), however, high
quality textures are rarely available and areal images are a poor
alternative as they only provide a low resolution. Furthermore,
converting the image data to proper textures is a challenging task
itself due to varying lighting conditions or occlusions by obsta-
cles like trees or traffic signs.

Procedural techniques, on the other hand, are capable to encapsu-
late the structure of a facade into a small set of rules which only
consumes a few bytes. Assuming that the variety of windows,
doors and decorations can be represented by a small set of tex-
ture assets, we are able to compose complex facade structures in
real time on the GPU (cf. Figure 1). This approach enables a very
high resolution which even allows realistic close-ups. We com-
bine several procedurally generated layers on-the-fly to avoid the
repetitive appearance of a facade which typically results from a
rule based system.

We further enhance the visualization by tracing through the win-
dows in order to render a variety of plausible rooms behind them.
Obtaining this data from the real world would be impossible for
at least two reasons. On the one hand, there are technical lim-
itations, since several images of a single window from different
viewing directions are needed to reconstruct the room behind. Es-
pecially for the upper floors it would be very hard to capture the
floor of the rooms. On the other hand, there are privacy con-
straints as people usually do not want to have their rooms being

Figure 1: Rendering of a procedural facade texture applied to
a single quad (upper image). Close ups of the facade demon-
strate the high quality of our textures that even give the impres-
sion of 3D rooms behind the windows (middle row). A selection
of atomic texture elements, which were used to compose this ex-
ample facade, are shown in the bottom row.

captured for a virtual model. These privacy constraints even hold
for detailed images of facades, because people are claiming about
being spied by criminals. Therefore, systems like Google Street
View (GoogleStreetView, 2010) have to blur certain areas to pre-
serve the privacy. In this scenario, a procedural facade texture is a
convenient alternative since it could reflect the semantic elements
of a specific facade, but does not reveal the real details.

Another advantage of using procedural facade textures on a given
low resolution polygonal city model is the reuse of existing gram-
mars. Unimportant residential areas can be textured randomly
with different existing facade styles to ensure a plausible visual-
ization without any additional cost.



Figure 2: Taking the size of the whole facade as the start scope S = (0, 0, w, h), we recursively check for each operator of the grammar
to which element a certain pixel of the final image belongs (shown in green). This will iteratively update the scope S = (Sl,Sb,Sr,St)
until we hit a terminal symbol that samples a texture.

1.2 Related Work

A common approach for the rendering of large data sets, which
do not fit into the system memory, is to stream the data from a
permanent but slow data repository to the volatile but fast graph-
ics card memory. One possible representation of the scenes are
voxel octrees which scale very well and are easy to implement
due to their regular structure (Laine and Karras, 2010, Crassin et
al., 2009). If a coarse polygonal mesh is provided to reflect the
most important features of a scene, a similar concept can be ap-
plied to stream textures (Mittring, 2008). In this paper, we also
build upon on a low resolution polygonal mesh, but instead of
using parts of huge and fixed texture we combine a wide variety
of facade textures by combining different atomic elements like
windows, doors or cornices.

In computer graphics, procedural approaches became well estab-
lished for the automatic generation of plants. Lindenmayer and
Prusinkiewicz introduced L-Systems as a formalism to describe
the growth process of plants (Prusinkiewicz and Lindenmayer,
1996). L-Systems are basically simple string rewriting systems
which produce a sequence of characters that are later on inter-
preted by a LOGO-style turtle for visualization purposes. The
expressive power of L-Systems was also enhanced by using pa-
rameterized rules or stochastic variations during the evaluation
of the grammar (Prusinkiewicz et al., 1997). Since street net-
works have a similar structure as plants, Parish et al. transfered
the formalism of L-Systems to the modeling of cities (Parish and
Müller, 2001) using the concept of self-sensitivity, i.e. if the tur-
tle hits another line that was previously generated a crossing will
be created. The output of their system is a large set of building
lots which can be used to generate a low resolution polygonal
mesh for artificial cities. Our system is then able of rendering the
facade details on-the-fly as part of the rendering pipeline.

