Real-time exploration of
regular volume data by
adaptive reconstruction
of isosurfaces

R. Westermann, L. Kobbelt, T. Ertl

Computer Graphics Group,

Computer Sciences Department,

University Erlangen-Niirnberg, Am Weichselgarten 9,
91058 Erlangen, Germany

E-mail:

{ westerlkobbeltlertl } @informatik.uni-erlangen.de

We propose an adaptive approach for the
fast reconstruction of isosurfaces from reg-
ular volume data at arbitrary levels of de-
tail. The algorithm has been designed to
enable real-time navigation through com-
plex structures while providing user-adjust-
able resolution levels. Since adaptive on-
the-fly reconstruction and rendering is per-
formed from a hierarchical octree represen-
tation of the volume data, the method does
not depend on preprocessing with respect
to a specific isovalue, thus the user can
browse interactively through the set of all
possible isosurfaces. Special attention is
paid to the fixing of cracks in the surface
where the adaptive reconstruction level
changes and to the efficient estimation of
the isosurface’s curvature.

Key words: Volume Rendering — Isosur-
face reconstruction — Crack fixing — Re-
finement oracles — Level of detail

Correspondence to: R. Westermann

100

1 Introduction

The extraction of isosurfaces is a widely used visu-
alization method for scalar-valued volume data
sets. It is especially appropriate for volume data
containing objects with clearly determined bound-
aries (like bones in CT), where the lighting and
shading of the surface greatly enhances their 3D
structure. Furthermore, the generation of polygonal
isosurfaces seems to be the preferred visualization
technique for workstations with 3D graphics accel-
erators.

The standard marching cubes algorithm [11] tra-
verses all cells of the volume and determines the
triangulation within each cell by means of trilinear
interpolation of the values at the cell vertices. Spe-
cial treatment of ambiguities is required to avoid
inconsistencies visible as holes [13]. While this
method leads to satisfactory results for small to
medium sized data sets, it turns out that it is not ap-
propriate for data set sizes typically found in med-
ical applications for example. Here, the surface ex-
traction with sequential standard algorithms takes
on the order of minutes and generates up to a mil-
lion triangles or more, both of which severely re-
strict interactive manipulation.

Since volumetric data sets are intrinsically huge,
much effort has been made during the last years
to come up with optimized visualization algo-
rithms. The goal is to develop algorithms that react
to changes of mapping parameters (e.g., varying
the isovalue) by almost immediately regenerating
the corresponding geometrical representation,
which then ought be rendered with several frames
per second. Only with this type of real-time inter-
action and navigation is it possible to effectively
analyze an unknown data set and to compensate
for the information lost during the projection of
the 3D scene onto the screen. Various methods to
deal with these problems include discretized algo-
rithms [12], improved sorting, and incremental up-
date techniques [1, 17], efficient cell search with
interval data structures [10], and polygon reduction
[6, 7, 15].

However, despite all the sophistication incorporat-
ed into these methods, it seems that the data sets
are growing faster than algorithmic progress is
made. For example, data volumes from 3D medi-
cal imaging like CT are approaching sizes of
5123, which amounts to more than 100 million
voxel cells. It is obvious that visualization methods
that essentially have to access each cell of a data
set in order to derive a visual mapping might not

The Visual Computer (1999) 15:100-111
© Springer-Verlag 1999

catch up to the goal of interactive processing.
Thus, we have to reduce the number of cells that
have to be visually mapped. This means that we
have to adaptively switch to coarser representa-
tions of the data whenever this is acceptable within
tolerances prescribed by the user.

The first of these hierarchical approaches applied
in volume visualization were based on octrees.
The basic idea is to recursively combine eight
cubed subvolumes to a coarser cell, working from
the bottom up from the original data set. By storing
additional information at each node, one can detect
and skip uninteresting parts of the volume during
the traversal. Using such hierarchies for the map-
ping itself, i.e., for the isosurface extraction, is dif-
ficult because neighboring octree leaves at differ-
ent levels of resolution exhibit hanging nodes that
lead to interpolation discontinuities visible as
cracks [14, 16].

