Interactively Controlled Quad Remeshing of High Resolution 3D Models

Hans-Christian Ebke!
'RWTH Aachen University

LR
S
AR
R
2R
SRR

Patrick Schmidt!

Marcel Campen? Leif Kobbelt!

2New York University

\\}t‘
S

2
R
W

R
25
R 5

=
D
\\:‘

s

o
oy

"

=
sl

=

\\“‘“

R
SN
s
i

=
SR

s
ey

S

e
=
SRR
3

=

X
&
y

1117111

Y
1T

Figure 1: Steps of a workflow based on our method. Starting from a high resolution input mesh (2M faces), a hierarchichal representation
and an unconstrained integer grid parametrization are computed in a one-off initialization step (taking 10s). Subsequently, the user can
iteratively add or change constraints to adjust the edge-flow and other mesh properties, while being provided with near-instant feedback at
interactive rates (each update taking around 1s). Eventually, a quad mesh can be extracted from the parametrization. Without our framework,
Jjust using the underlying method [Bommes et al. 2009, Ebke et al. 2014] in its original form, every single update step takes 5 minutes.

Abstract

Parametrization based methods have recently become very popular
for the generation of high quality quad meshes. In contrast to pre-
vious approaches, they allow for intuitive user control in order to
accommodate all kinds of application driven constraints and design
intentions. A major obstacle in practice, however, are the relatively
long computations that lead to response times of several minutes
already for input models of moderate complexity. In this paper we
introduce a novel strategy to handle highly complex input meshes
with up to several millions of triangles such that quad meshes can
still be created and edited within an interactive workflow. Our
method is based on representing the input model on different levels
of resolution with a mechanism to propagate parametrizations from
coarser to finer levels. The major challenge is to guarantee con-
sistent parametrizations even in the presence of charts, transition
functions, and singularities. Moreover, the remaining degrees of
freedom on coarser levels of resolution have to be chosen carefully
in order to still achieve low distortion parametrizations. We demon-
strate a prototypic system where the user can interactively edit quad
meshes with powerful high-level operations such as guiding con-
straints, singularity repositioning, and singularity connections.

Keywords: integer grid maps, quad meshing, interactive

Concepts: *Computing methodologies — Mesh models; Mesh
geometry models;

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions @acm.org. © 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.

SA ’16 Technical Papers, December 05-08, 2016, Macao

ISBN: 978-1-4503-4514-9/16/12

DOI: http://dx.doi.org/10.1145/2980179.2982413

1 Introduction

The problem of generating a quad mesh for a given surface has
a long history and has been tackled by many different computa-
tional approaches over the decades. In recent years, a field-guided
parametrization-based strategy, suggested, e.g., by Knupp [1995]
and later elaborated in detail [Ray et al. 2006; Kilberer et al. 2007;
Bommes et al. 2009], has gained popularity. It is based on gener-
ating a parametrization of the input surface that maps the grid of
integer iso-lines in IR? onto the surface in such a way that it in-
duces a quad mesh. Bommes et al. [2013] coined the term integer
grid map (IGM) for such parametrizations.

This approach’s popularity is due to its high result quality paired
with the fact that the result can be influenced by several types of
constraints that are intuitive even for novice users. Thus, at least
in theory, IGM based quad meshing allows for a workflow where
the design space is explored by iteratively adding, modifying, or
deleting constraints (cf. Figure 1). In practice this kind of workflow
quickly breaks down due to the run time complexity of the under-
lying vector field generation and surface parametrization methods.
Inacceptable delays well over 10 seconds can already occur on sim-
ple input models triangulated with as few as some ten-thousand tri-
angles. The generic framework we present here addresses this com-
mon shortcoming, lifting the family of field-guided quad meshing
methods into the realm of interactive methods.

At its core, our framework exploits the fact that the run time of
the process of IGM computation depends first and foremost on the
complexity of the input model’s triangulation. A straightforward
way to speed up the process to interactive rates thus is to heavily
decimate the input and simply operate on this simpler version. This
naive approach, however, has two crucial shortcomings:

* Obviously, the IGM computed on the decimated mesh will
differ, and it might differ greatly. In particular, the IGM does
not change gracefully, in a manner continuous in the geomet-
ric change induced by the decimation; the IGM has discrete
and combinatorial properties (the singularities and the inte-
ger transitions, defining the global mesh structure), and these
change abruptly and globally under mesh decimation. This

http://dx.doi.org/10.1145/2980179.2982413

is particularly true for common decimation objectives such as
Hausdorff distance minimization, as lower Hausdorff distance
does not imply more similar IGM optimization results.

The resulting IGM is defined not on the original mesh, but on
adecimated version. Depending on the application context, an
IGM on the original mesh may be required by subsequent pro-
cessing steps. In the case of mere quad mesh extraction one
could work with the coarse IGM, but the resulting quad mesh
will have lower approximation quality (cf. Figure 2), align-
ment to features may be lacking, and user constraints may not
be met correctly. One might consider transferring the IGM
to the original mesh, but standard upsampling or prolongation
operators are not applicable due to the specific discrete struc-
ture (cuts, transitions, and singularities in the IGM).

1.1 Contribution

We present a framework to enable the computation of IGMs on
highly complex meshes at a run time quick enough to enable a truly
interactive work flow. In order to avoid the problems of the above
naive approach, we make the following, threefold contribution:

* A new decimation objective, aiming for Gaussian curvature
preservation, that we use for the incremental decimation of the
input mesh. As we show, this approach is highly beneficial in
our scenario, keeping the IGM (in particular its guiding field)
computed on the decimated mesh close to the ground truth.

* A novel coarse-to-fine mapping approach that allows us to
map a global, chart-based parametrization (in particular an
IGM) computed on a decimated mesh onto the original mesh
in linear time. It is aware of charts, transitions, and singulari-
ties, and maintains their consistency throughout. This allows
us to hide the coarse mesh as a proxy in the background, com-
pletely transparent to the user and downstream applications.

* A framework building on the above techniques to interactively
explore the integer grid map design space. It is based on a spe-
cific three-tier hierarchy of the input model, custom-tailored
for the IGM use case in order to be able to offer all of the
usual design tools to the user. Thanks to the efficiency and low
complexity of our coarse-to-fine mapping method, interactive
rates are achieved even on meshes with millions of triangles.

Typical round-trip times (i.e. delays between adding a user con-
straint and completing the re-generation of the IGM and its visual-
ization on the input mesh) achieved in our experiments (using [Ebke
et al. 2014; Bommes et al. 2009] as underlying IGM computation
method) were below 1 second on complex meshes of up to about
350k triangles and below 5 seconds on highly complex meshes of
about 4 million triangles. The same IGM method used without our
framework takes over 1 minute and over 20 minutes, respectively,
for a single update using identical parameters and constraints.

Note that we do not present a new parametrization objective or
rounding strategy for IGM computation, nor do we propose con-
crete UI metaphors to let the user specify the constraints suitable
for our case. Our method can rather be understood as a framework,
built around and oblivious to the concrete parametrization optimiza-
tion method and the user interface (cf. Figure 3).

2 Related Work
Field-guided Parametrization

The aforementioned quad remeshing methods derive a great part
of their user control from the orientation fields that guide their

o,
SRR
o W
e
Voo
ag,

Figure 2: Left: a quad mesh extracted directly from an IGM on a
decimated mesh. Right: after mapping the same IGM to the origi-
nal input mesh using our coarse-to-fine mapping technique, a quad
mesh without the coarse discretization artifacts can be extracted.

parametrization process. There is a sizeable amount of methods
to choose from for the generation and modification of such fields
[Vaxman et al. 2016]. They can loosely be categorized into those
that generate 4-symmetric cross fields [Palacios and Zhang 2007;
Ray et al. 2008; Knoppel et al. 2013; Liu et al. 2016] and methods
that exploit more degrees of freedom by generating non-orthogonal
fields [Panozzo et al. 2014; Diamanti et al. 2014; Jiang et al. 2015].

