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Convergence of subdivision and degree elevation 

Hartmut Prautzsch and Leif Kobbelt 

Fakultat far Informatik, Universitat Karlsruhe, 76128 Karlsruhe, Germany 

This paper presents a short, simple, and general proof showing that the control 
polygons generated by subdivision and degree elevation converge to the underlying 
splines, box-splines, or multivariate B~zier polynomials, respectively. The proof is 
based only on a Taylor expansion. Then the results are carried over to rational curves 
and surfaces. Finally, an even shorter but as simple proof is presented for the fact that 
subdivided B~zier polygons converge to the corresponding curve. 

1. Introduction 

Subdivision and degree elevation are well-known techniques in computer- 
aided curve and surface design. Very briefly, subdivision and degree elevation 
mean to represent a curve or surface given as a linear combination of  some basis 
functions with respect to a different but specific set of new basis functions. The 
process of  subdivision and degree elevation can be iterated so as to produce a 
sequence of  so-called control polygons which converges to the underlying curve or 
surface. 

These techniques are rather useful in a number of  applications such as curve 
and surface evaluations [1] and display [3, 12], surface/surface intersections [12], 
and they can also facilitate simple proofs, e.g. about convexity [19]. 

The convergence property is well-known and established in a number of  
publications by different authors: Farin [8-10],  Micchelli et al. [14], Dahmen [6], 
Cohen et al. [4], Lane et al. [12], Prautzsch [16, 17], Dahmen et al. [5]. Another proof 
of the convergence of  subdivision which is quite well known in the CAGD community, 
though not published, makes use of  the polar form of polynomials [13,20]. 

One also has similar results for more general subdivision schemes, e.g. [2, 18], 
and general comer cutting schemes [7, 11]. 

The references mentioned above use about seven different ideas to prove 
convergence. However, only two ideas are useful to find the rates of  convergence, 
but nowhere can one find the convergence constants. Moreover, none of  these proof 
techniques seem to be applicable to all the algorithms which subdivide or degree 
elevate the Btzier, B-, or box spline representation of a curve or surface. In particular, 
there is no (correct) proof of  the convergence of degree elevated spline control 
polygons in these references, cf. section 5. 
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In this paper, we will present a general and also rather simple proof technique. 
The only prerequisite is a knowledge of Taylor's expansion. Moreover, we obtain 
explicit constants. Then we show how the convergence results for integral curves 
and surfaces can be carried over to the rational case. Finally, we present a second, 
even shorter proof of the fact that subdivided B6zier polygons converge. 

Remark 1 

It should be noted that nowhere in this paper do we consider the process of 
computing a degree raised or subdivided representation of splines explicitly. Rather, 
we consider a fixed spline of degree n in some mth degree representation and 
estimate the deviation of the corresponding control points depending on m and the 
knot spacing. 

The final estimates therefore imply simultaneously that sequences of control 
polygons produced either by subdivision or degree elevation for some fixed spline 
converge at a certain rate. 

2. A simple general idea to prove convergence 

In this section, we explain a general method to prove convergence under 
subdivision and degree elevation. This is done best by a simple example, namely 
for BSzier curves over the unit interval [0, 1]. An arbitrarily small interval is considered 
in the next section. 

Let B~(x), i = 0 . . . . .  m, be the Bemstein polynomials of degree m and let 

m 

p(x) =  biB:"(x) 
i = 0  

be some polynomial of degree n < m in its mth degree Bemstein-B6zier  repre- 
sentation. By induction over n, we will prove that 

m.ax]bi-  p ( m ) }  = O ( 1 ) .  (2.1) 

For n < 1, one has bi = p(i/m) since the Bemstein-B6zier representation has linear 
precision. Next, we assume that (2.1) holds for polynomials of degree n -  1. On 
writing i-1 

bi = bo + s l [ m A b k ]  
k = 0  

and applying (2.1) to p'(x) ,,-1 =-1 = Y~k=0 mAbkBk (x), we obtain 

i ,  (1)] 
bi=p(O)+ ~ 1 p, + 0  . 

k=O m 
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Let a = k/m,  c = k / (m - 1), and b = (k + 1)/m. Then a < c < b and by Taylor 's  theorem 
there are numbers ~ and r / i n  [a, b] such that 

p(a)  = p(c)  + (a - c )p ' (c)  + (a - c) 2 p , , (~) ,  
2 

which gives 

(b - a )p ' (c )  = p(b)  - p (a)  + �89 (b - a )2e ,  

Thus, one has 

which is (2.1). 

p(b)  = p(c)  + (b - c )p ' (c )  + (b - c) 2 p # ( ~ ) ,  
2 

i - 1  m 
bi = p ( 0 )  + ] ~  k v - - A - - :  - p 

k=0 

(2.2) 

I E I < m a x  I P"I. (2 .3)  
[a,b] 

, 

Note that pfn+l)m0. Hence, a more careful analysis establishes 

I ' m a x , l + '  max:I bk - p < ~ m  Io,1] 2(m - 1) lOal 

+ . . . +  1 m a x  
2(m - n + 2 )  to,u Ip '>l; 

Notice that the constants in the above estimate are not optimal. Moreover,  since p 
is a polynomial, the remaining term in Taylor 's  theorem also is a polynomial. There- 
fore, one can write b k - p ( k l m )  as a rational polynomial of  degree 2 n -  1 in m. 