In this paper we describe a new method that solves
the problems associated with adaptive isosurface
extraction from octrees and that provides the basis
for the real-time exploration of large regular vol-
ume data sets. After discussing other octree ap-
proaches in Sect. 2, we describe in detail how con-
tinuity can be established across hierarchy levels
(Sect. 3). View dependency as the basic require-
ment for real-time performance (Sect.4) is
achieved by two complementary refinement ora-
cles presented in Sect. 5. Implementation issues
are treated in Sect. 6 before we discuss our results
(Sect. 7), and conclude with ideas for future work.

2 Octree-based isosurface
reconstruction

The benefits of octrees for faster reconstruction of
isosurfaces from regular volume data were first
recognized in [20]. By storing, at each inner node
of the tree, the minimum and maximum material
value that appears in any of the branches below
that node, the search for all relevant cells through
which the surface passes can be speeded up consid-
erably.

Nevertheless, although the number of cells that
have to be visited is reduced when the hierarchy
is recursively traversed, the surface is still recon-
structed from the original data. As a consequence,
the size of the details captured is determined by the

resolution of the original cells. This prevents an
adaptive reconstruction with adjustable approxi-
mation precision. For high-resolution data sets,
however, the complexity of the generated meshes
makes interactive surface extraction impossible,
since the number of generated triangles can hardly
be displayed in real time.

In order to circumvent these drawbacks, algo-
rithms have been designed to enable adaptive sur-
face reconstruction from hierarchically decom-
posed volume data [14, 16]. Usually the hierarchy
is traversed in a top-down order and the marching
cubes extraction procedure [11] is applied to those
nodes that meet a certain criterion. Once a node
has been selected for extraction, the traversal is
pruned to avoid the processing of child nodes be-
low the current one.

To generate an octree hierarchy for a given volume
data set, there are different strategies for obtaining
the coarser representations. In volume rendering
applications [3, 8, 9], average pyramids are com-
monly used. These are computed by successively
applying a low-pass filter to the voxel data starting
at the finest level. Every other sample is pushed up
to the next level in the hierarchy, thus reducing the
resolution in each dimension by a factor of two
(down sampling). The small memory overhead of
15% to store the lower resolutions can be avoided
if coarser levels are generated by merely subsam-
pling the original data [14], since the access to
coarser levels can be implemented by index scal-
ing. Wavelet techniques [19] combine in-place
storage of the octree hierarchy with low-pass filter-
ing for coarser levels, but require more involved
methods to randomly access a specific voxel value.

3 Continuous isosurfaces

Despite the apparent advantages of octree repre-
sentations that provide increasingly smoother ap-
proximations of the data at coarser levels, prob-
lems occur if an isosurface is to be reconstructed
adaptively from different levels. Since data sam-
ples are averaged, the isosurface may shift or it
may completely disappear at one of the coarser
levels. Cracks and holes will be the consequence,
even if the gradient of the volume data is suffi-
ciently smooth.

The reason for these difficulties is that during
adaptive traversal of the octree structure, the un-

101

derlying scalar field is in fact no longer continu-
ous. In [14] an approach is proposed where coarser
approximations are obtained by subsampling the
original data. To maintain a continuous scalar field
even if the extraction level changes, the material
values at cell faces where a level transition occurs
are properly adjusted: Whenever a cell is adjacent
to a coarser level cell, the corresponding data val-
ues are resampled by interpolating between the
voxel values at the coarser level (Fig. 1). A similar
approach is proposed in [16], where the intersec-
tion points of the cell edges with the surface of in-
terest are computed in advance at the finest level,
and each coarser level subsamples among these
points in order to maintain the surface continuity.
Our experiments have shown that, even for moder-
ately smooth data sets, this strategy leads to unsat-
isfactory results as soon as the depth of the hierar-
chy exceeds 2 or 3. After a few subsampling steps,
the topology of the extracted isosurface is already
destroyed, even though a continuous representa-
tion is guaranteed (Fig. 2).

Due to this observation, we chose an average pyr-
amid in our approach, but we did slightly change
the treatment of level transitions to meet the conti-
nuity requirements. In the pyramid octree with
low-pass filtered coarser levels, the continuity at
level transitions can be established by letting the
coarser cell sample the scalar field from the finer
level at the even-indexed voxels (cf. Fig. 1). The
odd-indexed voxels on the finer level have to be
recomputed by linear interpolation in turn. As in
the other approaches, a continuous transition be-
tween different levels is achieved, but a much
smoother surface is reconstructed at the coarser
levels in the hierarchy.