Using a Poisson formulation, parametrizations whose isolines strive
to follow those fields’ directions can be computed, as has been
demonstrated in various contexts [Ray et al. 2006; Bommes et al.
2009; Pietroni et al. 2011; Nieser et al. 2012; Bommes et al. 2013;
Marcias et al. 2013; Ebke et al. 2014; Campen and Kobbelt 2014; Li
et al. 2015]. Using additional rounding techniques [Campen et al.
2015; Bommes et al. 2013; Bommes et al. 2009] these parametriza-
tions can be turned into IGMs.

The framework we present in this paper can be used to speed up any
combination of guiding field and IGM computation method. In fact,
as it does not rely on the map’s integer properties, it also works for
general so-called seamless parametrizations, e.g. [Ray et al. 2010;
Myles and Zorin 2012; Myles and Zorin 2013], which broadens the
range of application scenarios beyond quad meshing.

Multi-Resolution

A common strategy to speed up computations on densely tessel-
lated surfaces is the use of multi-resolution hierarchies or multigrid
approaches.

Multi-level mesh hierarchies can be obtained through incremental
decimation [Hoppe 1996]. Several approaches exploiting these for
the purpose of parametrization have been proposed, mainly in the
context of texture mapping [Sander et al. 2001; Sander et al. 2002;
Cohen et al. 1998; Hoppe 1999; Lee et al. 1998; Hormann et al.
1999]. However, they either map the parametrization in fine-to-
coarse direction only or they are tailored to disk-topology paramet-
rization. The only line of works we are aware of which consider (in
some sense) transferring chart transition functions in coarse-to-fine
direction [Khodakovsky et al. 2003; Pietroni et al. 2010] relies on
a dual setting (cuts are across rather than along edges) such that it
is not applicable to IGMs, with their specific chart transitions and
their singularities. Daniels et al. [2011] mention the related possi-
bility of mapping triangles of a coarse level to corresponding “ap-
proximate geodesic triangles” on a fine level, without elaborating
on the robust automatic determination of these, though.

Bommes et al. [2013] use a two-level hierarchy for IGM computa-
tion. Only the parametrization is computed on the coarse level; the

User Interface — D B

user

l Input Mesh] { Input Mesh IGM J
target edge length

+ feature constraints —— > @———————————p
(roundtrip e.g.: 11.3s) A4

Redundancy Free
+ guiding constraints

+ index constraints ——— > @————————————»
(roundtrip e.g.: 1.3s) A4

l Minimally Sampled]

A

%D —>Q
—

Decimation

—

Coarse IGM J
+ layout constraints
+ cycle constraints —— »¢ j
(roundtrip e.g.: 1.0s) L» IGM Computation

Figure 3: An overview of the presented framework. A three-tier
mesh hierarchy (green) is generated. Decimation records are kept
in a log. IGM computation is performed on the coarsest level, and
the coarse IGM (blue) is transformed into a fine IGM (blue) on the
original mesh using the decimation log. This IGM serves as feed-
back based upon which the user adds, removes, or changes some
constraints by means of a suitable Ul (top). The different types of
constraints are fed into the pipeline at different decimation stages
(left), thus the next update iteration might be able to start at a low
level of the hierarchy, significantly saving re-decimation time. This
is exemplified with roundtrip timings of the scenario in Figure 1.

cross field must be computed on the complex input mesh, because
the special kind of decimation applied relies on a priori knowledge
of the field’s singularities. This in particular is a drawback because
the cross field optimization problem is a large mixed integer prob-
lem, with the number of integer variables linear in the input size.
Update rates are thus typically not interactive. Furthermore, the fi-
nal IGM is defined on the extremely coarse mesh only; a pointwise
map to the input mesh is available which, however, does not define
a per-face-linear IGM on the input mesh.

Jakob et al. [2015] demonstrated the use of a multi-level strategy
in a highly interactive quad(-dominant) meshing scenario. The ap-
proach is tailored to local parametrization operations, akin to [Ray
et al. 2006], and the coarse-to-fine mapping relies on the absence
of global parametrization consistency conditions. It does thus not
directly extend to the computation of global seamless parametriza-
tions such as IGMs (the consequent differences to our approach are
demonstrated in Figures 9 and 11). In particular, this local approach
implies that non-local constraints such as layout or cycle constraints
(cf. Section 4) cannot be taken into account.

General (unstructured) multigrid approaches [Aksoylu et al. 2005;
Ray and Lévy 2003] are likewise not readily applicable. First of all,
it is far from obvious how an IGM, with its discrete transitions and
singularities, can properly be mapped between levels using stan-
dard prolongation and restriction operators. A further general is-
sue is the fact that IGM computation inherently is a mixed integer
problem with discrete degrees of freedom. This makes the problem
not well-suited for these approaches, because the solutions behave
discontinuously across the levels; in particular, thus all the usual
convergence results [Wesseling 2004] do not apply in this case.

3 Method Overview

Figure 3 provides a bird’s-eye view over our framework. The initial
starting point is the high resolution input mesh. Using the deci-
mation technique, and keeping record of every decimation opera-
tion in the decimation log, we compute two additional, increasingly

coarser meshes of very different nature: the intermediate redun-
dancy free mesh, and the coarse minimally sampled mesh. The rea-
son for this three-tier hierarchy is as follows.

Three-Tier Hierarchy The cost of the IGM computation on the
coarse mesh can be made almost arbitrarily small (by an appro-
priate choice of coarseness). The cost of coarse-to-fine mapping
with our efficient strategy is also low. The entire process thus is
dominated by the decimation step (in Figure 1 it takes about 9s,
whereas IGM computation and coarse-to-fine mapping combined
take less than 1s). If this decimation only needs to be done once in
the beginning, this certainly is not an issue. However, as this ini-
tial decimation is unaware of the constraints (cf. Section 4) the user
might be adding, the coarse mesh can become ill-suited at a certain
point during interaction, lacking degrees of freedom (i.e. vertices)
in regions where the user wants to exert fine-grained control.

A (relatively) costly re-decimation, which preserves the required
degrees of freedom, is then necessary. To mitigate this cost, we
introduce an intermediate level into the hierarchy: it is a uniformly
sampled mesh with a resolution tailored to and sufficient for the two
most important forms of user interaction (guiding the quad orien-
tation, i.e. the edge flow, and controlling irregular vertices). Upon
change of the pertinent constraints through the user, re-decimation
can then be performed starting from the intermediate level, often
reducing the delay by an order of magnitude or more.

The minimally sampled decimation level is a very coarse, non-
uniform subsampling that takes Gaussian curvature, guiding and
index constraints into account. Figure 5 displays the hierarchy of
an example model. In Section 4 the constraint classes are described
in detail, and in Section 5 the decimation process is treated.

Parametrization The IGM computation is
performed entirely on the minimally sampled
mesh, using any IGM computation method.
From the perspective of our framework, the pa-
rametrization method can be considered a black
box. It is merely required that a seamless para-
metrization is provided for the subsequent steps.

Coarse-to-Fine Mapping Once a parametri-
zation is available on the minimally sampled
mesh it is propagated to the high resolution input
mesh using the information recorded in the deci-
mation log while maintaining consistency of the
transition functions, singularities, and the layout
of the induced quad mesh.

