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Abstract

While many techniques for the 3D reconstruction of small to
medium sized objects have been proposed in recent years, the re-
construction of entire scenes is still a challenging task. This is
especially true for indoor environments where existing active re-
construction techniques are usually quite expensive and passive,
image-based techniques tend to fail due to high scene complexi-
ties, difficult lighting situations, or shiny surface materials. To fill
this gap we present a novel low-cost method for the reconstruction
of depth maps using a video camera and an array of laser pointers
mounted on a hand-held rig. Similar to existing laser-based active
reconstruction techniques, our method is based on a fixed camera,
moving laser rays and depth computation by triangulation. How-
ever, unlike traditional methods, the position and orientation of the
laser rig does not need to be calibrated a-priori and no precise con-
trol is necessary during image capture. The user rather moves the
laser rig freely through the scene in a brush-like manner, letting the
laser points sweep over the scene’s surface. We do not impose any
constraints on the distribution of the laser rays, the motion of the
laser rig, or the scene geometry except that in each frame at least
six laser points have to be visible. Our main contributions are two-
fold. The first is the depth map reconstruction technique based on
irregularly oriented laser rays that, by exploiting robust sampling
techniques, is able to cope with missing and even wrongly detected
laser points. The second is a smoothing operator for the recon-
structed geometry specifically tailored to our setting that removes
most of the inevitable noise introduced by calibration and detec-
tion errors without damaging important surface features like sharp
edges.

1 Introduction

Three dimensional geometry has become a common media type in
recent years mostly due to the availability of powerful and afford-
able graphics hardware and the decreasing costs for storage and
transmission of large amounts of data. However, the generation
of 3D models is still the main obstacle preventing an even more
widespread use of geometry-enhanced applications: Manual de-
sign of 3D models is time consuming and tedious, automatic meth-
ods are either extremely costly if, e.g., commercially available laser
scanners or structured light systems are used, or are extremely dif-
ficult, error-prone and limited to specific scenarios if more recent
image- and video-based methods are used. This is especially true
for the case of rooms and indoor scenes. Most commercially avail-
able digitizing solutions are specialized on close-range operation,
i.e., on the recovery of objects rather than whole rooms. Image-
based binocular or multi-view stereo methods easily fail in indoor
scenarios due to the lack of sufficient information for photo consis-
tency computation.

We present a novel depth map estimation method targeted at the
reconstruction of indoor scenes that is easy to use and implement.
The hardware requirements are limited to an off-the-shelf digital
video camera and a set of low-cost laser pointers. The lasers are
rigidly mounted on a rig such that they cast an irregular set of rays
into a scene or onto an object (cf. Figure 1 for a picture of our pro-
totype laser rig with 20 lasers). Similar to traditional laser scanning
techniques, the video camera is positioned on a tripod and observes
the laser points in the scene. Due to the irregular configuration
of the laser rays, the position and orientation of the laser rig does
not have to be calibrated a-priori or precisely controlled during the
depth recovery process. We rather let the user move the laser rig
freely through the scene in a brush-like manner and recover its po-
sition and orientation from the observed laser points for each frame.
Depth values are then computed by triangulation. The main prob-
lem of active laser- or light-based reconstruction systems is that of
occlusion: concave parts of the surface can only be reconstructed
as long as both, the camera and the light source have an unoccluded
view on the surface. The flexibility of our approach relaxes this
problem significantly since the user is free to cast laser rays from
any direction into the scene. Hence concave parts of the surface can
be recovered as long as the camera has an unoccluded view.

The limited number of lasers, errors in the calibration of the laser
rays, as well as imperfect detection of laser points in the input im-
ages may induce a notable level of noise in the resulting depth
maps. We show empirically that a large portion of this noise has
a systematic character and develop a smoothing operator specifi-
cally tailored to our setting that is able to remove most of the noise
without sacrificing important surface features.

Our algorithm has been developed with the following goals in mind
which, in this combination, cannot be found in any of the existing
scanning and reconstruction methods:

Robustness. By exploiting robust sampling techniques our algo-
rithm is able to cope with missing and even wrongly detected
laser points. Occluded and later reappearing laser points are
picked up again and assigned to the correct laser ray.

Versatility. Our method does not rely on any specific structure of
the scene like known angles or additional cues. Hence it is ap-
plicable to a wide spectrum of scenarios ranging from whole
scenes to single objects.

Ease of implementation. All image processing, i.e., the detection
of laser points and the calibration pattern, is kept as simple
as possible without any thresholds that require tedious per-
scene adjustment. All energy minimizations rely on standard
optimization techniques.

Affordability. All required hardware components are available
off-the-shelf at reasonable prices (about 100e for the laser
rig).