With the combination of average pyramid repre-
sentation and appropriate resampling of the values
at level transitions we guarantee the continuity of
the 3D scalar field where the isosurface is to be ex-
tracted. As a consequence, the marching cubes
procedure computes the same approximate inter-
section point for all cells adjacent to a common
edge (edge compatibility).

However, the continuity of the scalar field does not
guarantee the continuity of the isosurface if extrac-
tion is performed on different levels. This can
clearly be seen from the fact that the isocurve on
the common face is approximated by a straight line
from the coarser side while it is a broken line with
several segments on the finer side (cf. Fig. 3).

102

Several authors have proposed other techniques to
solve this cracking problem. In finite element anal-
ysis, a related problem arises for adaptively refined
volume elements. A standard solution there is to
perform a conforming split that eliminates T-verti-
ces [2]. In the case of hexahedral elements, the
splitting is done by inserting a cube’s center and
decomposing the cube into six pyramidal elements.
This somewhat decouples the necessary fixing op-
erations on each side. According to the pattern of
hanging nodes from finer neighboring cells that
have an edge in common with the current cell,
we further split the pyramids (cf. Fig. 4).
Although the conforming split technique is appeal-
ing, it turns out not to be useful for adaptive isosur-
face extraction. The many tetrahedra and pyramid
elements resulting from the split sometimes cause
the total number of generated triangles to actually
increase, even above the number of triangles that
would have been generated for uniform reconstruc-
tion on the finest level (cf. Fig. 5).

Another fixing technique has been proposed [16]
where the additional intersection points from the
finer level are projected onto the coarser level’s
isoline to geometrically mend the cracks. Howev-
er, this technique produces T-vertices that can lead
to visual artifacts if shading techniques based on
normal interpolation are applied.

For our approach, we assume that the local refine-
ment oracle guarantees that leaf cells will not dif-
fer by more than one generation. In this case the
generic constellation to be solved can be depicted
as in Fig. 3. A cell from generation i+ 1 is adja-
cent to four cells from the next finer generation
i. In order to minimize the information that has
to be gathered from neighboring cells, we decided
to leave the marching cubes algorithm unchanged
for the finer cells and adapt the extraction in the
coarser one in order to close the crack.

Consider an outer boundary edge of a triangle that
the marching cubes algorithm generates on the
coarser level. Since the corresponding isocurve ex-
tracted for the same face, but from the finer side, is
a broken line, we split the coarse triangle by insert-
ing its center of gravity and represent it as a fan of
triangles. Face compatibility is then achieved by
simply including the additional intersection points
found on the finer level into the sequence of points
defining the fan (cf. Fig. 6).

These additional intersection points have to lie on
the interior edges emanating from the center vertex

2i+2 i+1

N 7

Common face

Original Samples at Fine Level

Interpolated Samples

Coarse

]
&

Crack Area

Original Samples at Fine Level

Interpolated Samples

Coarse

Fig. 1. Resampling at level
transitions

Fig. 2. Isosurface reconstruction
from averaged (left) and subsampled
(right) data

Fig. 3. Cracks in the piecewise
linear approximation to the
isosurface occur at common cell
faces where cells from different
octree levels meet — even if edge
compatibility is guaranteed

103

Fig. 4. Possible configurations for the conforming split

Fig. 5. The triangulation of an isosurface by the uniform
marching cubes algorithm on the finest level contains
38608 triangles (left), while the adaptive extraction with
conforming splits at the level transitions generates 42343
triangles (right). Although larger triangles are visible, many
small triangles occur due to the splitting of some cubes into
pyramidal cells

Fig. 6. The cracks in the isosurface at level transitions are
fixed by replacing coarse triangles by fans of triangles

on the finer level (cf. edges a, b, ¢, d in Fig. 3). The
particular configurations can be indexed by an
eight-digit binary number, with each digit being
set by the binary predicates indicating whether
one of the edges numbered O through 7 in Fig. 3 in-
tersects the isosurface or not. This amounts to
28 =256 different configurations that can be

104

solved off-line and stored in a look-up table. No-
tice that some cases have ambiguous configura-
tions that have to be resolved by checking the sca-
lar value at the center vertex. In fact, the sign of
the center value decides whether the isosurface
passes above or below.