Iterative Modification The parametrized input mesh reflecting
the set of provided constraints serves as feedback for the user who
can then add, remove, or modify constraints and reiterate the pro-
cess. Additional run time is saved by not starting over from scratch
but, depending on the types of changed constraints, starting re-
decimation at the level where they take effect.

4 Design Constraints

We start by examining the five common classes of design con-
straints offered by state-of-the-art IGM computation methods, and
determine what kind of requirements they impose on the decima-
tion strategy to be introduced in Section 5.

Hard Feature Constraints are defined via a set of edges on the
input mesh that represent sharp feature curves which should be

faithfully reproduced through edges in the final quad mesh. Such
edges can be user-defined, detected by thresholding dihedral angles
or by considering larger neighborhoods [Hubeli and Gross 2001].

IGM computation methods enforce this constraint by requiring
these edges to lie on integer iso-lines in the parameter domain
[Bommes et al. 2009]. In our setting we need to ensure that the
coarse mesh still contains these edges (possibly in a sub-sampled
form) in order to be able to adequately express these constraints
when computing the IGM on the coarse mesh.

Soft Guiding Constraints are defined as connected regions on
the surface with an associated smooth direction field. The IGM’s
iso-lines (and thus the edge flow of the resulting quad mesh) within
such a region should be aligned along the given direction field. Such
constraint regions can be determined from brush-stroke user inter-
face metaphors, or they can be derived from soft-feature detection
methods [Nieser et al. 2012; Gelfand and Guibas 2004; Campen
et al. 2016].

Our decimation strategy has to ensure that every such region has a
proper counterpart in the coarse mesh and the support of its influ-
ence on the parametrization of the entire surface is maintained.

Index Constraints are prescribed indices [Ray et al. 2008] of sin-
gularities in the cross field which drives the parametrization pro-
cess. These indices directly translate into valences of irregular ver-
tices (or the local absence of irregular vertices) in the quad mesh
implied by the resulting IGM. They are given as a discrete scalar
value on vertices [Bommes et al. 2009]. The most common appli-
cation scenario for index constraints is in the implementation of a
drag-and-drop UI metaphor to edit the irregular vertex configura-
tion through move, merge, and split operations.

This type of constraint can only be enforced by the IGM computa-
tion if the vertices with prescribed index have a counterpart in the
coarse mesh, i.e. if they did not get removed during decimation.

Layout Constraints affect the topological structure of the IGM
or, in terms of a quad mesh, its connectivity. For instance, the user
can specify that a pair of singularities is connected by an isoline of
the IGM (a sequence of edges of the implied quad mesh) [Myles
et al. 2010], without prescribing the concrete path of the isoline
(which, if desired, can be done using feature constraints instead).

Urem
'/ﬁ @ 0 @ \
v3
8 ‘
(b) (©)

(d) (e)

Figure 4: lllustration of the atomic sub-operations performed in
a decimation step. The local 1-ring (a) is parametrized (b) and a
half edge collapse is performed (c). Next, edge flips are performed
to establish a local Delaunay triangulation (d). For coarse-to-fine
mapping purposes, barycentric coordinates of the removed vertex
in the local domain are determined and stored (e). This is similar
in spirit to the MAPS approach [Lee et al. 1998], though more in-
formation needs to be stored and the coarse-to-fine mapping is more
complex due to handling of singularities and transition functions.

Cycle Constraints require isolines to form closed, cyclic curves
in specified regions (similar to the above layout constraints with-
out prescribing concrete curves), preventing the local occurrence
of undesirable helices [Bommes et al. 2011]. Such constraints af-
fect the guiding field computation in form of holonomy constraints
[Ray et al. 2008] and the parametrization in form of cyclic layout
constraints (not necessarily involving a singularity) [Campen et al.
2016].

Being of topological nature, layout constraints and cycle constraints
do not restrict the space of acceptable decimations. Nevertheless,
they are expressed in terms of mesh entities (dual edge paths) and
thus must be translated to the coarse level.

5 Decimation Method

To obtain coarse versions of the input mesh, we make use of the
generic incremental decimation framework [Kobbelt et al. 1998]:
1: Input: triangle mesh M° = pfne
140
while target complexity not reached do
Urem <— argmin, E”(U)
M« DECIMATE(M?, Vrem)
6: 11+1
By checking the link conditions [Dey et al. 1998] before choosing a
vertex for removal, we can ensure that the surface of the decimated
mesh is topologically equivalent to the original.

As the atomic operation DECIMATE we choose the common ver-
tex removal operation [Lee et al. 1998] that retriangulates the 1-
ring (determined as the Delaunay triangulation within the discrete
geodesic polar parametrization of the 1-ring [Welch and Witkin
1994]), as illustrated in Figure 4. However, we express this op-
eration as a half edge collapse followed by a sequence of edge flip
operations instead of vertex removal and retriangulation. This is
crucial for our purpose, because it enables us to consistently keep
track of transitions when performing the coarse-to-fine-mapping af-
ter the IGM computation on the coarse mesh, cf. Section 6.

Regarding the vertex order taken by the incremental decimation ap-
proach (dictated by the cost function E chosen in line 4), our goal
is to produce a mesh with a very low number of vertices in order
to heavily reduce the run time of the IGM computation, while at
the same time ensuring that the IGM computed on the coarse mesh
is reasonably close to what it would look like if it was computed
on the fine input mesh. We will see in the following that common
cost function choices, e.g. the well-known error quadric metric or
objectives promoting uniform edge lengths, are not well-suited for
our specific purpose. In particular, note that geometric shape ap-
proximation in terms of Hausdorff distance is not a direct goal of
decimation in our context.

In Section 5.1 we introduce two cost functions E, in Section 5.2
we detail how the user-specified design constraints are taken into
account during decimation, and in Section 5.3 we introduce two
techniques to further accelerate interactive updates to the IGM.

5.1 Decimation Objective

Modern IGM parametrization algorithms rely on cross or frame
field generation methods (cf. Section 2) for the geometry aware de-
termination of singularities. Their placement is, in virtually all au-
tomatic methods, fundamentally influenced by the surface’s Gaus-
sian curvature distribution. We thus propose cost functions to be
used in the decimation order determination that penalize changes in
local Gaussian curvature:

Eg(v) = [K'(0)|+ Y |K™() - K'(v)]

v/ €Ny (v)

Egmen(v) = [K"(0)| + Y |K™H(W) = K°())

v/ €Ny (v)

where K (v) is the Gaussian curvature at vertex v in mesh M and
Ni(v) C V is the 1-ring neighborhood of v. K“*! is the tentative
Gaussian curvature if M “*! is obtained from M* by removal of the
vertex v as the next step. Note that the tentative Gaussian curvature
at the location of v itself is zero, hence the simpler first term. The
difference between Fg and Fgmenm is that the latter has a memory:
the Gaussian curvature of the original mesh A/° =M fine is always
taken as reference, rather than the current state M*.

In Section 9, using the measures introduced in Section 8, we com-
pare the performance of these Gaussian curvature based cost func-
tions. We also compare to other common decimation cost func-
tions: the quadric error metric Egem [Garland and Heckbert 1997]
(adapted to our setting which requires the coarse mesh to be a sub-
sampling of the fine mesh, i.e. rating and performing half edge col-
lapses instead of edge-collapses) and a uniform edge length objec-
tive Eun; (cf. Section 5.3).

5.2 Constraint Awareness

In order to, during decimation, preserve sufficient degrees of free-
dom (i.e. vertices) to properly enforce the user-specified constraints
we handle them specially during the decimation.