The most established procedural method for the generation of
man-made structures like architecture is the decomposition of
shapes into smaller shapes introducing more details in each step
(Wonka et al., 2003). The concept of shape replacement instead
of using a string rewriting system was first pioneered by Stiny
presenting the idea of shape grammars (Stiny, 1975, Stiny, 1980).
Larive et al. introduced a simple grammar system to produce
2.5D facades (Larive and Gaildrat, 2006) whereas Müller et al.
applied the idea of shape grammars to the creation of more com-
plex buildings by introducing the CGA shape modeling language
(Müller et al., 2006). The basic modeling strategy of their ap-
poach is to manually design a mass model which represents the
coarse layout of the building. The details are then automatically
generated by applying split rules to a scope, which is a bounding
box containing a specific shape. The scope is associated with a
certain rule containing operators that are applied to the scope like
transformations or subdivision. Lipp et al. created an interactive

version of this system to make procedural modeling accessible for
artists without any programming knowledge (Lipp et al., 2008).

Krecklau et al. further enhanced the concept of CGA shape and
introduced the unified procedural modeling language G2 which
handles multiple non-terminal classes in order to combine the
philosophy of generating plants and archtiecture (Krecklau et al.,
2010). There are several other approaches using expensive com-
putations to produce realistic procedural models such as gener-
ating plausible courses of roads (Galin et al., 2010), physically
stable masonry buildings (Whiting et al., 2009) or complex in-
terconnected structures (Krecklau and Kobbelt, 2011). Unfortu-
nately, all the previously mentioned methods are not feasible for
content generation on-the-fly due to their complexity.

Recently, Haegler et al. presented F-shade, a real time approach
for procedural facade textures that are evaluated directly on the
graphics card using CUDA (Haegler et al., 2010). Their approach
basically relies on a simplified instruction set of CGA shape that
is capable of being evaluated on a per-pixel basis. Our work en-
hances their method by allowing a stochastic rule selection during
the evaluation based on noise functions as it is typically done for
generating terrains (Ebert et al., 2002). Furthermore, our sys-
tem was inspired by the idea of interior mapping that enables the
creation of procedurally generated 3D rooms that lie behind the
windows (van Dongen, 2008). Each face of the room, i.e. the
ceiling, the floor and the walls, is associated with a certain rule
to produce a large set of unique rooms. In combination with a
sophisticated randomization, a small rule set is already sufficient
for the generation of a wide variety of different facades.

In contrast to the use of stochastic rules, real world images could
be used to get unique semantic descriptions of every single fa-
cade as a compact representation (Müller et al., 2007). However,
the retrieval of grammars from real world data is out of scope
for this paper, since we concentrate on the efficient rendering of
massive city scenes that are synthetically generated rather than
reconstructing a real world city.

2 SYSTEM OVERVIEW

In general, a context-free formal grammar is defined as a 4-tuple
(N , T ,P,Nstart), where N is a set of non-terminal symbols, T
is a set of terminal symbols, P is a set of production rules of
the form N → (N ∪ T )∗ and Nstart ∈ N is the start symbol.
Whenever there is a non-terminal symbol that has a matching left-
hand side in one of the production rules, that rule can be applied
and the symbol will be replaced by the right-hand side of the rule.

Generating procedural facade textures on-the-fly relies on the idea
of evaluating a grammar on a per-pixel basis. Similar to F-shade
we use the term scope to denote a rectangle S = (Sl,Sb,Sr,St)



GPU Representation
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Figure 3: Definition of operators provided by our system (cf. Sec. 3) and their representation in a texture on the GPU (cf. Sec. 4).

that is associated with a certain rule for the evaluation of the
grammar (cf. Figure 2). For simplicity, we will address the bot-
tom left corner of the scope with Slb = (Sl,Sb) and the top right
corner with Srt = (Sr,St). Given the absolute size s = (w, h)
of the facade defining the start scope Ss = (0, 0, w, h) and the
texture coordinates t = (u ∈ [0, w], v ∈ [0, h]) at the current
pixel position, the grammar has to determine the terminal oper-
ator that lies at position t. The traversal of the grammar is de-
pendent on the operators that are visited during the evaluation.
Figure 2 depicts a simple technique to generate the details using
subdivision along the local x and y axes, however, the advanced
traversal of the grammar using a stochastical rule selection, mul-
tiple layers, or 3D rooms will be explained in Section 3.