4 Real-time exploration
of volume data

In the last section, we have seen that hierarchical
and adaptive reconstruction of isosurfaces from
an octree data structure is the key to coping with
the surface’s exponential growth of complexity
for increasing resolution. However, for real-time
applications, the requirements are even harder
and the mesh quality apparently has to be traded
for CPU cycles. In order to allow the user an effec-
tive exploration of large volume data sets in real
time, the system has to be able not only to generate
different views of the same isosurface at several
frames per second, but also to let the user browse
through the whole pencil of isosurfaces. The latter
feature turns out to be particularly important if the
target isovalue has to be found by trial and error or
if multiple relevant isosurfaces are present in the
data.

Although adaptive isosurface extraction signifi-
cantly reduces the number of triangles, we still
waste graphics performance for rendering unim-
portant, uninteresting, or even invisible parts of
the surface. The standard answer to this observa-
tion from the computer graphics point of view is
view dependency. The decision on which level of
the octree a particular region of the isosurface is
to be extracted is based not only on intrinsic prop-
erties of the surface itself (e.g., curvature), but also
on “environmental” aspects like the distance from
the viewing camera, the angle to the viewing direc-
tion (e.g., back-face culling), or the distance from
the center of the view port.

However, since the algorithm for isosurface ex-
traction cannot predict the user’s interaction,
i.e., predict whether the viewing perspective or
the current isovalue will change, we have to run
the complete extraction algorithm for each frame.
As a consequence, there is no point in caching
any geometric information about the current iso-
surface. We therefore advocate a one-pass
scheme for the extraction algorithm. When tra-
versing the octree, a local oracle decides at every
node whether the surface can be extracted on this
level according to the prescribed error tolerances.
If the answer is affirmative, we prune the octree
below the current node, compute a local piece-
wise linear approximation, and send the triangles
immediately to the graphics pipeline without fur-

ther maintaining a global data structure for the
isosurface.

5 Refinement oracles

The crucial ingredient for an octree-based adap-
tive reconstruction algorithm is the oracle, which
decides whether the traversal proceeds or the lo-
cal reconstruction starts. Typically, such oracles
are based on some estimate of the local curvature
[14] or on an estimate of the potential approxima-
tion error caused by the octree not descending
further [16]. In our isosurface extraction tool,
we pursue a twofold strategy where we combine
view-dependent refinement with a local flatness
estimator.

During the browsing phase, the user wants to find a
specific feature in the data. Hence, the emphasis is
on providing real-time visual feedback to interac-
tions like moving/rotating the volume or changing
the isovalue. In correspondence to the human visu-
al cognition interface, it is usually sufficient to
render the surface in high detail only in a rather
small region of interest, while the rest can be dis-
played rather coarsely.

5.1 Focus point oracle

We implemented this strategy by controlling the
local refinement through a focus point (center of
interest), which serves as a pointing device to indi-
cate the region where the user expects to find im-
portant detail. The focus point can be moved freely
in space, e.g., by using a space mouse. The size of
the region of interest can be modified by adjusting
the radius of interest.

The oracle now simply computes the euclidean
distance of a cell’s center from the focus point
and evaluates a profile function, which determines
down to which level the cells have to be refined.
Since we want to keep the crack fixing as simple
as possible, we have to construct a radial function
that guarantees that the oracle does not allow
neighboring cells to differ by more than one gener-
ation.

Consider the steepest legal level transition, which
is a cell from level O (the cell in which the focus
point lies) neighboring a cell from level 1, neigh-
boring a cell from level 2 and so on. The maximum

105

distance from the focus point that the center of the
kth cell in this sequence can have is

k—1
DV:<1+3§:T>g:<1+3@k—Q>;
i=0

with d = /3 being the diagonal of a level 0 cell.
Since we want to bound the coarsening when mov-
ing away from the focus point, we have to base the
oracle on a monotonic function that maps the Dy to
k. The function

d
f:s»—>1+10g2<s;d > (1)

satisfies this requirement. The radius of interest r is
introduced by simply evaluating /(s — r) instead of
f(s) and clamping the argument of the logarithm
appropriately. For efficiency, the function of
Eq. 1 can be precomputed and stored in a table.