Index Constraints As indicated in Section 4, vertices that are
constrained to a certain (non-zero) cross field index have to remain
part of the decimated mesh. We thus simply exclude them from
being selected for removal during decmation.

Feature Constraints Feature vertices (i.e. ver-
tices incident to one or more than two edges
marked as feature edges) are likewise preserved.
Vertices within feature edges (i.e. vertices in-
cident to two feature edges) are only allowed
to collapse along one of their incident feature
edges; but we completely disallow their removal
if the feature edge meets any of the discontinuity
curve criteria formulated in [Hoppe 1996]. Fur-
ther, when restoring the local Delaunay criterion
through edge flips we disallow flipping feature
edges and thus establish a constrained local De-
launay triangulation.

Guiding Constraints Direction fields defined in certain mesh re-
gions (e.g. specified by strokes) are used to guide the edge flow. In
terms of decimation decisions, we treat edges separating these re-
gions from one another and from the rest of the mesh like described
above for feature edges.

In addition, in order to avoid guiding regions con-
verging into a single point, we do not collapse
a corner of a guiding region boundary (a vertex
where the inner angle of the guiding region is less
than %7‘(‘), unless this collapses two corners closer
than the IGM target edge length s (to not preserve

small scale noise on the region boundaries).

.
S,

%,
X

%
el

o,

The guiding direction field in the regions is eas-
ily transferred to the coarsened mesh during each

decimation step via the planar 1-ring parametrizations (cf. Fig-
ure 4): a coarse triangle in the decimated 1-ring adopts the direc-
tion of the fine triangle containing its barycenter. More complex
interpolation strategies with higher fidelity are imaginable, but this
simple approach proved sufficient.

5.3 Acceleration of Re-Decimation
Intermediate Level

In an interactive workflow, users typically iteratively modify the set
of guiding, index, layout and cycle constraints to explore the IGM
design space and adjust the resulting mesh. Layout and cycle con-
straints can be applied directly at the minimally sampled decimation
level and thus an updated IGM can be computed with a minimum
delay.

For index and guiding constraints, however, the coarsest decimation
level may not provide enough degrees of freedom. Consequently, a
constraint aware re-decimation (cf. Section 5.2) is necessary.

On the other hand, index and guiding constraints do not need a gran-
ularity significantly finer than the quad mesh density (specified by
the target edge length s). We exploit this observation by introducing
the redundancy free intermediate level into the decimation hierar-
chy as outlined in Section 3. In order to distribute the vertices uni-
formly across the surface, we perform a uniform decimation from
the fine to the intermediate level using the cost function

Euni(U) = v’én]\lifl('u) ||X(U) - X(UI)”

with the embedding of the mesh x : V — R3. We terminate
the decimation as soon as Eui(v*) > s/2 for the minimizer v*
of Euni. This way we yield a sufficiently uniform tessellation with
edge lengths just above s/2.

This intermediate level is then further decimated using E¢ or
FEG mem to obtain the minimally sampled coarse mesh. Decimating
to a constant complexity of 1000 vertices proved to be a suitable
speed/quality trade-off for all of our experiments. Figure 5 displays
an example of the decimation results.

Figure 3 shows starting from which level re-decimation needs to
be performed if a certain type of constraint is modified or added.
We thus have three tiers of constraints: layout and cycle constraints
allow for the fastest feedback times, guiding and index constraints
incur a small penalty for re-decimation starting from the interme-
diate level, and changes to feature constraints require a full re-
decimation. Note that the set of sharp surface features the quad
mesh edges should be strictly aligned to is often clear and known
in advance, rather than to be discovered interactively, such that the
impact of this circumstance is not even of relevance in practice ac-
cording to our experience.

Cost Function Cache

Energy Eg is not trivial to compute: in order to compute the Gaus-
sian curvature gffer a tentative decimation operation, the operation
actually has to be performed. This involves computing the local
planar parametrization and establishing the local Delaunay state as
laid out in Section 5.

In interactive settings, where constraints are added iteratively, the
second decimation stage is performed repeatedly. While everytime
it is performed with different constraints it converges towards a dif-
ferent result (cf. Section 5.2) the vast majority of evaluations of Eg
are performed on 1-ring neighborhoods that occurred in previous
iterations already. We exploit this observation and gain a speed-up

Figure 5: The three decimation levels of a mesh. The input mesh
(left) has 346k faces, the redundancy free mesh (center) has 29k
faces and the minimally sampled mesh (right) has 1000 vertices.
Note how the guiding regions defined in the redundancy free mesh
are preserved in the minimally sampled mesh.

(up to a factor of 4 in our experiments) by caching values of Eg in
a hash table. The hash key needs to be a unique description of the
1-ring (e.g. the index of the center vertex followed by a clockwise
enumeration of its neighbors starting with the smallest index).

In the case that Egmem is used, caching is less attractive: only if
center vertex v, 1-ring, and 2-ring vertices occur in the same config-
uration in two decimation sequences, EGmem(v) is the same in both
cases. The likelihood of cache misses is thus significantly higher.

6 Coarse-to-Fine Mapping

Given the (fine) input mesh Mgne and the (coarse) mesh Mcoarse
generated by our decimation method, we need to faithfully map
any global parametrization of Mcoarse ONt0 Msne in a way that
preserves the consistency of singularities, transition functions and
charts.

Before we explain how our coarse-to-fine mapping approach
reaches this goal we need to introduce some notation.

6.1 Notation

Meshes We work with a half-edge based trian-
gle mesh representation M = (V, H, E, F'), a tu-
ple containing the set of vertices V, directed half B* \
edges H, edges E and triangles F'. We specify in- °

dividual vertices, half edges and edges using lower h

case italics. Given a half edge h € H, v¥ and /
vl™ ¢ V denote the vertex h is pointing to and ® o, from
originating from, respectively. h* € H denotes "' "
the half edge opposite to h (i.e. v = v%™), and e, = e+ € E
denote the non-directed edge represented by h and h*. As usual, in
an oriented 2-manifold mesh, each half edge can be associated with
one of its two incident faces (by convention: the one in which it is
oriented in a counter-clockwise manner).

o from
Up+ = Up,

Parametrizations The integer grid maps we are going to map
across meshes take the form of piecewise linear parametrizations of
the triangle mesh with transitions across cuts. They can be defined
through a map which assigns a point in the parameter domain (UV
coordinates) to each triangle corner. As every triangle corner can
be identified with the unique half edge pointing to it, this can be
expressed as a map f : H — R? of the half edges h € H into the
parameter domain. Consequently, the same vertex v = v}j’l = v}?z
can, in general, have different parametrizations in different faces,
i.e. f(h1) # f(hz). This allows the parametrization to consist of

multiple charts and be non-continuous at the chart b
boundaries. For instance, a parametrization of .v /h1
the triangles depicted on the right is discontinu-

ous across edge e, if £(h1) # f(h2) or f(hs) # | he

f(h3), i.e. if there are two images of ep, in the thy
parameter domain. We associate an affine tran- 3

sition function t;, : R? — R? with every half ./
edge h, t, = t;}, that maps between the two images of the edge
en. Consequently, in the example above tn, (f(h2)) = £(h1) and
th, (f(hs)) = f(h3). For the sake of legibility we occasionally
use the notation t; for t;, and t;« for t h when it does not intro-
duce ambiguities. Whenever we make an assignment to a transition
function t, it is implied that we assign the inverse function to the
opposite transition function t5« = (t5) "'

The conditions on the transitions that restrict the space of general
chart-based parametrizations to that of integer grid maps are de-
tailed by Bommes et al. [2013].