3.  B~zier  s impl i ces  

The proof of  the previous section also applies to multivariate polynomials in 
B~zier  representation. Let i = (il . . . . .  id), u = ( u l , .  , Ud), and io = m - il - .  �9 �9 - id; 
then the Bernstein polynomials of  degree m are 

B~(u)  = 
(1 - Ul - . . . -  Ud)iOu~l...US d 

~ot . . .  id~ 

Notice that here B i is not represented in the usual symmetric form. Further, let 

I m = {i ~ {0, 1 . . . . .  m } d ' i o  >- O} 
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and consider some polynomial p of  degree n < m in its mth degree B6zier repre- 
sentation 

ie  lm 

As in the previous section, one can show by induction on n that 

max  I bi - p ( a  + hi~m) I < E,,, (3.1) 
i~lm 

where En is recursively defined by 

En-k = h'---~2 D k+2 + hEn-k- l ,  
(m - k) 

E 1 - - 0 ,  

D k =  ~max{Iq(u)  l : 0 < u ,  u l + . . . + u d < l } ,  
qeQ 

Q = [all partial derivatives of  p of  order k}. 

Note that En = O(h2/m).  

For n = 1, one has bi = p ( a  + hi~m). Then for the induction, we assume that 
(3.1) holds for all polynomials of  degree n - 1 and derive (3.1) for p o f  degree n. 
Let i ~ Im and a = i l + �9 �9 �9 + ia. Then consider a sequence J0 = 0, Jl  . . . . .  Ja = i, 
where all differences Ajk equal some unit vector (0 . . . . .  0, 1, 0 . . . . .  0). The vertices 
marked in fig. 1 form such a sequence, where m = 7 and d = 2. 

On using the abbreviation ak = bjk, one has 

bi = ao + ~ - -  Aak . 
k=o m 

Note that m A a j h  represents the control point cjk of  the directional derivative 

d 
p'k(u) = - ~  p (u  + t A j k ) l t = o  = ~ c iBm- l (u ) .  

i E Ira-1 

Therefore, i f  one applies the induction hypothesis to these derivatives one obtains 

where 

bi = p(a)  + ~ P'k a + h + F 
k=0 - - 1  ' 

IFI ~ En-1. 
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u2 

il i2 

1 2 m - - 1  m 

Figure 1. A sequence (JD. 

Notice tha t j k / (m - 1) lies in the interval [Jk,Jk + (1, 1 . . . . .  1)]/m. Thus, by successive 
applications of  Taylor ' s  theorem, we obtain 

b i = p ( a ) +  ~., p a + h  - p  a + h  + G +  F , 
k=O 

where 
h 2 

IGI ': m----yD 2, 

which proves (3.1). 

4. Splines 

The proof  of  section 2 can also be used to show convergence under  degree 
elevation and subdivision for splines. Let (Ui)ie l be a non-decreasing sequence of  
knots such that ui < ui+,~+l and let B~ be the B-spline of  order m + 1 defined by the 
knots ul . . . . .  Ui+m§ Then consider the spline 

s (x)  = biS:"fx) 

of  some degree n < m. We assume that this representation of  s is generated by 
degree elevation, see e.g. [15], from the nth degree representation. Hence,  each knot  
ui occurs with multiplicity m - n + 1 at least. 
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Let 

~i = l ( u i + t  + . . .  + ui+m); 
m 

then one can prove by induction over n that 

max I bi - s(~i) l < En, 
O<i~m 

(4.1) 

where E,t is recursively defined by 

E,,_ k = ((n - k)h) 2 max max 
2(m - k) Isis2ra-1 ~xsu~+l 

E l =0, 

Is(k+2)(x)l + (n - k )hEn_k_l, 

and h = maxk2~-I I Aukl. For n < 1, it is well known that bi = s(~i). For the induction, 
we assume that (4.1) holds for splines of order n - 1 and derive (4.1) for s o f  order 
n. Considering Ibi - s(~i)[ we can assume, without loss of  generality, that ui§ is 
an m-fold knot since, otherwise, one could insert knots at ui+l such that bi and ~i 
remain unchanged. Thus, there is some a < i + 1 such that 

~a = Ua+l  = . . .  = Ui+l  = . . .  = U a + m .  