5.2 Curvature-dependent oracle

When the radius of interest is set to a rather large
value, we end up extracting a considerable portion
of the isosurface on the finest level. To have more
control over the complexity of the generated sur-
face, we introduce an additional curvature-depen-
dent oracle, which is applied to all cells in the in-
terior of the sphere of interest (sr). Obviously, this
oracle has to be defined only for the finest-but-one
level.

We want to construct an easy-to-evaluate function
Kr(v) that gives an estimate for the maximum cur-
vature of the isosurface F(x,y,z) =v within the
unit cube [0, 1]°. For the sake of simplicity, we re-
strict the function F to be a trilinear interpolant.
For a regular point [x, y, z] on the isosurface, we
have VF # 0, and we can (without loss of general-
ity) assume the existence of a function @(x, y) such
that

F(x,y, ¢(x,y)) =v

in the vicinity of [x, y, z]. It is now straightforward
to derive the coefficients of the first and second
fundamental forms for the surface (x,y)—
[x,y,6(x,y)] and to compute any curvature mea-
sure from this. With the standard notation

106

Fy, F,,...for the partial derivatives of F, we obtain
the total curvature

(7 + 1)

=

(FiFyFyy+ FoF.Fy+ FyF.F,.)’
(F2+F2+F2)°
FiF} +FiFL+FF,
2F2+F2+F2)
 F\FyFyFo + FoFFy Foy + FyFFFy
(F2+F2+F2)?

(2)

of the surface F(x,y, z) =v, where all partial de-
rivative are evaluated at [x, y, z|.

Of course, this functional is rather complicated to
evaluate and we have to derive a simpler estimate.
Our goal is to get the coefficients a; of a low-
degree polynomial p such that p(v) > Kp(v) for all
Vmin <V < Vmax. Such a polynomial is precomputed
for each cell and stored. When extracting the iso-
surface for some value v, the curvature-dependent
oracle just has to evaluate this polynomial. In the
case of a constant (degree 0) polynomial, we sim-
ply estimate the maximum curvature. This kind of
error estimate has been used by other authors [5,
14], but taking the total maximum of the curvature
for all possible isosurfaces within the range of one
octree cell usually overestimates the true curvature
significantly. The additional degrees of freedom in
higher-order polynomials can be used to find tight-
er upper bounds. We found that quadratic polyno-
mials yield good results in most cases. Since this
requires three coefficient for each cell on the first
down-sampled level, we end up with a memory
overhead of 3 =37.5%.

For a random sample point [x;, y;, zi| € [0, 1]3, we
get the scalar value v; = F(x;, y;, z;) and the corre-
sponding curvature k; by evaluating Eq. 2. Distrib-
uting many samples within the unit cube, we ob-
tain a cloud of points (v;, k;) in the (v X k)-plane
that characterizes the potential curvature ranges
for all possible isosurfaces (cf. Fig. 7). The task
is then to find a polynomial p(v) that satisfies
p(vi) >k; for all i as tightly as possible. Since
the marching cubes algorithm computes isosurface
points on the edges of the finest grid only and lin-
early interpolates between them anyway, we can
also restrict the random samples to these edges

Fig. 7. Typical curvature data for isosurfaces from trilinear scalar
fields. We sample along the edges of a unit cube. Then we
construct a quadratic polynomial p(v) with p(v;) > k;, which has to
be evaluated in order to estimate the curvature for a certain
iso-value. Notice that some samples are not considered. These are
samples that lie close to a singular point where the gradient falls

below a prescribed threshold €

without significantly affecting the curvature esti-
mates.

We apply a simple heuristic for the computation
of p(v), which leads to reasonable results. There-
fore, we try to find coefficients by, ..., b, (Bézier
coefficients) in order to represent p(v) on the basis
of Bernstein polynomials. This allows us to ex-
ploit the convex hull property of Bézier curves
[4]. We start by setting all b; to zero and then do
an update for each i with p(v;)k;. The update
should have minimum impact on the b; in the
sense that

; <b]’ — bj>2—> min.

Simple least squares fitting shows that this is
achieved if

OB" Vi
> Bi(v)

where B (v;) are the Bernstein polynomials evalu-
ated at v; and & is the positive residuum k; — p(v;)
before the update.