6.2 Setting

As indicated in Section 5 we obtain the coarse mesh Mcoarse from
the input mesh Msne through a series of decimation steps. Each
decimation operation removes one vertex and re-triangulates the
resulting hole. As illustrated in Figure 4 this operation can be bro-
ken up into several atomic sub-operations: a half-edge collapse fol-
lowed by zero or more edge flips.

Thus, in effect our incremental decimation approach creates a series
of meshes

Mﬁne :MO i}Ml g %Mn :Mcoarse
through fine-to-coarse operations wj; that are either half-edge col-
lapses or edge flips. We then compute a parametrization feoarse ON
Meoarse and, through coarse-to-fine operations @;, create a series
of derived parametrizations f* that represent the initial parametri-
zation on increasingly finer meshes M*:

Wn—1

w
N EE ST

fcoarse =f" &> fn71
The two decimation operations can naturally be defined to logically
only discard existing but never introduce new half-edges (cf. Fig-
ure 6 and 7) so that dom(fcoarse) = Hcoarse - Hene = dom(fﬁne)
and, in general, dom(f*) C dom(f*~1).

Note that these fine-to-coarse and coarse-to-fine operators are de-
fined in an asymmetric fashion: while the fine-to-coarse operators
w transform a fine mesh into a coarse one, the coarse-to-fine opera-
tors (w transform a coarse parametrization into a fine one. The rea-
son for this asymmetry is that in order to yield minimal round trip
times (and thus maximum interactivity) it is favorable to transform
the parametrization feoarse Of Mcoarse into frine of Mpne without
explicitly reconstructing intermediate decimation levels M* of the
mesh —only Mcoarse and Mgne need to be available.

Transition Functions Note that, since the £ imply transition
functions t},, there is no need to explicitly map the transition func-
tions from feoarse to fane. However, since explicit transition func-
tions are a by-product of most IGM computation methods while
extracting them from a parametrization suffering from numerical
inaccuracies is not trivial (cf. [Ebke et al. 2013]) we explain how to
implement an & operation that maps both, f and t in the following.

6.3 Coarse-to-Fine Operators

The effect of the flip operator (which transforms a “finer” mesh M i
into a “coarser” mesh M**!) is illustrated in Figure 6. The un-flip

Figure 6: The edge flip operator reconnects the diagonal half
edges haip and hg;p,, turning them counter-clockwise. Given a
parametrization of the decimated mesh, the incident triangles are
in (potentially different) charts A and B with transition function
taip mapping between them. In order to yield a consistent para-
metrization, we define that the inverse operator makes the charts
turn counter-clockwise and adjust the affected transition functions
ta, ty, and taip, as well as the parametrization of the affected half
edges ha, hy, and haip, accordingly.

operator (which transforms a parametrization f* of a coarser mesh
M? into a parametrization f*~! of a finer mesh M®~!) permutes
the parametrization (or UV coordinates) of the involved half edges
and adjusts the transition functions accordingly.

Figure 7 illustrates the effect of the half edge collapse operator
(Mt iy M%), The un-collapse operator (f? iy i1 in-
terpolates the parametrization for the removed center vertex using
the stored barycentric coordinates, generates parametrizations for
the two collapsed triangles and computes consistent transition func-
tions for the three collapsed edges.

Details on the implementation of the un-flip and un-collapse oper-
ators for IGMs are given in Appendix A.

6.4 Decimation Log

The information on what sequence of un-flip and un-collapse op-
erations need to be performed is contained in the decimation log
recorded during decimation. It is a list of n records corresponding
to the operations w;. There are two types of records correspond-
ing to the two operations: a flip record and a collapse record. A
flip record stores pointers to the corresponding half edges haip, ha,
hy, the collapse record stores pointers a, b, ¢, ho, h1,...,hx—1, as
well as the interpolation information: local vertex indices ¢q, g, %+,
and barycentric coordinates «, 3, and (implicitly) vy =1 —a —
(cf. Figure 14). Note that this representation is related to the split
records of progressive meshes [Hoppe 1996] but differs in being
half edge instead of vertex based. This is crucial in order to prop-
erly handle the mapping of chart-based parametrizations with tran-
sitions. The interpolation vertices and weights are determined dur-
ing decimation by intersecting the removed vertex with the new tri-
angulation of its 1-ring in its local parameter domain and computing
its barycentric coordinates within the intersecting triangle (cf. Fig-
ure 4 (e)). A detailed description of an efficient storage format for
the decimation log is given in Appendix B.

6.5 Atlas Simplicity

While the parameter domain generated by state-of-the-art IGM
based quad meshing methods is relatively simple (usually one
connected, relatively compact (self-overlapping) chart), during the
coarse-to-fine mapping the chart atlas can become arbitrarily frag-
mented with multiple charts and many superfluous non-identity
transitions. In the context of quad meshing the complexity of the
atlas is entirely irrelevant, as the implied integer grid is oblivious.
If, however, a downstream application benefits from a simple do-
main, (e.g. in the context of texture mapping) the charts can easily

tz;ﬁz)*

° °
/colla_pse\% \\
° =~ e
‘ﬂ\v

Figure 7: The half edge collapse operator removes a vertex and
three pairs of incident half edges while reconnecting the remaining
incident half edges to one of its adjacent vertices. Consequently,
the inverse collapse operator updates the parametrization of the
half edges pointing to the removed vertex and of those half edges
that were removed. In addition, consistent transition functions for
the three removed edges are computed.

be rearranged and combined using the disk growing approach laid
out in [Bommes et al. 2009].

7 Complexity Considerations

Using our decimation and coarse-to-fine mapping framework, we
can achieve linear run time and memory complexity.

Memory Complexity The only data generated by our algorithm
is the decimation log and (optionally) the hash table used to cache
results of expensive energy computations. The size of both of these
is linear in the number of decimated vertices. Since we decimate to
a constant number of vertices, the memory complexity of any IGM
computation method is constant.

Run Time Complexity The run time complexity of the IGM
computation is constant for the same reason. Our incremental dec-
imation scheme performs less than |V'| decimation operations each
of which consists of one half edge collapse and an amortized con-
stant number of edge flips. Both of these operators have (amortized)
constant run time and so do their inverse counterparts. If the selec-
tion of the next vertex to remove is implemented using a priority
queue, it has O(log |V'|) complexity. We can, however, resort to
a constant-time stochastic implementation (draw ¢ random vertices
and pick the one with the lowest energy) until |V| goes below a
fixed threshold (e.g. 10%) without a significant loss in result quality,
thus achieving an overall linear run time.

Note that the benefit of the linear run time complexity is merely of a
theoretical nature. The constant factor in the necessary |V| evalua-
tions of the decimation energies E1, E», albeit small on an absolute
scale, is much larger than the one in the priority queue updates. As
a result, on all meshes used in our experiments (none of which had
more than 10M vertices) the relative savings of the stochastic im-
plementation are minuscule (on small meshes even negative) and
thus the O(|V|log |V|) approach with a priority queue was used.

8 Evaluating IGM Similarity

Our method is intended as an acceleration add-on to existing IGM
computation methods. Consequently, more importantly than being
generically of an overall high quality, an IGM produced using our
approach should specifically be close to the IGM produced without
our approach subject to identical design constraints. Unfortunately,
there are no generally accepted, universally meaningful measures
for the similarity of two IGMs. In particular, note that evaluating

some kind of parametrization difference (e.g. based on the eigen-
values or eigenvectors of the Jacobian) in a triangle by triangle
manner is not adequate: for instance, introducing an additional pair
of close-by singularities with opposite (arbitrarily extreme) indices
may have an arbitrarily small effect on the parametrization (if they
are close enough); however, such superfluous singularities, singu-
larities with extreme indices, as well as singularities very close to
each other are all very unfavorable and even problematic in the con-
text of mesh generation.