2 Related Work

The surveys presented by [Besl 1989] and, more recently, by [Blais
2004] provide a thorough overview of existing active 3D recon-
struction methods. For the field of passive, purely image-based



Figure 1: The hand-held, battery driven laser rig with 20 laser
pointers we used for our experiments.

methods, [Scharstein and Szeliski 2002] have presented an exten-
sive discussion and evaluation of recent binocular stereo methods.
A similar effort has been published by [Seitz et al. 2006] for re-
cent multi-view stereo reconstruction methods. In the following we
review and compare the subset of reconstruction techniques most
relevant to our work.

A popular class of active reconstruction systems uses structured
light. That is, a light source or a projector casts a regular pattern
onto the surface of the scene, one or more cameras observe the pat-
tern and derive depth information. Examples for structured light
systems based on a single camera have been presented by [Rocchini
et al. 2001], who use a standard video projector as light source and
focus on low overall system cost, and [Pipitone and Hartley 2006]
who use a specialized setup with a xenon tube on a turntable. The
main difference to our method is the requirement of a precise cal-
ibration of the projector’s pose with respect to the camera. This
calibration is done off-line and has to be repeated every time either
the camera or the projector is moved. In our method, we derive
the pose of the laser rig for each input image, allowing for a much
more flexible freehand operation. Hence the constellation of the
laser rays in the rig has to be determined only once. Methods based
on stereo cameras exchange the calibration of the projector with
the calibration of the stereo setup and then derive depth informa-
tion by determining corresponding pixels in the stereo images with
the help of the projected pattern. [Scharstein and Szeliski 2003]
have presented a stereo-based structured light system for high pre-
cision, and more recently [Weise et al. 2007] published a system in-
corporating motion compensation, targeted at the reconstruction of
moving persons and objects. See [Rocchini et al. 2001] and [Weise
et al. 2007] and the references therein for more details on monoc-
ular and binocular structured light systems, respectively. Usually
structured light systems are targeted at object reconstruction due to
the limited range of the projector and often require dimmed light-
ing conditions to ensure that the pattern is detected correctly. In
contrast, the standard laser pointers our method is based on can be
faithfully detected at long distances, on difficult surfaces, and under
regular everyday lighting conditions, which enables the snap-shot
reconstruction even of large indoor scenes.

Also related, but requiring an even more constrained environment
is the approach of [Bouguet and Perona 1998]. They compute depth
information from the shadow of a straight object using a calibrated
camera and known ground plane. Examples of methods that work
with hand-held laser plane emitters are [Winkelbach et al. 2006]
and [Zagorchev and Goshtasby 2006]. To determine the pose of
the emitter, both methods require additional cues: Winkelbach et
al. require two planes enclosing an exactly known angle which
are both intersected by the laser plane in every frame, the method
of Zagorchev and Goshtasby is based on a double-frame arranged
around the object to be reconstructed. Hence, both methods are
limited to the reconstruction of objects rather then whole scenes,
since such strict requirements on the background or a calibration

target cannot easily be met in practice. The methods presented by
[Takatsuka et al. 1999] and [Furukawa and Kawasaki 2003] uti-
lize markers in the form of LEDs attached to a laser emitter. With
the help of the markers the pose of the laser emitter is determined,
allowing for an easy triangulation of depth values, but under the
constraint that all markers have to be visible in the images. More
recently, [Kawasaki et al. 2006] have presented a calibration-free
reconstruction method using two perpendicular laser planes. They
recover the emitter poses from laser plane intersections detected in a
sequence of input images. The main advantage is that, once the pa-
rameters of a plane have been recovered, a whole projected line can
be triangulated instead of single image points. The approach does,
however, suffer from numerical instabilities especially in the case
of non-detectable plane intersections due to occlusions. In com-
parison, our method generates less samples per frame, but robustly
copes with occluded laser points.

Probably most related to our work is the Model Camera of [Popescu
et al. 2006]. It uses a laser rig rigidly mounted to a hand-held video
camera. By enabling the user to freely move the camera through
a scene, this method imposes fewer constraints than all the above
systems that rely on a stationary camera. This comes, however,
at the cost of reduced stability since estimating relative changes of
the camera pose between successive frames is an error prone prob-
lem which tends to accumulate errors over a sequence of frames
even with the additional information provided by sparse per-frame
depth samples. In the follow-up project by [Bahmutov et al. 2006],
the authors address this problem and employ a more constrained
setup by mounting the Model Camera on a tripod. In addition, two
shaft encoders were used to precisely measure pan and tilt angles,
thereby stabilizing the pose estimation process but requiring an ex-
act synchronization of the captured images and the angle measure-
ment process. The main drawback, however, is the reduced number
of only two degrees of freedom for the camera motion in compari-
son to the six degrees of the original Model Camera. Since the laser
rig is still mounted to the camera, it is difficult to vary the sampling
density for different parts of a scene and this setup is subject to the
same occlusion problems as standard laser scanners. Hence we de-
cided to constrain the scene capture process as little as possible and
to allow the user to operate the laser-brush in a freehand manner in
order to be able to deal with arbitrary scenarios.