This means b,, = s ( ~ ) .  Again, we write 

i 

bi = s ( ~ )  + ~ ~-~-k[TkVbk], )'k = m , 
k = a + l  U k + m  --  Urn 

and observe that ~'kVbk represents the control point ck of  s'(x) = ~ i = l C i B  i m  m - l ( x ) .  

Thus, on applying (4.1) to s'(x), we obtain 

i 

b, = + X + F] ,  
k = a + l  I k  

where r/k = ( 1 / ( m -  1))(uk+l + . . .  + Uk+m-1) and IFI <En_t.  Since each knot ui 
occurs with multiplicity _>m- n + 1, one has uk+=-uk < nh. Further, notice that 
r/k ~ [~k-t, ~k]- Hence, we can proceed as in (2.3) and obtain 

where 

i 
bi = S(~a) + ~ [S(~k) -- S(~k-l) + I F  + GI, 

k + a + l  ~tk 

I G I -  ~- h max Is"(x) l. 
x E [ul ,u2. ] 

Computing the above sum establishes (4.1). 
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Remark  2 

In order to apply Taylor 's  theorem, we need s ~ C2(~_l ,  ~k), k = a + 1 . . . . .  i. 
This is the case since there is no ( m -  1)-fold knot in the open interval (~,,, ~i) 

C (Ui+ l ,  Ui+m). 

5. A counter example 

Before we continue with box splines, we briefly recall the general p roof  
technique used in most  afore-mentioned references and show its limitation. 

Consider the linear space spanned by the basis splines B6" . . . . .  B~. Since 
norms are equivalent in this space, there is a constant Km such that for all splines 

m 

s(x)  = biB:"(x) 
i = 0  

in this space, one has the stabili ty proper ty  

max I bil --- Km max Is(x) l. 
O<i~m x ~ [uo,u~n+l ] 

In order to estimate the deviation of  the control points bi from s(x), one can employ 
the quasi-interpolant 

Qs = X s(r 

Then, on using the stability property, one obtains 

m a x  I bi - s@) l  < K m  max  1$ - Qs I. 
O<i<m [uo,u2m+l] 

The more difficult part is to estimate Km and s -  Qs. In [21], one finds 

K m ~ 2  m and m a x l s - Q s l =  0 ( ~ ) ,  

where h is the maximum difference between successive knots. Obviously,  the above 
estimates alone do not prove convergence under degree elevation. 

However ,  i f  the B~ are Bernstein polynomials,  there is a solution [14]. 
In this case, s and Qs are polynomials  o f  some degree n < m .  Hence,  
bo m - s ({~)  . . . . .  b~ - s({ m) is a degree elevated control polygon of  s - Qs. It lies 
in the convex hull o f  the non-degree elevated control polygon of  s - Qs, say co . . . . .  c,,. 
Thus, one has 

m a x l b  m - s(~i)l < max Icil < Kn m a x i s -  Qsl < O l - ~ ) .  

As one may expect, this solution does not apply to splines in general. For  
example,  let (ui) be a sequence of  ( m -  1)-fold knots such that Uo = ul = - 1 ,  
u2 = �9 �9 �9 =Um = 0, um +1 = �9 �9 �9 = U2m-1 = 1, and Uzm = U2m § 1 = 2, and let 
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s(x)  = biS (x) 

be the mth degree representation of  the parabola s(x) = x z. Then, over [0, 1] one 
has 

Qs= lm-~-(B~t +12B~ n +22B2 m +.. .+(m-1)2Bm_l+(m+l)2Bm),  

which is of  proper polynomial degree m -  1 or m. 
The proof given in [4] compares in essence to the lines above, but misses the 

problem addressed by our example. It appears to us that until now there has not 
been any proof  that degree elevation o f  splines converges linearly. 

6. Box splines 

After some additional provisions, the proof of  section 2 also applies to the 
subdivision algorithm of  box splines. 

Let X = {xl . . . . .  xn} denote a family of  not necessarily distinct vectors in 7/~ 
and also the matrix whose columns are xl . . . .  ,x,,. Furthermore, assume that for 
each linearly independent subset YofX, one has det Y = + 1. Notice that this assumption 
implies X c { - 1 ,  0, 1 }s. Then the box spline B(x IX) is defined by the requirement 
that 

f f(x)B(xlX)dx = f f(Xy)dy 
R" [0 ,1 ] "  

holds for all continuous functions f on R ". Now consider a spline 

s(x)  = b B(x - i l x ) .  
i ~ Z  s 

Subdividing s(x) means to represent s(x) over the finer grid h7l', h - l~  N, by 
translates o f  the scaled box spline B(x/h IX), i.e. subdivision means to produce 
control points ci such that 

s(x) = ~ ciB(xlh- i IX). 
i ~ Z  s 

Let Y = { y i . . . . .  Yr } c X be such that B (x I X \ Y) is continuous and piecewise 
linear (in every direction). Then, on using the idea o f  section 3, we can prove by 
induction on r that 

sup I s(~i) -cil  < En, (6.1) 
i ~ Z  s 

where ~:i = hi + (h/2) (xl + .  �9 �9 + xn) and 
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E n - k =  2 ( n - k ) h 2  sup 2 k l b j l + ( n - k ) E n _ k _ l ,  k = O  . . . . .  r - l ,  
3 jEz" 