Evaluation of the grammar per pixel is quite expensive since it
can be compared to a ray tracer involving many conditions to
determine a specific cell within an irregularly subdivided space.
Therefore, we apply a deferred rendering technique that first uses
the hardware accelerated rasterization to render the basic infor-
mation that initializes a ray tracer per pixel. The details on stor-
ing the grammar in an efficient way on the GPU and the single
steps of our rendering pipeline are described in Section 4.

3 GRAMMAR FEATURES

The syntax of our grammar is a simplified version of CGA shape
balancing the expressive power and the complexity of the formal-
ism in order to provide a real-time evaluation per pixel. Similar
to F-shade, our rules are just mappings from a string to a specific
operator with fixed parameter values, which are formally defined
as follows:

RuleName → OperatorName(Parameter1, · · · , Parametern);

A parameter is either a floating point value or the name of a
rule to further proceed the resulting elements. Although it might
sound very restrictive to use non-parametric rules, we will show
in our discussion that this is not a limiting factor at all. However,
stochastic variation is an important design issue for procedural
facades in order to avoid the repetitive nature of rule based fa-
cades. In contrast to F-shade, we provide two operators that rely
on a noise function to generate facade textures with randomized
details and another operator that puts the current random seed on
a stack. Recalling a random seed from the stack allows for the
creation of random groups, i.e. all elements within a group are
handled in the same way.

We heavily enrich the visual quality of our facades by tracing a
ray through the windows in order to render a rectangular shaped
room that lies behind it. Basically, we were inspired by the idea
of interior mapping (van Dongen, 2008), but due to our grammar
approach we are able to design a large set of different rooms by
evaluating our grammar on the sides of the room.

Similar to F-shade, we allow the creation of several procedu-
rally generated layers to easily compose background structures
as walls with foreground details as windows, doors or cornices.
By combining different backgrounds and foregrounds, the tex-
tures become rich in variety due to the combinatorial complexity.
In contrast to F-shade, we present another composition philos-
ophy to reduce the evaluation overhead for facade textures with
complex subdivision patterns.

3.1 Operators

Our system provides several types of operators for the arrange-
ment and stochastic variation of elements, the use of layers, the
ray casting of rooms and the assignment of color values to the
corresponding pixel (cf. Figure 3). The set of non-terminal sym-
bols that are currently defined in the grammar is addressed as N
in the remainder of this section. The scope to which an operator
is applied will be addressed as S, where Sw and Sh are its width
and height, respectively.

For the arrangement of elements, we basically apply the Split
and Repeat operators of CGA shape. In contrast to F-shade,
we make use of relative and absolute parts in the definition of
the Split operator as it is done in CGA shape (cf. Figure 4).
This makes the operator more dynamic for differently sized fa-
cades, e.g. if we have several houses with a different height that
should all have a ground floor with a height of 3 meters. For-
mally, the Split operator takes an arbitrary number n of 3-tuples
(si ∈ {−1, 1}, vi ∈ R>0, Ri ∈ N ) for i ∈ {1, · · · , n}. The
first parameter si defines the size policy, i.e. abs =̂ −1 for a
part with an absolute size and rel =̂ 1 for a part with a relative
size. The second parameter vi defines the size value whereas the
third parameter Ri specifies the target rule that is applied to the
new element. The actual width wi of an element i using the split
operator along the x axis is calculated according to equation 1.

Figure 4: The Split operator subdivides the current scope along
a certain axis. An absolute size policy will always produce an
element of a fixed size (blue) whereas a relative size policy will
calculate the actual size depending on the defined ratios between
all relative elements (green). The element that will be further
evaluated by the grammar is determined by successively checking
which interval of the split is hit by the texture coordinates t.



wi =

{
vi, si = −1
Sw+

∑n
i=1 min {si∗vi,0}∑n

i=1 max {si∗vi,0}
∗ vi, si = 1

(1)

The texture coordinates t = (u ∈ [0, w], v ∈ [0, h]) at the current
pixel position are checked against the resulting intevals in order
to determine the scope and the rule for the next iteration of the
grammar evaluation.