3 Method Overview

In this paper, we denote laser rays by Li(λ) := ci + λri, with
ci, ri ∈ R3, and corresponding laser point positions in image space
by pi ∈ R2. The index i always counts per-frame entities, while j
is defined to be the frame index. Hence, pi,j denotes the ith image
space point in frame j. Points in 3-space are denoted by q ∈ R3,
and planes by N ∈ R4, respectively. The intrinsic parameters of
the camera are given in the form of a matrix K ∈ R3×3, the back-
projected viewing ray of an image point pi is denoted by vi :=
K−1pi. Since the camera is defined to reside in the origin of the
world coordinate frame we do not need to take extrinsic parameters
into account. The vertices of the resulting surface mesh are denoted
by xi,j ∈ R3. Finally, images are given as bi-variate functions
I(u, v), with (u, v) being pixel coordinates.

Our method consists of the following steps. First the camera’s in-
trinsic parameters K and the laser rig are calibrated as detailed in
Section 5. We then mount the camera on a tripod, sweep the laser
rays through the scene and capture the resulting laser points pi,j for
each frame j. Given the positions of the laser points in a respective
frame, the central idea of our method is to find the pose (i.e., po-
sition and orientation) of the laser rig in space that minimizes the
sum of squared Euclidean distances between corresponding image
points pi and laser rays Li, projected to image space lines. Once



the pose of the laser rig is recovered, a depth value can be com-
puted for each detected laser point in image space by triangulation.
Corresponding laser ray to image point pairs are initialized using a
simple heuristic and maintained by tracking laser points over suc-
cessive frames. We accumulate the depth information over several
hundred frames and compute the Delaunay triangulation of all de-
tected points in image space to obtain a quasi-dense depth map. To
reconstruct a surface mesh, we transfer the Delaunay triangulation
to 3-space using the reconstructed 3D points xi,j . Finally we ap-
ply a smoothing operator to the surface mesh to remove systematic
noise introduced during the estimation of the laser rig’s pose (cf.
Section 7).

4 Laser Detection and Tracking

The detection of laser points in the input images consists of two
main steps. The first is the computation of a difference image, the
second the computation of a cross-correlation function. For the dif-
ference computation we take a picture Iempty of the scene without
laser points. Then, for each image I containing laser points, we
compute the intensity channel

f(u, v) :=
`
rI(u, v) + gI(u, v)

´
(1)

−
`
rempty(u, v) + gempty(u, v)

´
,

where rI , gI denote the red and green color channels of I and
rempty, gempty denote the respective channels of Iempty. We com-
pute the correlation with the sum of red and green intensities (1)
since the red lasers that we used during our experiments produced a
strong response not only in the red but also in the green color chan-
nel of all cameras that we tested. Since we are dealing with static
scenes and a fixed camera, the difference computation is a simple
but very effective technique to stabilize the subsequent laser point
detection.

Laser points in images usually do not appear as single bright pixels
but rather as circular or oval regions several pixels in diameter with
the intensity maximum in the middle and intensity quickly decreas-
ing towards the boundary of the region. Since such an intensity
distribution resembles a two-dimensional Gaussian quite well, we
chose to detect laser points by computing the cross-correlation of a
Gaussian and the difference image. More formally, we compute the
cross-correlation of the intensity channel f(u, v) with the Gaussian

g(u, v) := exp
`
− (u2 + v2)/(0.5 ·m2)

´
, (2)

centered at each pixel position (u, v). Here m = 11 is our de-
fault choice for the width and height of the cross-correlation patch
size. We then detect the positions of a set of local cross-correlation
maxima equal to the number of laser pointers and store them for fur-
ther refinement. A simple non-maximum suppression around each
detected point avoids false positives caused by nearby correlation
maxima.

The laser point positions recovered as maxima of the cross-
correlation function have pixel precision only. To refine the points
we compute the weighted centroid over the patch of size m × m,
where f(u, v) is used as weight. That is, for a laser point position
p = (px, py) the refined position p′ is computed as

p′ =
1

w

X
(u,v)∈A

f(u, v) · (u, v), with w =
X

(u,v)∈A

f(u, v) (3)

where A = [px − m
2
, px + m

2
]× [py − m

2
, py + m

2
] is the patch of

size m around p.