Recall that 
$(~i) = Ci 

i f  s is piecewise linear in each direction xi ~X,  i.e. Y-- ~ .  
For the induction, we assume Y, ~ 13 and that (6.1) holds i f X  did not contain 

direction Yl. Because of  possible index shifts, it suffices to consider c / -  s(~/) for 
i = (n/h, 0 . . . . .  0). We may then set the following control points to zero: 

b j = 0  fo r j [ 1 ]  < 0. 

This change does not affect c i -  s(~:/), nor does it increase SUpz, I b~l. Then we have 
co = S(~o) = 0 for h < 2In. On using the abbreviations ck = c(k,o ..... 0) and s~k = ~:(k,0,...0), 
we obtain 

nlh 

Ci =Co + E VCk" 
k = l  

Note that V c j h  represents the control point d(k,O ..... 0) of  the directional derivative 
of  s with respect to the first unit vector 

Ds(x) = -~d s(x + tel)lt-_o = ~ diB(xlh - i l X  \ {el}) 
i~Z s 

Thus, on using (6.1) for Ds, we obtain 

nlh 
C i = C o + (hOS( k)+hF), 

k=l 

where T/k = (~k-1 + ~D/2 and IF I--- E,,_I. Thus, we can conclude by means of  Taylor 's  
theorem as in (2.3) that 

nlh 
Ci =  (VSffD + a + hE),  

k = l  

where 
h 3 2h 3 

I GI < -~- sup IOas(x) l < sup I bkl. 
x~n" 3 k,~Z" 

Note that 7/k is the midpoint of  ~:k-I and ~k. I f  in (2.2) c = (a + b)/2, the 
second-order terms in (2.2) agree and (2.3) is a third-order approximation of  
( b -  a)p'(c). Therefore, the above estimate involves a third-order derivative. 
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Remark 3 

Note that Ds exists continuously, but D2s may be discontinuous. If Ds(~lk) 
is discontinuous, then it is discontinuous only in 7/. These discontinuities do not 
affect the above estimate. 

7. Rational splines 

The convergence results also hold for rational curves and surfaces, i.e. subdivision 
converges quadratically and degree elevation linearly. This can be seen as follows. 
Let 

r(x) = ~, #ibiBi(x) = q(x) 
E #iBi (X) #(X) 

be a rational curve or surface where the B i are either uni- or multivariate Bemstein 
polynomials, B- or box splines. Then we can apply (2.1), (3.1), (4.1), or (6.1) to 
both the numerator and denominator. The respective convergence results are of  the 
form 

max I~ibi - q(~i) I < A 
i 

and 
m a x  I p / - / ~ ( ~ ) 1 - - -  C. 

i 

We will only consider positive weights ~i. Therefore, without loss of  generality, 
we can assume that all ~i > 1. With this provision, it is quite simple to show that 
the control points bi converge to the function values r(~i), namely 

Ibi - r({~)I-< ,O~lbi - r({~) I 

< I flibi - q({~) I + I r ({ i ) l  I fl({~) - fl~l 

<_ A + m a x l r ( { i ) l C .  
i 

Note that r(x) is bounded over a bounded interval since fl(x) is positive. 

8. Another simple proof 

Finally, we present another quite different proof for the convergence of  
B6zier polygons under subdivision. Let 

/h) p(x) = ~ hi(h)8: 
i = 0  

be a polynomial with its Bfizier representation over the interval [a, a + h]. Then it 
follows directly from de Casteljau's algorithm that for all j = 0, 1 . . . . .  n 
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bi(i) 

b (1) 

Figure 2. De Casteljau's construction. 

J 
bj(h) = ~ bi(1)B/(h), 

i--0 

i.e. bj(h) traces out  the curve with Bdzier  points boO) . . . . .  bj(1) for va ry ing  h, as 
i l lustrated in fig. 2. Note that bj(0) = p(a) and bf(O) = (jln)p'(a). Thus,  by  Ta y l o r ' s  
theorem it fo l lows that 

bj(h) = p ( a  + J h) + O(h2). 
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