The Repeat operator uses two parameters, i.e. v ∈ R>0 and
R ∈ N , to subdivide the scope into elements that all have an
approximate size of v (cf. Figure 5). In detail, the actual width
w of all elements that are generated by a subdivision along the x
axis is Sw/dSw/ve. By using the texture coordinates t = (u ∈
[0, w], v ∈ [0, h]) we directly calculate the scope that will be
further processed by rule R.

For the stochastic variation, we introduce two operators, namely
Rand for a non-uniform distribution and RandUni for a uniform
distribution. We make this distinction, because in most cases
we only need a uniform distribution which can be optimized to
reduce the evaluation time. Formally, the operator Rand takes
an arbitrary number n of 2-tuples (vi ∈ (0, 1], Ri ∈ N ) for
i ∈ {1, · · · , n} with

∑n
i=1 vi = 1. During the evaluation, we

take a random number r ∈ [0, 1) and calculate the accumulated
values ai =

∑i
j=1 vj for i ∈ {1, · · · , n}. Defining a0 = 0, we

can easily determine the target rule Rk such that r ∈ [ak−1, ak).
For the operator RandUni, which just takes a list of n target rules
Ri ∈ N for i ∈ {1, · · · , n}, we can directly calculate the pa-
rameter k = br ∗ nc + 1 using a random number r ∈ [0, 1) and
proceed with the target rule Rk.

Figure 5: The Repeat operator applies a subdivision into elements
of the same size. This enables us to directly calculate the scope
which is hit by the texture coordinates t.

Figure 6: In the upper row, we show the application of several
split rules. During the subdivision, we put several random seeds
(a, b, c, d) onto the stack S. In the bottom row, we apply the Rand
operator to all black scopes that are shown in the upper right fa-
cade. In this example, each target rule that can be chosen by Rand
will apply an operator which fills the whole scope with a unique
color. Using 2 (bottom left facade) or 1 (bottom middle facade)
as first parameter will group the elements according to the ran-
dom seed on the current stack. If the first parameter of Rand is 0,
every element uses another target rule since the bottom left corner
varies from scope to scope (bottom right facade).

Each facade is initialized with a random seed vector ~s = (sx, sy)
which is encoded into the start scope Ss by applying a translation,
i.e. Slb = (0, 0) + ~s and Srt = s + ~s where s = (w, h) is the
full size of the facade. The texture coordinates t also have to be
updated according to ~s in order to get the same relative position
within the scope. By convention, we generate the random value
r by sampling a noise texture at position Slb. All subdivision
operators will thereby automatically create scopes that calculate
different random values r, however, there are several situation in
which a previously calculated random seed has to be used in order
to create random groups, e.g. if a rule randomly selects a window
shape, but all windows in a specific floor should get the same
shape. This could be solved by copying the whole structure and
only exchanging the rule that generates the specific window shape
in each copy. Instead, we introduce the concept of putting the
random seed on a stack S. The operator RandStack just proceeds
with the target rule R ∈ N after the bottom left corner of the
current scope has been put onto the stack, i.e. S = S ∪ Slb. The
first parameter l ∈ N in both randomization operators therefore
defines that the l−th last element that was put into S will be used
as the random seed. If l = 0, we will just use Slb from the
current scope. Figure 6 depicts our modeling strategy by utilizing
random groups as an elegant solution to control the stochastic
variation.