Laser points are tracked over the image sequence using the corre-
spondence method of [Scott and Longuet-Higgins 1991] which is

Figure 2: Example frames of a calibration sequence. The laser rig
is attached to the camera and moved in front of a wall. The square
calibration pattern is used to obtain estimates of the camera’s in-
trinsic parameters, the plane parameters, and to perform the metric
upgrade after bundle adjustment.

briefly summarized in the following. Given the sets of detected
laser points Pj := {ps,j} in image j and Pj+1 := {pt,j+1} in
image j + 1 with m := |Pj |, n := |Pj+1|, a distance matrix
D ∈ Rm×n is computed with elements

Ds,t = exp(−||ps,j − pt,j+1||2/2σ2). (4)

A value of σ = 20 has proven to work well in all our experiments.
Then the singular value decomposition D = UΣV T is computed,
the singular values on the diagonal of Σ are all set to 1 to obtain
Σ′, and the matrices are multiplied back as D′ = UΣ′V T . Now
a maximum in the (s, t)-th element of D′ indicates that point ps,j

best corresponds to pt,j+1. All correspondences are detected by
iteratively finding the maximal element and canceling out the re-
spective column and row in the matrix D′. For details, see [Scott
and Longuet-Higgins 1991].

5 Calibration

To be able to perform depth measurements the camera needs to be
calibrated and the constellation of rays in the laser rig needs to
be determined. That is, we need to recover the line equation Li

for each laser ray with respect to some (arbitrary but fixed) world
coordinate frame. Note that we do not need to calibrate the pose
(i.e., position and orientation) of the laser rig a-priori but rather re-
cover this information later from the images for the actual surface
reconstruction (cf. Section 6). We chose the following calibration
approach that allows for the simultaneous recovery of all required
parameters.

The central idea is to fix the position of the camera in the origin
of the world coordinate frame as well as the positions and orienta-
tions of all laser rays, and to observe the intersections of the laser
rays with a varying plane. In practice, we rigidly attach the laser
rig to the camera and move it in front of a wall. Additionally, we
stick a colored, square piece of paper to the wall which can eas-
ily be detected (cf. Figure 2 for example frames of a calibration
image sequence). In a first step we then recover estimates of the
plane parameters Nj ∈ R4 (one plane for each frame, recall that j
indexes frames) and the camera’s intrinsic parameters K ∈ R3×3

from the detected corners of the square pattern using the method of
[Zhang 2000]. Given the planes, the intrinsic parameters and the
detected laser points pi,j in the image sequence, we compute esti-
mates of the laser rays Li. Note that, since the laser rig is mounted
on the camera, each laser ray together with the camera center de-
fines an epipolar plane in space. The laser points of a respective ray
therefore move on an epipolar line in image space, and the epipolar
planes can be recovered by determining and back-projecting these
lines. Hence each laser ray can be parameterized by only 2 pa-
rameters in its epipolar plane instead of the 4 parameters required



by an unconstrained line in space. Once the estimates of the lines
and planes have been computed, we refine the involved parameters
by a global bundle adjustment optimization procedure. That is, we
minimize the sum of squared Euclidean image space distances

E(Li, Nj) =
X
i,j

||pi,j−K◦qi,j ||2, with qi,j := Nj∩Li (5)

being the intersection of plane Nj with laser ray Li, and K ◦ qi,j

being the projection of the intersection into image space.

Since the optimization (5) does not constrain the world frame and
especially may move the plane at infinity (see, e.g., [Hartley and
Zisserman 2003] for details) to an arbitrary position, we employ
the stratified metric upgrade described in [Hartley and Zisserman
2003, Chap. 10.4]. In the first step (the step from projective to
affine space), the plane at infinity is moved to its canonical posi-
tion. This is achieved by computing a transformation that moves
the intersections of parallel lines in space to infinity. In our case the
square calibration pattern provides two pairs of parallel edges per
frame. The lines in space are generated by transferring the corners
of the pattern to the corresponding plane in space. In the second
step (the step from affine to metric space), the angles at the four
corners of the pattern are adjusted to be 90 degrees.

6 Depth Map Recovery

The depth map recovery consists of two major components. The
first is the estimation of the laser rig’s pose discussed in Section 6.1,
the second is the generation and maintenance of a laser ray to image
point mapping presented in Section 6.2.

6.1 Laser Rig Pose Estimation

Suppose we are given a set of laser rays Li in 3-space and a set
of corresponding image positions pi ∈ R2. Our goal is to find a
transformation consisting of a rotation and translation that moves
the laser rig to a pose such that the distance between the laser rays,
projected into image space, and the corresponding laser points is
minimized.