6 Implementing the application
interface

The proposed visualization tool is embedded into
the Openlnventor rendering toolkit, thus offering

the highest flexibility in terms of user manipula-
tion and navigation.

Openlnventor is an object-oriented graphics tool-
kit built on top of OpenGL, which has become a
de facto standard for interactive modeling, ren-
dering, and manipulation of 3D scenes [18]. For
our method to perform efficiently, a new class
has been designed that manages the hierarchical
volume data representation and provides the core
methods to adaptively reconstruct arbitrary iso-
surfaces. The newly created volume node is a sep-
arate object within the hierarchical structure of
the scene graph. This allows convenient applica-
tion of built-in manipulators, sensors, editors,
and other predefined classes, methods, and fea-
tures (light sources, antialiasing, stereo mode,
perspective/parallel rendering, fly, walk, track-
ball). For the real-time exploration of microscopic
structures various viewers enabling intuitive nav-
igation through complex environments are of ma-
jor relevance.

Within the OpenlInventor scene graph mechanism,
the volume node is organized as a separately man-
aged subgraph. The new SoVolumeKit is de-
rived from the class SoBaseKit, a container
node providing system-defined routines and ac-
tions. Clipping planes with a geometric representa-
tion are added and can be accessed from the Open-
Inventor standard manipulators and the core vol-
ume element can bei mplemented as a separate
shape node derived from SoShape. Even for highly
complex structures, additional clipping planes can
be used effectively to cut portions of the data, thus
removing less important details.

107

triangels, 32x10° triangels, and 25x10? triangels

1.6x10° triangles (9c)

Fig. 8. Curvature and focus adaptive refinement. On the left the curvature tolerance is set to zero (46x10° triangels). With
increasing tolerance more and more cells within the focus area need not be refined. The resulting meshes have 43x10°

Fig. 9a—c. Examples for the focus point-dependent adaptive reconstruction. Due to the low-pass pyramid, the
isosurfaces on the coarser levels are smooth (9a). In the focus area, we can zoom in on the surface down to the finest
resolution (9b). The triangle count is 32x10° triangels (9a) and 88x103 triangels (9c). The brain is extracted from a
256x256x128 CT-scan data set. Extracting the corresponding isosurface by plain marching cubes on the finest level yields

During the rendering phase, an object of type
SoGLRenderAction traverses the scene graph
and asks all objects to render themselves by calling
their local GLRender method. Within this method
of SoVolume, all object-specific OpenGL calls
that are necessary to prepare the final rendering
of the isosurface are performed. Particularly, mate-
rial properties, the shading mode, culling parame-
ters, and the display mode of the triangles are cho-
sen. All triangles are sent to the geometry engine
immediately after they have been reconstructed.
In this way we completely avoid the use of interme-
diate data structures to hold the triangle lists.

The focus point is implemented as a separate node
including an displayable object of SoSphere and
a separate transform node of SoTransform. It is
linked to the scene graph and connected to the in-
put device that triggers the user navigation. The
volume node requests the position of the focus

108

point before the render action takes place and up-
dates the look-up table from which the degree of
refinement is derived.

7 Results

Figure 8 shows a mesh representing an isosurface
of a synthetic 64° volume data set. The focus point
is located in the center of the viewport and the fo-
cus area is clearly visible. Since we generate a
highly detailed mesh only in the vicinity of the fo-
cus point, most of the surface can be extracted on a
rather coarse level. The averaging filter that was
used to compute the voxel values on coarser levels
causes the surface to remain smooth. Thus yields
an intuitive visual appearance.

If we also take the local curvature of the isosurface
into account, then only the nonflat regions are ac-

11a 11b

Fig. 10. Wire-frame representations of two adaptively reconstructed isosurfaces

Fig. 11a-c. An example for adaptive and real-time reconstruction of isosurfaces from large-scale volume data
(512x512x128). The images show an increasing focus area (black circle) from left to right. Inner structures of the abdomen
were reconstructed with 123x103 triangels in 1.1 s (a). 2.2x10%riangles were generated in 15.8 s (b). The plain
marching cubes on the finest level yields 6x10°riangles in 45.0 s (¢). Notice that merely rendering a static mesh with
6x10%riangles (without extraction) on a high-end graphics workstation takes about 5 s

11c

tually subdivided. This allows us to further reduce
the number of triangles in the output.