Another concept to enhance the visual quality of the facade tex-
ture is the use of layers. The Layer operator creates n overlayed
copies of the current scope and associates a certain target rule
Ri for i ∈ {1, · · · , n} with each copy. Similar to a volume ray
caster (Crassin et al., 2009), we proceed the evaluation with the
upper most layer, i.e. Rn, and trace through the layers summing
up any color, normal or specular values according to the alpha
value that holds in each layer. Since this is an iterative approach,
we can stop the evaluation if we have reached an alpha value of
1.0 (cf. Figure 7). Therefore, we save computation time, since
we do not necessarily traverse all layers. Formally, we update the
final color value C and alpha value A by adding the color value
ci and alpha value ai of the current layer i in the following way:

C + = (1.0−A) ∗ (ai ∗ ci) (2)
A + = (1.0−A) ∗ ai (3)

Layers can be cascaded, i.e. the grammar contains another Layer
operator within any layer. The scope S and the texture coordi-
nates t of every layer i are translated by i ∗ ~s in order to produce
new random values in each layer.

Figure 7: The Layer operator produces several layers that are in-
dependently evaluated. Once a terminal symbol is found, i.e. a
texture is sampled, we check, if the alpha value of that pixel is
already 1.0 representing a solid color. In this case, the evalua-
tion of the grammar stops and returns the corresponding color.
If the alpha value is smaller 1.0, we have to further evaluate the
underlying layers to calculate the final pixel color.



Figure 8: Skipping of underlying layers is an intuitive way for
cutting holes into the wall in order to see the room behind. The
SkipMask operator decides how many layers are skipped depend-
ing on the sampled bit value whereas the Skip operator skips the
defined number of layers for the whole scope. In the example, we
create another layer over the hole that samples a window texture
to produce the final tile that is shown on the right side.

An important design issue for the creation of facade textures is
the idea of masking to skip certain layers (cf. Figure 8). The
operator SkipMask selects a bit mask m ∈ N>0 from the texture
array. Depending on the pixel value of the bit mask, i.e. 0 or 1, we
skip l0 ∈ N or l1 ∈ N layers, respectively. This concept enables
an easy way of defining holes in a wall to see the room behind
it. In detail, we just create a layer for the wall, the rooms and the
bit mask that decides for each pixel, if we actually see the wall
or the room behind it. For simplicity and a higher performance
during the evaluation, we also provide an operator Skip that just
skips l ∈ N≥0 layers for the whole scope.

Rooms or intruded windows are created with a similar principle
as the component operator of CGA shape. The Intrusion operator
takes an intrusion amount v ∈ R>0 as first parameter followed by
5 target rules R1, · · · , R5 ∈ N for the three walls, the floor and
the ceiling. The viewing ray ~r that hits the scope at the texture
coordinates t is used to intersect with a box that is spanned by
the current scope and the intrusion amount v. The intersected
face becomes the new scope using the intersection point t′ as new
texture coordinates. All operators can now be applied as before
acting on one of the faces (cf. Figure 9). By transforming ~r into
the space of the new scope, e.g. a 90◦ rotation along the x axis
if the bottom face is hit, it is even possible to recursively apply
intrusions. Note, that the scopes S ′i and the texture coordinates
t′i of every face i, which is associated with rule Ri, are translated
by Slb + i ∗ ~s in order to determine new random values on each
face.

Figure 9: By tracing along the viewing ray that hits the current
scope at the texture coordinates t we determine the hit face of
a box that lies behind the scope. This yields a new scope, e.g.
S = (0, 0, w, v) for the bottom face where w = Sr −Sl and v is
the intrusion amount. The texture coordinates t′ are now defined
with respect to the new scope. This enables us to further evaluate
the grammar on any face within the box as before.

As a final step in the grammar evaluation, we can either sample
a texture array or define a constant value to influence the color,
the normal or the specularity of the material. All channels can be
combined with an alpha map to change the strength of the influ-
ence. The first parameter of the Mat operator defines its usage
u ∈ {1, 2, 3}, i.e. color =̂ 1, normal =̂ 2 or specular =̂ 3.
The other 5 parameters m1 ∈ Z and m2, · · · ,m5 ∈ [0.0, 1.0] are
now dependent on each other in the following way. If m1 = 0,
we only use the parameters m2, · · · ,m5 to define a constant
color. If m1 > 0, m1 selects a texture from the array and
m2, · · · ,m5 define a rectangular part from the texture that should
be scaled to fit the current scope. If m1 < 0, −m1 selects a tex-
ture from the array, m2,m3 define an offset and m4,m5 define a
scaling to apply a sampling from a seamlessly tileable texture that
is repeated infinitely often. The MatAlpha operator works analo-
gously, except that it multiplies the resulting value from the first
sampling with a certain factor that is taken from another texture
sampling which is defined by the last 5 parameters. If the alpha
value is smaller 1.0 the grammar has to evaluate the layer below
the current one (cf. Figure 7).