More formally, we minimize the objective function

E(T ) :=
X

i

dist(K ◦ T ◦ Li, pi)
2 (6)

where T ◦ Li denotes the transformation of a laser ray in object
space, K ◦ T ◦ Li denotes the projection of a transformed ray into
image space and dist(·, ·) denotes the Euclidean distance between
a line and a point in image space. We employ an image space dis-
tance measure rather than measuring the distance between laser rays
and viewing rays in object space since the latter measure is not in-
variant to the object-to-camera distance: The same amount of im-
age point detection error would have a stronger influence on a laser
ray far away from the camera than on a nearby ray. The transfor-
mation T is minimally parameterized by 3 quaternion parameters
for rotation and 3 parameters for translation. We apply a standard
Levenberg-Marquardt minimization algorithm to find the best fit-
ting pose of the laser rig. Since the pose of the rig changes only
slightly between frames of the input sequence, we use the transfor-
mation of the previous frame to initialize the optimization for the
current frame. For the first frame we found that an initialization
with the identity transformation (i.e., no rotation and no transla-
tion) is completely sufficient. Once the optimal transformation T
has been found, the depth values for the points pi are computed by
determining the point on the viewing ray K−1pi with the closest
distance to the corresponding laser ray Li.

Figure 3: An example for the result of the greedy pairing algorithm.
The green dots denote the points of the best fitting pattern {oi}∗,
generated by intersecting the laser rays with a plane orthogonal to
the z-axis and adjusting its scale and position. The white lines point
towards the nearest detected laser points.

The geometry of the whole scene is recovered by accumulating the
per-image depth values of the entire input sequence. We then com-
pute the Delaunay triangulation in image space and transfer it to
3-space by back-projecting all image points and moving them to
their respective depths.

6.2 Laser Ray to Image Point Mapping

A consistent mapping that assigns laser rays to detected image
points is the major prerequisite for the above optimization algo-
rithm to converge to the correct pose of the laser rig. We employ
two different techniques to recover this mapping for the first frame
of the input sequence and for successive frames.

Finding the mapping between laser rays and image points without
any a-priori knowledge is quite involved. In our experiments we use
20 laser pointers which means that there are 20! ≈ 1018 possible
mappings in general. Since a complete testing of all mappings is
impossible, we use a simple yet effective pattern matching heuris-
tic that worked well in our experiments if we ensure that all laser
points are visible in the first frame. Given a set of detected laser
points {pi}, the idea is to generate a sequence of patterns in the
form of point sets {oi}k with oi ∈ R2 by intersecting the laser
rays Li with a set of planes at varying positions. The pattern that
best matches the pi then induces the sought initial mapping. The
matching quality of a particular pattern {oi} is defined as the sum
of squared distances after greedily paring the sets {pi} and {oi}
based on shortest Euclidean distance.

The sequence of patterns {oi}k is constructed by intersecting the
laser rays Li with a plane perpendicular to the z-axis, positioned at
varying depths in front of the laser rig, and by then rotating the in-
tersection points around the z-axis by varying angles. The intuition
behind this approach is to approximate the shape of the laser points
as they would appear for scenes of different depths and different ro-
tations of the laser rig. Instead of projecting the intersection points
to image space we merely drop the third coordinate to obtain the
oi ∈ R2. Different positions of the sets {pi} and {oi} are com-
pensated for by moving the centers of gravity of both sets to the
origin. Both sets are furthermore scaled to [−1, 1]2. By indepen-
dently scaling the x- and y-axes of each set we effectively compen-
sate for perspective foreshortening of the detected laser points pi

due to slanted scene geometry. In all our experiments, we let the
distance of the intersection plane vary between 0 and 5 meters in



(a) (b)

Figure 4: Reconstruction of a plane from 20 images before (a)
and after (b) application of our smoothing operator. This example
clearly shows that most of the noise in the recovered depth values
has a systematic character and can hence effectively be removed.
Note that in (b) no per-vertex smoothing has been applied.

steps of 10cm and the rotation angle between 0 and 360 degrees in
steps of 10 degrees. Figure 3 shows the result of the greedy par-
ing algorithm for the living room sequence. Green dots mark the
points oi of the winning pattern, white line segments point towards
the respective laser points they have been paired with.

Once the mapping from laser rays to image points has been recov-
ered, it can, in principle, be maintained from one frame to the next
by tracking laser points. To be able to cope with occluded and later
re-appearing laser points, with wrongly detected points, and with
false matches, we employ a robust sampling strategy to determine
the correct mapping for each frame. Given the matched features
from the laser point tracker for a new frame (cf. Section 4), we gen-
erate a set of candidate laser ray to image point pairs by simply
assigning all tracked points to the laser rays they corresponded to
in the previous frame.