Figure 9 shows an isosurface extracted from a
256x256x128 CT scan. The size of the original da-
ta set makes it impossible to effectively explore the
raw data on a standard graphics workstation.
Adaptive reconstruction allows the user to adjust
the complexity of the output to the available hard-
ware resources by enlarging or narrowing the radi-
us of interest. Wire-frame representations of adap-
tively reconstructed isosurfaces are shown in
Fig. 10.

An even larger data set is shown in Fig. 11
(512x512%128). Placing the focus sphere allows
the user to explore the details of any inner organ,
while the rest of the abdomen is displayed on a
rather coarse level. Since we generate the coarser
level data by averaging instead of plain subsam-

pling, the global shape of the intestine remains in-
tact. Our fixing technique at level transitions pre-
vents cracks in the isosurfaces.

On a SGI Onyx (R10000, 195 Mhz) with REI
graphics hardware our implementation generates
isosurfaces with a triangle count of about 50 K tri-
angles at several frames per second. Since we do
not exploit any frame-to-frame coherence, the per-
formance is not affected by changes of the isoval-
ue.

8 Conclusion

In this paper we have presented general ideas to
exploit a multi-resolution hierarchy of regular
volume data for the real-time reconstruction of
isosurfaces at an arbitrary level of detail. In order

109

to account for even the highest resolution data
sets, an adaptive strategy has been proposed, en-
abling the user to focus arbitrarily on any detail
of interest. A solution for the crack-fixing prob-
lem in adaptive isosurface extraction algorithms
has been proposed, and a new error criterion
based on the local curvature of the selected iso-
surface has been introduced, which offers the op-
tion of further controlling the approximation pre-
cision. Real-time exploration of high-resolution
data sets and selection of the desired isosurface
is achieved in this way.

Instead of a curvature-based refinement oracle, we
can also use a criterion that is based on the actual
approximation error caused by not descending to
the finest level. For that, however, we have to ex-
plicitly compute the surfaces for all possible iso-
values in advance in order to estimate the differ-
ence between the exact surface and its approxima-
tion for each node of the octree. Although the ex-
traction process can be done locally for each node,
it is in general too expensive for realistically sized
data sets. As a consequence, this strategy has not
been considered in our approach.

By integrating these algorithms into the Openln-
ventor toolkit we exploit the advanced features of
modern high-end graphics workstations through
standard APIs like OpenGL. The integration of so-
phisticated user manipulators allows intuitive and
easy ways to extract the structures of interest.
Our results have shown that the adaptive and hier-
archical nature of our method allows for the pro-
cessing of even the highest resolution data sets,
which can hardly be managed by traditional ap-
proaches.

We expect some of our ideas to be of major rele-
vance, especially for applications integrating the
internet and benefiting from progressive transmis-
sion and rendering. Since we do not build polygon
lists explicitly, we could (instead of sending the
generated triangles to the geometry processor) es-
tablish a communication protocol with a client in-
terface, e.g., a VRML viewer. The surface of inter-
est is then generated on the server side and the
primitives are transmitted across the communica-
tion channel.

110

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bajaj CL, Pascucci V, Schikore DR (1996) Fast isocontour-

ing for improved interactivity. ACM Symposium on Volume
Visualization (Proceedings), 3946

. Bey J (1995) Tetrahedral grid refinement. Computing

55:355-378

. Danskin J, Hanrahan P (1992) Fast algorithms for volume

ray tracing. ACM Symposium on Volume Visualization
(Proceedings), pp 91-98

. Farin G (1993) Curves and surfaces for Computer aided geo-

metric design: a practical guide, 3rd edn, Academic Press,
San Diego

. Hamann B, Trotts J, Farin G (1997) On approximating con-

tours of the piecewise trilinear interpolant using triangular
rational quadratic Bézier patches. IEEE Trans VCG (is
Transactions on Visualization and Computer Graphics)
Vol 3, No 3

. Hoppe H (1996) Progressive Meshes. Computer Graphics

(SIGGRAPH 96 Conference Proceedings), pp 99-108

. Kobbelt L, Campagna S, Seidel H-P (1998) A general

framework for mesh decimation. Proceedings of the Graph-
ics Interface (Conference Proceedings), pp 43-50