4 GPU REPRESENTATION

All grammars are stored in one large 2 dimensional 4 channel
16 bit float texture to represent the operators and their parame-
ters. Figure 3 gives an overview of all operators and their corre-
sponding layout within the texture. Each rule has a unique po-
sition R = (Rx, Ry) within this texture, so that any operator
that needs to further proceed its resulting elements (e.g. Repeat)
has to occupy two channels to define the corresponding position
of the target rule. The first channel of each operator location is
always a constant that specifies, which operator code has to be
executed. Most operators like Repeat or Mat have a fixed amount
p of parameters resulting in a fixed number t = dp/4e of texture
lookups to retrieve the parameter values. Note, that we always
retrieve 4 parameters for one texture lookup since we utilize a 4
channel texture. Some operators have a dynamic amount of pa-
rameters, so that the number of texture lookups depends on the
algorithm that is executed. The maximal number n of subsequent
texture lookups is always stored in the grammar as a static ter-
mination criteria for that operator. The Split operator, e.g., has
to check successively, if a pixel lies in the current split interval
or if we have to retrieve the subsequent parameter tuple that de-
fines the next split interval. Since this operator also relies on the
global sums R and A of all relative and absolute values, respec-
tively, we precalculate these sums and store the results directly
in the grammar. Therefore, we do not necessarily have to lookup
all parameter tuples, if the current pixel lies in one of the first
split intervals. The same is true for the Rand operator where we
can stop its execution once we have found a tuple with an accu-
multed sum that is higher than the random value r, which is taken
from a noise texture. Since all pixels in the same scope have to
retrieve the same random value r, we sample the noise texture at
Slb which is the lower left corner of the current scope. In most sit-
uations, a uniform distribution of target rules is sufficient which
can be achieved with the RandUni operator. In this case, we di-
rectly calculate the offset in the grammar that contains the target
rule to reduce the number of texture lookups. Note, that the cho-
sen layout of the grammar texture may waste a small amount of
channels in some situations, e.g. the alpha channel of each Split
or Rand tuple, to avoid complicated branchings in the code that
would result in a lower evaluation performance.

For an efficient evaluation of the grammar at real-time rates we
apply a deferred shading technique. Seen from a certain camera
perspective, several polygons will overlap resulting in multiple



Figure 10: This image depicts the full power of our system using a texture set with only 32 elements. The evaluated grammars contain
all presented operators including randomization, several layers, masking and intrusion. For our time statistics (cf. Figure 11), we have
chosen different views, i.e. distance (a), street view (b) and close-up (c).

executions of a fragment shader for a single pixel. Therefore, we
first apply a computational cheap fragment program that renders
the low resolution polygonal mesh of the city model and only
stores basic information for each pixel. Afterwards, we reuse the
given information in order to execute the computational expen-
sive shaders per pixel including the grammar evaluation, screen
space ambient occlusion and phong lighting.

The fragment shader for the grammar evaluation utilizes the tex-
ture coordinates, the scope size of the complete facade, the start
rule, the random seed, the normal and the tangent. Therefore, the
low resolution polygonal mesh also has to provide this informa-
tion as attributes in the vertex buffer object (VBO). Except for the
texture coordinates all the information can be shared among the
vertices of a triangle, however, for technical reasons we have to
attach this information redundantly for each vertex in the VBO.
The texture coordinates represent the absolute corner positions
of the facade which are interpolated to yield the actual position
inside the facade for a single pixel. Since we are able to apply
a normal map with the material operator, we create the corre-
sponding tangent space coordinate system using the normal and
the tangent. The texture coordinates, scope size, start rule and
random seed then initialize the grammar evaluation which yields
the final color of the current pixel.