We propose to consider the following measures instead, which cap-
ture properties of an IGM that are deemed important for artist
guided quad meshing:

* number, type, and location of singularities (irregular vertices),

* distortion of the parametrization (the shape of the quads).

Irregular Vertices correspond to metric cones [Myles and Zorin
2012] in the IGM which in turn correspond to singularities [Ray
et al. 2008] in the guiding cross field. The difference between two
IGMs on a common surface in terms of irregular vertex configu-
ration can thus be quantified as the distance between the Gaus-
sian curvature distributions in the corresponding cone metrics, or
equivalently (up to a factor 27) as the distance between the in-
dex distributions in the underlying cross fields. Being distributions
(with constant integral, determined by the genus), the 1% Wasser-
stein (earth mover’s) distance (EMD) is an appropriate choice. In-
tuitively, it quantifies how much effort is needed to transform one
configuration into another one by means of moving singularities
over the surface (including splits and merges where necessary), ac-
cording to the optimal transport plan. As the distributions under
consideration are collections of scaled Dirac impulses, we are ef-
fectively facing a discrete setting in which the distance is easily
computed [Rubner et al. 1998].

In our context of quad mesh generation, however, this measure has
a shortcoming: only moving is associated with a cost, not the split-
ting or merging of singularities that might happen implicitly. A
low EMD is thus a required but not a sufficient indicator for irregu-
lar vertex configurations being similar. For instance, as mentioned
above, the appearance of an additional pair of nearby singularities
with indices —&—i' and — 7 has an arbitrarily small effect on the EMD
(depending on their distance on the surface). Even clusters of hun-
dreds of additional singularities (of arbitrarily extreme indices), cer-
tainly leading to unacceptable or even invalid quad meshes, poten-
tially remain undetected by the EMD alone.

One could associate additional costs with splits and merges, but
there is no obvious natural choice of cost relative to moving. We
thus abstain from consolidating both aspects into a single value and
instead consider the singularity index histogram (or the irregular
vertex valence histogram) in addition to the distribution distance,
allowing to judge both aspects separately.

Sizing, Anisotropy, and Shearing In order to judge the similar-
ity of two IGMs with respect to sizing, anisotropy, and shearing,
we measure these quantities in both IGMs per face, recalling that
IGMs are piecewise linear. We then study the differences between
the distributions based on histograms to judge the similarity.

Given a linear map g mapping a face from the parameter domain
onto the surface, we measure

* sizing as det(Vg) /s, the ratio of the determinant of the Ja-
cobian of g and the squared target edge length s,

* anisotropy as o1 /02, the larger singular value of Vg divided
by the smaller one, and

=
¥

S

S

R

=

Figure 8: Our pipeline used with (from left to right) [Ebke et al.
2014], [Bommes et al. 2009], [Kdilberer et al. 2007] and a seam-
less parametrization (without integer rounding of translations and
singularity parameters), each computed with the same set of align-
ment constraints. The magnification shows the fragmentation of the
chart atlas (which can be defragmented if desired, cf. Section 6.5).

e shear as the arc-sine of the scaled Jacobian of g (i.e. the
(smaller) angle at which isolines cross locally).

In the following we will use these measures to evaluate the perfor-
mance of different decimation strategies for our purpose.

9 Results

Setup To test our framework we implemented it in a single-
threaded fashion and combined it with the parametrization method
described in [Ebke et al. 2014] and a rudimentary UI to interactively
specify constraints. This setup was used for our experiments, but as
we show in Figure 8, our framework can likewise be combined with
other IGM and seamless parametrization computation methods. To
judge the performance we determined two timings: the one-off ini-
tialization delay and the iterative delay incurred when updating the
parametrization after constraints were added. The initial delay in-
cludes (1) the computation of the full decimation hierarchy, (2) the
computation of an initial parametrization and (3) the coarse-to-fine
mapping procedure of the parametrization onto the original mesh.
The iterative delay contains (1) a repeated decimation from the re-
dundancy free (intermediate) decimation level incorporating a new
constraint set, (2) the computation of a new IGM and (3) the coarse-
to-fine mapping procedure. The timings of steps (2) and (3) are al-
most identical between the steps. The delay for step (1) is much
lower for the iterative updates because the first decimation stage is
skipped and because the decimation priority cache is already filled.

Workflow The title picture (Figure 1, NEFERTITI model) is quite
instructive as it shows several stages of a typical workflow where
the user explores the space of possible quadrangulations by itera-
tively adding constraints and evaluating the instant visual feedback.

Timings InTable 1 we present a list of timings acquired in our ex-
periments on an Intel Core 17-4770 processor. Note that the timings
for the iterative update vary slightly, typically by less than 10%,
due to the varying number of cache misses depending on how the
constraint set is updated in each iteration. The timings provided in
Table 1 are average timings. The reference timings obtained with
[Ebke et al. 2014] without our framework are given as well.

In Figure 9 we present timings for the same input mesh when us-
ing different target edge lengths. While the target complexity of
the minimally sampled (coarse) decimation level is constant, the
complexity of the redundancy free (intermediate) decimation level
depends on the chosen target edge length: if the target edge length

Initialization EG.mem Eg

Model |F| | tbase | td tp tm 3| ta Slta 2
ARMADILLO 346k 58| 22 08 01 3.1(06 15|02 1.1
CHARLEMAGNE 5 1.2M 182 58 02 04 64(04 10|01 0.7
CHARLEMAGNE 2.5 [1.2M | 269| 6.6 03 04 73|10 17[03 1.0

NEFERTITI 2M| 318|103 03 0.7 113|1.1 21|03 13
DRAGON1 846k 161 44 1.0 03 57(09 22]02 15
DRAGON2 72M | >1h|40.0 6.0 25 485|3.0 11.5|0.8 9.3

Table 1: Timings (in seconds) taken on meshes of different com-
plexity. tvase are baseline timings obtained with [Ebke et al. 2014]
running without our framework. The other timings (decimation tq,
parametrization ty, and coarse-to-fine mapping t.,) were obtained
using our framework on top of the same parametrization method,
once with E¢ yem and once with Eg exploiting a cache. The one-off
initialization costs are unaffected by the cache and thus identical
for both energies. The columns printed in bold show the most im-
portant times: the total time for an update when the user changes
guiding or index constraints (with same t, and t (thus not re-
peated in the table), but shorter tq due to the intermediate level of
the hierarchy, cf. Section 5.3).

gets shorter, the redundancy free level is more complex and thus
more vertices are decimated in the second, more expensive decima-
tion phase. As a consequence, the run time of our method is (to
some extent) target edge length sensitive.

Decimation Strategies In Figures 10 and 13 we show how our
Gaussian curvature based decimation order Eg performs in com-
parison to Eqgwm (cf. Section 5.1). Figure 10 uses the ARMADILLO
mesh to demonstrate that using Eqgwm, the local Gaussian curvature
gets concentrated on single vertices. This causes the guiding field
algorithm to place singularities of very high indices (translating into
quad mesh vertices of very high or very low valence) onto the mesh.
Even indices corresponding to vertex valences of zero or below zero
can be caused, which render the generation of a valid IGM or quad
mesh impossible. With EG mem) by contrast, we get the common
valence 3 and 5 vertices, just like on the fine mesh. Their number
is sometimes increased, but no extreme valences are caused. It can
be noticed that, on average (but not even consistently), £G mem be-
haves marginally better than Eg, whereas the use of Eg (due to its
efficient cacheability) decreases update delays by around 20%-40%
in our experiements.