To find the correct pose of the laser rig even for unreliable laser ray
to image point mappings we run a RANSAC [Fischler and Bolles
1981] based sampling algorithm that generates a set of hypothe-
ses for the rig pose, evaluates them, and then keeps the winning
hypothesis as new pose. A hypothesis is generated by randomly
selecting 6 pairs from the set of candidates and by solving the min-
imization problem (6) for the rig pose. To evaluate a hypothesis we
first greedily pair all laser rays and points not used to compute the
hypothesis, again based on Euclidean distance in image space, and
then compute the statistically robust error function

E(h) =
X

i

log
`
1 + dist(K ◦ Th ◦ Li, pi)

´
(7)

where Li, pi denote the current ray and point pairs and Th denotes
the hypothetical laser rig transformation. The winning hypothesis
T ∗h , i.e., the one with the smallest error (7), is refined by again
solving (6), this time with all laser to point pairs (Li, pi) that lie
sufficiently close to each other, i.e., with dist(K ◦ T ∗h ◦ Li, pi) <
dthresh. In our experiments we found that a threshold dthresh = 1
pixel works well. We furthermore exclude pairs (Li, pi) that are
ambiguous, i.e., pairs for which more then one image point lies
within the tolerance dthresh to K ◦ T ∗h ◦ Li.

7 Depth Map Smoothing and Outlier Rejec-
tion

Apart from the standard measurement noise common to all laser-
based reconstruction systems, we encountered an additional type of

noise during our experiments, caused by our specific approach: The
optimization procedure (6) compensates for sub-pixel laser point
detection errors by determining a slightly wrong laser rig pose,
thereby adding noise to the resulting depth values. However, since
the orientation of the rig is rather resilient to small-scale detec-
tion errors, the error compensation mostly moves the position of
the rig towards or away from the camera, i.e., introduces a system-
atic per-frame depth error. In other words, the depth values of a
respective frame are all affected by the same offset in roughly the
same direction. This observation is verified by the following exper-
iment. We applied our method to 20 frames of an image sequence
showing only a single plane and reconstructed a 3D mesh from the
image space Delaunay triangulation as described above. We then
computed an individual least squares plane for the vertices recov-
ered from each single frame. The average Euclidean distance of
the vertices to their respective plane was below 1.05mm, the maxi-
mal distance over all frames was 3.72mm. For comparison we then
computed a single least squares plane for all reconstructed vertices.
Now the average distance was 5.49mm and the maximal distance
16.89mm. This shows that, while the overall reconstruction (cf.
Figure 4a) is affected by a considerable amount of noise, the depth
values recovered in each individual frame are much more coherent.
Moreover, when we compare the normal vectors of the per frame
least squares planes, we see only very little variation. This indi-
cates that the per frame groups of samples are mostly shifted by a
constant depth offset.

To remove noise of the above kind we devised a simple, iterative
smoothing technique for the reconstructed surface mesh. For each
frame j, i.e., for all vertices xi,j ∈ R3 corresponding to the same
laser rig pose, our goal is to find one common update vector mj ∈
R3 in order to improve simultaneously the local smoothness around
all respective xi,j . (We will drop the index j in the following to
simplify the notation.) The vertices are then updated as

xi ← xi + (mT vi)vi with vi := K−1pi (8)

being the viewing ray where xi lies on. Local smoothness at a
vertex xi is measured using the length of the Laplace vector

li :=
1

Ω

X
qj∈N(xi)

ωj(qj − xi), Ω :=
X

j

ωj (9)

in the surface mesh generated from the Delaunay triangulation of
the reconstructed samples from all frames. HereN(xi) denotes the
set of 1-ring neighborhood vertices around xi, i.e., all vertices that
are connected to xi by an edge in the triangulation no matter from
which frame j they have been reconstructed. For the ωi we use the
cot-weights described, e.g., in [Pinkall and Polthier 1993]. Since
we seek an update m which simultaneously improves the smooth-
ness at all vertices xi of a respective frame, we find m as the solu-
tion of the minimization problem

E(m) :=
X

i

||li||2. (10)

That is, for the vertices xi recovered from a respective frame, we
compute the update vector m that minimizes the sum of squared
Euclidean lengths of the corresponding Laplace vectors li. One
smoothing step of the whole scene mesh then consists of first com-
puting an updatemj for each frame j and then applying all updates
to the respective vertices. Figure 4b shows the result after the ap-
plication of several smoothing iterations to the mesh of the plane
example from above. Figures 5b and 5c demonstrate the effect of
the smoothing operator on a real-world reconstruction example. Al-
though the mesh before smoothing may be affected by strong noise
as shown in Figure 5b, it still contains the true surface informa-
tion encoded in the form of per-frame vertex configurations. Since