5 RESULTS

We have applied our method to render a virtual city model con-
taining 20 thousand buildings. We created different scenarios
to measure the frames per second depending on the grammar
complexity and the camera view. The average timings using a
NVIDIA GeForce 470 GTX GPU and a resolution of 1024×768
are shown in Figure 11. Using simple grammars (cf. Figure 13.a),
that do not utilize randomization or intrusion, our system has a
comparable rendering performance to F-shade. For the creation

Simple Random Full
Distance 79 / 12 66 / 15 18 / 55

Street view 130 / 7 110 / 9 39 / 25
Close-up 82 / 12 70 / 14 25 / 40

Figure 11: This table contains some time statistics (frames per
second / ms per frame) of our system with respect to the different
views of Figure 10. In the simple version, we just apply several
subdivisions to each facade utilizing a static set of textures as
atomic elements (cf. Figure 13.a). For the random version, we
additionally apply randomization operators to get a wide variety
of combined walls and windows (cf. Figure 13.b). In the full
version, we take advantage of all presented concepts including
randomization, layers, masking and intrusion (cf. Figure 10).

S->Layer(Wall, Assets)

Wall->RandUni(0, Wall1, Wall2, Wall3, · · · )
Wall1->Mat(Color, Rep:wall1, 0.0, 0.0, 1.0, 1.0)

Wall2->Mat(Color, Rep:wall2, 0.0, 0.0, 1.0, 1.0)

Wall3->Mat(Color, Rep:wall3, 0.0, 0.0, 1.0, 1.0)

.

.

.

Assets->SplitY(Abs, 3.0, BottomFloor,

Rel, 1.0, Middle,

Abs, 2.5, TopFloor)

BottomFloor->RandStack(BottomFloorSeedStored)

BottomFloorSeedStored->RepeatX(2.5, WindowTile)

Middle->RandStack(MiddleSeedStored)

MiddleSeedStored->RepeatY(2.8, MiddleFloor)

MiddleFloor->RepeatX(2, WindowTile)

TopFloor->RandStack(TopFloorSeedStored)

TopFloorSeedStored->RepeatX(3, WindowTile)

WindowTile->SplitX(Rel, 1.0, Skip,

Abs, 1.0, WindowTileColumn,

Rel, 1.0, Skip)

WindowTileColumn->SplitY(Rel, 1.0, Skip,

Abs, 1.3, WindowMat,

Rel, 1.0, Skip)

WindowMat->RandUni(1, WindowMat1, WindowMat2, WindowMat3, · · · )
WindowMat1->Mat(Color, Fit:window1, 0.0, 0.0, 1.0, 1.0)

WindowMat2->Mat(Color, Fit:window2, 0.0, 0.0, 1.0, 1.0)

WindowMat3->Mat(Color, Fit:window3, 0.0, 0.0, 1.0, 1.0)

.

.

.

Skip->Skip(0)

Figure 12: This example grammar was used for one of our perfor-
mance tests using a stochastic rule selection. Possible outcomes
of this particular grammar can be seen in Figure 13.b. The gen-
erated structure is similar to the one depicted in Figure 6. There-
fore, the chosen color coding of the rules corresponds to the scope
colors in Figure 6. Constants like Color, Fit, Abs or the texture
names are automatically mapped when the grammar is compiled.

Figure 13: This image shows simple facade grammars containing
only subdivisions (a) or subdivisions with randomization (b).



of a wide variety of facades while still relying on a small set of
rules, we added randomization operators that contribute to the vi-
sual quality (cf. Figure 13.b), but only slightly influence the ren-
dered frames per second. An example grammar that makes use
of the randomization operator is shown in Figure 12. If we apply
a complex grammar to the city model that contains all presented
concepts like several layers or intrusion, our system still renders
the scene at interactive frame rates (cf. Figure 11). Especially if
we use a camera view that is placed on street level, which is most
commonly the case for our applications, we still get frame rates
of around 40 frames per second.