In Figures 9 and 12 we made use of different types of constraints
to demonstrate the creation of IGMs with a specific desired layout
just as an artist would. By contrast, in Figures 10 and 13 we re-
frained from using any index or layout constraints in order to judge
the quality of the naturally arising singularity configurations of the
different decimation methods.

Comparison The recent work by Jakob et al. [2015] (cf. Sec-
tion 2) is related in that it allows for interactive generation of quad-
dominant meshes. By performing one step of subdivision, pure
quad meshes can be obtained from them. In Figure 11 we demon-
strate the characteristic differences of the quad meshes obtained in
this way.

10 Limitations and Future Work

While our strategy of decimating the minimally sampled mesh to a
fixed number of vertices provides us with a linear run time in the-
ory and, in practice, made us very successful in reaching round trip
times that were fast enough for interactive quad meshing even on
millions of triangles, we realize that a constant complexity thresh-
old might not be ideal in all application scenarios. The investigation

Figure 9: CHARLEMAGNE (1.2M faces) remeshed with a target
edge length of 5 (left) and 2.5 (right). Initialization took 6.4s and
iterative reparametrization 0.7s with the larger target edge length.
As expected, halving the target edge length affects both timings
slightly (7.3s and 1.0s, respectively). The effect of layout con-
straints is demonstrated on the foot (see magnification).

of decimation thresholds that directly take into consideration the
quality of the guiding field on the decimated mesh is thus certainly
of interest.

As demonstrated in the various figures above, especially Figure 12,
the parametrizations resulting from our framework are only slightly
more distorted than the ones computed without it. Yet, there is some
additional distortion and it is mainly incurred due to the geometric
distortion caused by the decimation. We think the possibility of
(approximately) quantifying and accumulating this, and adjusting
the underlying IGM computation method to compensate for it, is
an interesting aspect for future work.

Furthermore, one can picture a hybrid application scenario when
very high quality parametrizations are required: first, the design
space is interactively explored using our framework. Once a good
set of constraints is found, an IGM can be computed in a non-
interactive post-process directly on the original mesh, using the
same set of constraints.

While we presented a framework that enables an interactive work
flow, we are not aware of any studies that systematically explore
and evaluate UI metaphors specifically tailored to specifying the
types of constraints commonly found in quad meshing methods.
As these methods now become faster and faster and the interest
in incorporating them into interactive applications grows, we think
that it would be worthwhile exploring this avenue of research.

11 Conclusion

We presented a framework that drastically speeds up parametriza-
tion based quad meshing approaches. It is targeted at an interactive
application scenario where the user relies on instant feedback when
adding high level constraints to guide the edge flow and the layout
of the quad mesh. The presented method operates by representing
the complex input geometry in a hierarchical manner and propagat-

decimation w/ [Garland
and Heckbert 1997]

IGM computed on decimation with EG mem

non-decimated mesh

Irreg. Vert.

- 1 TlII!—’T T 1 T-llq—’l T

0.2 06118 42 > 0.2 0611.8 4.2 >

l.'l'f T T -l.—l‘f {0 [

1.3 2.1 3.4 55> 11.3 2.1 3.4 5.5>

T 1 T*—T'-'III T 1 T ’*T--'III

< 32 46 60 74 88 < 32 46 60 74 88

Sizing

isotropy

Ani

~ -

Shear

IGM properties
using Eqem

IGM properties
using EG mem

IGM computed on mesh
decimated with EG mem

Figure 10: The same mesh reduced to 1000 vertices with quadric error metric decimation and using our Gaussian curvature aware method.
Note how features like the fingers and toes are approximated with single spikes with error quadric decimation. Since the entire Gaussian
curvature of the finger tips gets concentrated on the spike, singularites of very low valence are created here. In particular, the irregular vertex
valence histogram shows that singularities of valences 1, 2, 6, and 7 appear, which are not present in the reference IGM. With our Eg menm only
irregular valences 3 and 5 are present. The similarity suggested by the histograms (the red shadows represent the reference solution created
without decimation) can also be witnessed when comparing the reference IGM (far left) to the one created with our method (far right). The
EMD is given in normalized form, relative to that of the EGmem approach (100%), because the absolute value is of no relevance.

Figure 11: For comparison to [Jakob et al. 2015]: results of the
multi-threaded implementation provided by the authors, following
a comparable set of constraints and to the same target complexities
shown in Figure 9. The direct output (a, c) as well as a faired
version (b, d; Laplacian smoothing with reprojection) is shown.
As suggested by the authors, one step of subdivision was used to
obtain a pure quad mesh instead of a quad-dominant mesh. The
interaction delay when adding guiding constraints was 2.7s on this
model (0.7s or 1.0s with our method). The quad meshes have 111
and 274 irregular vertices (38 and 60 with our method, cf. Figure
9), including some of uncommon valences 2, 6, and 7.

ing parametrizations from the coarse to the fine level. The result-
ing parametrization is defined on the original input mesh, enabling
downstream applications to operate on the full resolution surface.

We showed how the remaining degrees of freedom in the coarse
representation can be chosen so that the underlying parametrization
method can achieve low distortion parametrizations that satisfy the
provided constraints and how to tackle the challenge of maintain-
ing consistency of the parametrization across hierarchy levels in the
presence of charts, transition functions, and singularities.

The fact that our method is oblivious to the underlying parametri-
zation based quad meshing method as well as to the user interface
used to generate the user provided constraints makes this frame-
work useful for a broad range of quad meshing scenarios.

Acknowledgements

The research leading to these results has received funding from
the European Research Council under the European Union’s Sev-
enth Framework Programme (FP7/2007-2013)/ERC grant agree-
ment n° [340884], and the German Research Foundation (DFG,
Gottfried-Wilhelm-Leibniz Programm). The software prototype
used for evaluation was implemented on top of the OpenFlipper
geometry processing framework [M&bius and Kobbelt 2012]. The
authors would like to thank Hannes Hergeth for implementing early
experiments that shaped this research, as well as the reviewers for
their insightful comments.

References

AKSOYLU, B., KHODAKOVSKY, A., AND SCHRODER, P. 2005.
Multilevel solvers for unstructured surface meshes. SIAM Jour-
nal on Scientific Computing 26, 4, 1146-1165.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Transactions on Graphics 28, 3,
77:1-77:10.

BOMMES, D., LEMPFER, T., AND KOBBELT, L. 2011. Global
structure optimization of quadrilateral meshes. Computer
Graphics Forum 30, 2, 375-384.

BOMMES, D., CAMPEN, M., EBKE, H.-C., ALLIEZ, P., AND
KOBBELT, L. 2013. Integer-grid maps for reliable quad mesh-
ing. ACM Transactions on Graphics 32, 4, 98:1-98:12.

CAMPEN, M., AND KOBBELT, L. 2014. Quad layout embedding
via aligned parameterization. Computer Graphics Forum 33, 8,
69-81.

CAMPEN, M., BOMMES, D., AND KOBBELT, L. 2015. Quantized
global parametrization. ACM Transactions on Graphics 34, 6,
192:1-192:12.

[Ebke et al. 2014] used standalone (>60 minutes)

LTS

%
%

%
%

[Ebke et al. 2014] with our framework (iterative remeshing: 9s)

Figure 12: DRAGON2 (7.2 million faces) remeshed without our
framework (top) and with our framework (bottom). Observe how
the singularities are similar in number and position on both meshes.
Also observe how the larger number of degrees of freedom available
to the parametrization algorithm when used without our framework
allows for a slightly more uniform parametrization. However, the
degradation in performance is severe: using our method the ini-
tialization cost is 49s, iterative remeshing takes 9s. Without our
[framework, every remeshing iteration takes more than 60 minutes.