(a) (b) (c) (d)

Figure 5: Renderings of the different steps of our outlier rejection and smoothing pipeline. (a) shows the raw reconstructed surface mesh
(i.e., without any post-processing) of the living room sequence. Outliers are removed in (b), and (c) shows the result of several iterations of the
smoothing operator discussed in Section 7. The final result in (d) has been obtained by several additional iterations of per-vertex Laplacian
smoothing where the vertices are still constrained to lie on their respective viewing ray. Even though (a) looks very noisy, the noise has a
special systematic structure (cf. Section 7) and can therefore be eliminated quite effectively.

(a) (b)

(c)

(d)

(e)

Figure 6: Reconstruction of a bedroom scene. This example exploits the fact that the pose of the laser rig can be chosen arbitrarily:
The resulting surface in (a) is a combination of two sub-sequences with different laser rig poses. The individual reconstructions of the
sub-sequences are shown in (b) and (c), respectively. (d) shows a texture-mapped rendering and (e) one of the input images.

Resolution 720× 576 1024× 768 1280× 960
Avg. time 119ms 205ms 333ms

Table 1: Average per-image computation time required for the de-
tection of 20 laser points in images of different resolutions using
our cross-correlation based detection algorithm.

these per-frame configurations are moved rigidly by the smooth-
ing algorithm, our method is able to faithfully recover the correct
surface up to inevitable measurement noise. The final step of the
mesh post-processing (cf. 5d) hence consists of a standard Lapla-
cian smoothing operator that still constrains all vertices xi,j to lie
on their respective viewing ray.

Another issue we have to deal with are outlying depth values, which
are the result of wrong laser ray to image point pairs. Wrong pairs
may be generated during the greedy pairing process if a false image
point is closer to a projected laser ray than the correct point either
since the correct point is occluded or due to slight detection errors.
Outlying pairs do not harm the laser rig pose estimation: they are
only generated since they are supported by the winning hypothesis
for the rig pose and hence do not influence the final pose refine-
ment (6) much because outliers with dist(·, ·) > dthresh are not
taken into account. They do, however, usually appear as long, thin
spikes in the recovered scene geometry (cf. Figure 5). We imple-
mented a simple outlier detection mechanism based on the length

of object space edges and on the length ratio of object space to im-
age space edges of the generated Delaunay triangulation. All faces
that contain an edge longer then lthresh or with a ratio larger than
rthresh are erased. After that we erase all connected mesh compo-
nents that only consist of 10 or less vertices. In our experiments
we found that thresholds of lthresh = 50cm and rthresh := 4 work
sufficiently well. Outlying vertices are removed by re-computing
the image space Delaunay triangulation without them. The effect
of the outlier removal is demonstrated in Figure 5a for the living
room image sequence.

8 Results

All results and measurements presented in the following have been
performed on an AMD Athlon64 based system running at 2.2GHz.
The computation time required by the laser point detector is shown
in Table 1 for several different image resolutions. The laser point
tracking algorithm takes, on average, 1.59ms per frame for 20 laser
points and is hence negligible in comparison to the time required
for the laser point detection. The time required for the estimation
of the laser rig pose strongly depends on the quality of the initializa-
tion, i.e., on the distance between the initial and the optimal pose.
In combination with the RANSAC approach, this means that the re-
quired computation time for the hypotheses depends on how many
false laser ray to image point pairs they contain. For the living room
scene (see below) the per-frame estimation (including the random
sampling and the final refinement) took between 1574ms and 90ms,
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Figure 7: Partial reconstruction of a living room scene. The recovered triangle mesh is shown as flat shading in (a) and texture mapped in
(b). (c) and (d) show textured renderings from new vantage points and (e) shows one of the input images.

with an average of 135ms. The long maximal estimation time is
caused by the initialization of the laser rig’s pose transformation in
the first frame: The identity transformation is, in general, quite far
away from the optimal transformation. Hence the solution of the
optimization problem (6) requires much more time than for succes-
sive frames where the previous transformation is used for initial-
ization. The generation of the Delaunay triangulation and the post-
processing, i.e., smoothing and outlier detection, for all examples
always took less than one minute.

An issue requiring consideration is the camera setup, especially the
shutter speed. Clearly, if the exposure time is too long, the projec-
tions of laser points in the scene result in short lines segments in
the input images rather than points. It hence is necessary to find
a compromise between too long exposure times and too dark input
images. Since the laser points are usually very bright in regularly
illuminated indoor scenes, we found that it is possible to set the ex-
posure time to small values and still be able to robustly detect laser
points. Concretely, we set the shutter speed to 20ms–12ms (i.e.,
1/50s–1/80s) in all our experiments. These values allow for laser
projections without motion blur if the laser rig is moved at moderate
speeds.