6 DISCUSSION

Memory Consumption — The grammars are all stored in a sin-
gle texture. With a very pessimistic estimate, that an operator
occupies 3 pixels on average and that each facade is encoded into
85 rules, we get approximately 256 pixels that are needed for
this particular grammar. With a texture that has a resolution of
4096 × 4096, we are able to store 65536 unique facade descrip-
tions consuming 128 megabytes of graphics memory. In practice,
most of the rules, e.g. for generating the rooms, are randomly
reused throughout the grammar which typically results in facade
grammars that occupy a lot less than 256 pixels. The complete
grammar of Figure 10, e.g., only contains 330 rules that occupy
741 pixels in the grammar texture consuming 5928 bytes. Due to
the random variations this is already sufficient to generate a wide
variety of textures for the entire city model.

However, since graphics cards even handle textures of a large
size, there is no need to introduce a more complex evaluation
system on the GPU that can handle parametric rules. Instead,
rule sets can simply be copied to enable the instantiation of a
single grammar with varying parameter values. In future work,
the copying of rules could be done by a precompiler such that we
get the freedom of using parametric rules without touching the
evaluation system.

For the low resolution polygonal mesh we need to store several
information in the VBO summing up to 68 bytes per vertex as-
suming 4 bytes for one float number. The sum of 68 bytes results
from the vertex position (12 bytes), the texture coordinates (8
bytes), the scope size of the complete facade (8 bytes), the start
rule (8 bytes), the random seed (8 bytes), the normal (12 bytes)
and the tangent (12 bytes). The Aachen model, e.g., has around
1.8 million vertices which yields an overall memory consumption
of around 120 megabytes. Most of the graphics card memory is
needed for the texture array holding the atomic elements like win-
dows, doors or decorations. Depending on the available memory,
the resolution of the texture elements can be adjusted. In future
work, the system could be also combined with a streaming ap-
proach providing all textures in different resolutions in order to
choose the appropriate ones for the current view.

Usability — Currently, the rules have to be written by hand which
can be compared to writing a little script. We provide namespaces
so simplify the reuse of a certain grammar, i.e. rules are just
copied into another namespace in order to vary certain parame-
ters. Previous work has shown that the grammar design can also
be done interactively (Lipp et al., 2008). With a similar approach,
it would be possible to apply modifications to a single facade in
real time while thousands of buildings are still visualized in the
background.

Limitations — The presented method relies on the idea of sudi-
viding a rectangular scope along a certain axis. While this ap-
proach works well for the creation of facades, organic structures

like trees can not be handled in this way as they do not result
from a subdivision of a bounding volume but from a growth pro-
cess that starts in a single point. In this case, the whole grammar
has to be evaluated in advance to determine the final geometry.

Future Work — Beside the other enhancements that were al-
ready mentioned throughout the paper, we would like to increase
the visual quality of our visualization by applying some kind of
relief mapping (Nguyen, 2007) for the atomic elements. Espe-
cially elements with a large depth, like ornaments or cornices,
would benefit from this method. Evaluating a grammar on-the-
fly causes aliasing artifacts, because it is a discrete decision into
which element a certain pixel falls, i.e. the subdivision always
returns one element for a certain pixel, although the pixel area
might cover several split intervals. The errors could be prevented
by an adaptive supersampling approach that samples more often
around splits, however, more sophisticated methods require addi-
tional research on that topic.

7 CONCLUSION

This paper presents a method of generating procedural facade
textures for high quality city visualizations on the GPU. The de-
ferred rendering pipeline first renders important information to
each pixel which initializes a fragment shader for the grammar
evaluation on a per-pixel basis. By providing several layers of
procedurally generated textures, a bit mask to compose these lay-
ers and a ray tracing approach to intersect with a box behind
the current scope, we are able to randomly generate a variety
of rooms behind the windows to enhance the realism of the vi-
sualization. Since the facade textures are generated on-the-fly
they can be easily reused in most parts of the city model without
enlarging the memory footprint. The balanced combination of
rasterization and ray tracing as a hybrid rendering solution pro-
vides a high potential for future work where the unique geometry
is stored as a low polygonal mesh and the details are generated
on-the-fly without any restrictions in resolution.
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