. Laur D, Hanrahan P (1991) Hierarchical splatting: a pro-

gressive refinement algorithm for volume rendering. SIG-
GRAPH’91 Computer Graphics (SIGGRAPH ’96 Confer-
ence Proceedings), pp 285-288

. Levoy M (1990) Efficient ray tracing of volume data. IEEE

Trans VCG (is: Transactions on Visualization and Computer
Graphics)

Livnat Y, Shen H-W, Johnson CR (1996) A near optimal
isosurface extraction algorithm using span space. IEEE
Trans Visualization Computer Graphics (is: Transactions
on Visualization and Computer Graphics)

Lorensen WE, Cline HE (1987) Marching cubes: a high res-
olution 3D surface construction algorithm. SIGGRAPH’87
Computer Graphics (SIGGRAPH ’87 Conference Proceed-
ings), pp 163-169

Montani C, Scateni R, Scopigno R (1994) Discretized
marching cubes. In: Bergeron D, Kaufman A (eds) Visual-
ization’94, IEEE Visualization (Conference Proceedings)
pp 281-287

Nielson G, Hamann B (1991) The asymptodic decider: re-
moving the ambiguity in marching cubes. In: Nielson G,
Rosenblum L (eds) Visualization’91, IEEE Visualization
(Conference Proceedings) pp 83-91

Ohlberger M, Rumpf M (1997) Hierarchical and adaptive
visualization on nested grids. Computing 59:269-285
Schroeder W, Zarge JA, Lorensen WE (1995) Decimation of
triangle meshes. Computer Graphics (SIGGRAPH 92 Con-
ference Proceedings), pp 65-70

Shekhar R, Fayyad E, Yagel R, Cornhill J (1996) Octree-
based decimation of marching cubes surfaces. Visualiza-
tion’96, IEEE Visualization (Conference Proceedings) pp
335-342

Shen H, Johnson C (1995) Sweeping simplices: a fast isosur-
face extraction algorithm for unstructgured grids. Visualiza-
tion’95, IEEE Visualization (Conference Proceedings) pp
143-150

Werneke J (1994) The inventor mentor, programming ob-
ject-oriented 3D graphics with Openlnventor, 2nd edn. Ad-
dison-Wesley, Reading, Massachusetts

19. Westermann R (1994) A multiresolution framework for vol-
ume rendering. In: Kaufman A, Kriiger W (eds) ACM Sym-
posium on Volume Visualization (Proceedings), pp 51-58

20. Wilhelms J, Van Gelder A (1992) Octrees for faster isosur-
face generation. ACM Trans Graph (is: Transactions on Gra-
phics)

RUDIGER WESTERMANN is
a research fellow in the computer
graphics group at the University
of Erlangen. His research inter-
ests include hierarchical methods
in computer graphics, volume
rendering of structured and un-
structured grids, hardware fea-
tures, flow visualization and par-
allel graphics algorithms. He re-
ceived a Diploma in Computer
Science from the Technical Uni-
versity Darmstadt in Germany.
He was the first member of the
computer graphics group found-
ed by Dr. Wolfgang Kriiger at

the German Institute for Mathematics and Computer Science
in Bonn. Simultaneously he persued his Doctoral thesis on
multiresolution techniques in volume rendering, and he received
a PhD in computer science from the University of Dortmund in

Germany.s

LEIF KOBBELT currently
holds a position as a research fel-
low at the University of Erlan-
gen, Germany. He received his
master’s (1992) and Ph.D.
(1994) degrees from the Univer-
sity of Karlsruhe, Germany. He
then spent one year at the Uni-
versity of Wisconsin, Madison
as a visiting researcher. Since
1996 he is working in the geo-
metric modeling unit of the Com-
puter Graphics Group at Erlan-
gen. His current major research
interest is geometric modeling
based on polygonal meshes.

THOMAS ERTL is a professor
of computer graphics and visual-
ization in the computer science
department of the University of
Erlangen where he leads the sci-
entific visualization group. His
research interests include volume
rendering, flow visualization,
multi-resolution analysis, parallel
and hardware accelerated graph-
ics, large datasets and interactive
steering. He received an MS in
computer science from the Uni-
versity of Colorado at Boulder,
and a PhD in theoretical astro-
physics from the University of
Tiibingen, Germany.

111