In the first example in Figure 6 we have applied our method to a
bedroom scene. The main difficulty here is the non-trivial geom-
etry of the curtain and the wrinkles in the blanket that cause laser
points to be occluded and re-appear frequently. Nevertheless our
algorithm is able to find a sufficient number of correct laser ray
and image point pairs to perform the reconstruction. In this ex-
ample we have utilized the fact that the user may choose the pose
of the laser rig freely. The complete geometry has been recovered
from two subsequences, one with the laser rig on the left side of

the camera and one with the rig on the right side. The two par-
tial reconstructions (shown in Figures 6b and 6c, respectively) have
been integrated into a single surface by combining the image-space
Delaunay triangulations. Outlier removal and smoothing has been
performed on the combined surface to exploit the increased reso-
lution of the resulting mesh. Note that the rough appearance of
the curtain in the back of the scene is due to triangulation artifacts
caused by the sparse sampling. Better results might be obtained by
using a data-dependent triangulation instead of a simple Delaunay
triangulation. The input image sequence consisted of 1350 images
of resolution 1024 × 768 in total and the reconstruction took 10.5
minutes, including image loading, point detection and matching,
and rig pose estimation. The final mesh consists of 21.5k vertices.
Figure 6d shows a texture-mapped rendering of the reconstructed
mesh from a new vantage point. For texturing we reuse the image
Iempty of the difference computation in Section 4, i.e., an image
taken from the same camera position as the images of the recon-
struction phase but without laser points.

The next example (cf. Figure 7) shows the reconstruction of a liv-
ing room scene. We took 630 images (resolution 1024 × 768) of
this scene, the overall computation then took slightly more than 4
minutes. The final triangle mesh consists of 10k vertices.

The third example demonstrates the robustness of our algorithm
with respect to falsely detected laser points. The specular white tiles
(cf. Figure 8b) reflect the laser rays to the other wall, where they
produce additional strong local maxima in the cross-correlation
function of the laser point detector. These false positives then easily
overrule dull laser points caused by less reflective surface material.
However, the robust sampling approach enables our algorithm to
cope well with this situation and the only possible side-effect is, as
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Figure 8: Reconstruction of a scene with strongly reflecting surface
parts. (a) shows one frame of the input image sequence, (b) shows a
closeup of the tiled surface with several additional red dots caused
by reflections. Note that the two bright reflections on the water tap
result from the ceiling light, not from laser pointers. The recon-
structed triangle mesh is shown in (c).

discussed above, outlying vertices in the final surface which can ef-
fectively be detected and removed. For this example we used 900
input images of resolution 1280× 960, resulting in a triangle mesh
of 13.4k vertices after a total computation time of 9 minutes.

9 Conclusion and Discussion

We have presented a new method for the incremental reconstruction
of depth maps using a hand-held array of laser pointers. The main
advantages of the proposed approach are its flexibility, its versatil-
ity and its robustness: The pose and motion of the laser rig is com-
pletely unconstrained, allowing the user to move the lasers freely
through the scene and enabling a variety of possible reconstruc-
tion setups. We have demonstrated with several example recon-
structions of scenes with non-trivial geometry and surface materials
that our algorithm robustly copes with occluded, falsely detected or
falsely matched laser points. Nevertheless, some of the problems
inherent to other laser-based reconstruction techniques apply to our
method as well: completely transparent or mirroring materials (cf.
the water tap in Figure 8b) or materials that completely absorb the
laser light cannot be reconstructed. Furthermore and again simi-
lar to existing methods, the more parallel the laser rays are to the
viewing rays of the camera, the more severe becomes measurement
noise which cannot be removed with the smoothing operator pre-
sented in Section 7. Hence our method works best for a large cam-
era viewing frustum and sufficiently large angles between viewing
and laser rays.

We have identified several areas of possible future work. On the one
hand we plan to turn our method into a real-time system that pro-
vides the user with instant feedback on where the scene has been
sufficiently covered with laser points already and which parts re-
quire more coverage with laser points. Furthermore, our current
approach of computing the Delaunay triangulation in image space
in combination with sparse samplings may result in suboptimal
surfaces. We plan to investigate data-dependent triangulation ap-
proaches like the one by [Dyn et al. 1990] to counter these surface
artifacts. To overcome the problem of sparse image space sam-
ples altogether we plan to add a laser plane emitter to the laser rig.
This way we could recover a whole image space line of samples
per frame in addition to the sparse set of samples from the laser
pointers.
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