CAMPEN, M., IBING, M., EBKE, H.-C., ZORIN, D., AND
KOBBELT, L. 2016. Scale-invariant directional alignment of
surface parametrizations. Computer Graphics Forum 35, 5.

COHEN, J., OLANO, M., AND MANOCHA, D. 1998. Appearance-
preserving simplification. In Proc., SIGGRAPH °98, 115-122.

DANIELS II, J., LIZIER, M., SIQUEIRA, M., SILVA, C., AND
NoNATO, L. 2011. Template-based quadrilateral meshing.
Computers & Graphics 35, 3,471 — 482.

DEY, T. K., EDELSBRUNNER, H., GUHA, S., AND NEKHAYEYV,
D. V. 1998. Topology preserving edge contraction. Publ. Inst.
Math. (Beograd) 66, 23-45.

DIAMANTI, O., VAXMAN, A., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2014. Designing N-Poly Vector fields with com-

plex polynomials. Computer Graphics Forum 33,5, 1-11.

EBKE, H.-C., BOMMES, D., CAMPEN, M., AND KOBBELT, L.
2013. QEx: Robust quad mesh extraction. ACM Transactions
on Graphics 32, 6, 168:1-168:10.

EBKE, H.-C., CAMPEN, M., BOMMES, D., AND KOBBELT, L.
2014. Level-of-detail quad meshing. ACM Transactions on
Graphics 33, 6, 184:1-184:11.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simpli-
fication using quadric error metrics. In Proc. SSIGGRAPH 97,
209-216.

GELFAND, N., AND GUIBAS, L. J. 2004. Shape segmentation us-

ing local slippage analysis. In Proc. Symp. Geometry Processing,
SGP *04, 214-223.

HoPPE, H. 1996. Progressive meshes. In Proc. SSIGGRAPH 96,
99-108.

HoPPE, H. 1999. New quadric metric for simplifying meshes with
appearance attributes. In Proc. VIS '99, 59-66.

HORMANN, K., GREINER, G., AND CAMPAGNA, S. 1999. Hier-
archical parametrization of triangulated surfaces. In Proc. Vision,
Modeling, and Visualization 1999, 219-226.

HUBELI, A., AND GROSS, M. 2001. Multiresolution feature ex-
traction for unstructured meshes. In Proc. VIS '01, 287-294.

JAKOB, W., TARINI, M., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2015. Instant field-aligned meshes. ACM Trans-
actions on Graphics 34, 6, 189:1-189:15.

JIANG, T., FANG, X., HUANG, J., BAO, H., TONG, Y., AND DES-
BRUN, M. 2015. Frame field generation through metric cus-
tomization. ACM Transactions on Graphics 34, 4, 40:1-40:11.

KALBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quad-
Cover - surface parameterization using branched coverings.
Computer Graphics Forum 26, 3, 375-384.

KHODAKOVSKY, A., LITKE, N., AND SCHRODER, P. 2003. Glob-
ally smooth parameterizations with low distortion. ACM Trans-
actions on Graphics 22, 3, 350-357.

KNOPPEL, F., CRANE, K., PINKALL, U., AND SCHRODER, P.
2013. Globally optimal direction fields. ACM Transactions on
Graphics 32, 4, 59:1-59:10.

KNUPP, P. 1995. Mesh generation using vector fields. J. Comput.
Phys. 119, 1, 142-148.

KOBBELT, L., CAMPAGNA, S., AND PETER SEIDEL, H. 1998.
A general framework for mesh decimation. In Proc. Graphics
Interface, 43-50.

LEE, A. W. F., SWELDENS, W., SCHRODER, P., COWSAR, L.,
AND DOBKIN, D. 1998. Maps: Multiresolution adaptive pa-
rameterization of surfaces. In Proc., SIGGRAPH ’98, 95-104.

L1, Y., Liu, Y., AND WANG, W. 2015. Planar hexagonal meshing
for architecture. IEEE Transactions on Visualization and Com-
puter Graphics 21, 1.

Liu, B., TONG, Y., GOES, F. D., AND DESBRUN, M. 2016. Dis-
crete connection and covariant derivative for vector field analysis
and design. ACM Transactions on Graphics 35, 3, 23:1-23:17.

MARCIAS, G., PIETRONI, N., PAN0zZzO0, D., Purro, E., AND
SORKINE-HORNUNG, O. 2013. Animation-aware quadrangu-
lation. ACM Transactions on Graphics 32, 5.

Baseline

EMD: 100%

1234567
EMD: 100%

EMD: 115%

-I-I—r-

234567
EMD: 107%

1 1 1 1 1
12 3 456 7
EMD: 133%

u-l'l -l-l"r

1234567
EMD: 106%

EMD: 100%

-*I-I‘r-

1234567
EMD: 89%

1234567
EMD: 106%

u-l'l -l-l'u

1234567
EMD: 100%

EMD: 106%

-l'—rl -l'l'—r

1234567
EMD: 90%

Figure 13: Evaluation of IGMs created with our method using different decimation cost functions on (from top to bottom): NEFERTITI,
ARMADILLO, CHARLEMAGNE, and DRAGON1. The baseline solution (IGMs created without decimation at several orders of magnitude
slower run times) is represented as red “shadows” in the histograms in order to judge how faithful its characteristics are captured using our
method. The singularity histogram is most important here, since it reveals whether irregular vertices of extreme valences are created. The
EMD, i.e. the cost to transform the reference singularity configuration into the ones generated using our framework show the performance of
the decimation orders relative to Eg mem. The corresponding distortion histograms can be found in the supplemental material.

MYLES, A., AND ZORIN, D. 2012. Global parametrization by
incremental flattening. ACM Transactions on Graphics 31, 4,
109:1-109:11.

MYLES, A., AND ZORIN, D. 2013. Controlled-distortion con-
strained global parametrization. ACM Transactions on Graphics
32,4, 105:1-105:14.

MYLES, A., PIETRONI, N., KOVACS, D., AND ZORIN, D. 2010.
Feature-aligned T-meshes. ACM Transactions on Graphics 29,
4, 117:1-117:11.

MOBIUS, J., AND KOBBELT, L. 2012. Openflipper: An open
source geometry processing and rendering framework. In Curves
and Surfaces, vol. 6920 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 488-500.

NIESER, M., PALACIOS, J., POLTHIER, K., AND ZHANG, E.
2012. Hexagonal global parameterization of arbitrary surfaces.
IEEE Transactions on Visualization and Computer Graphics 18,
6.

PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field
design on surfaces. ACM Transactions on Graphics 26, 3.

PANOzzO, D., Puppo, E., TARINI, M., AND SORKINE-
HORNUNG, O. 2014. Frame fields: Anisotropic and non-
orthogonal cross fields. ACM Transactions on Graphics 33, 4,
134:1-134:11.

PIETRONI, N., TARINI, M., AND CIGNONI, P. 2010. Almost iso-
metric mesh parameterization through abstract domains. /EEE

Transactions on Visualization and Computer Graphics 16, 4,
621-635.

PIETRONI, N., TARINI, M., SORKINE, O., AND ZORIN, D. 2011.
Global parametrization of range image sets. ACM Transactions
on Graphics 30, 6.

RAY, N., AND LEVY, B. 2003. Hierarchical least squares con-
formal map. In Proc. Pacific Conference on Computer Graphics
and Applications, 2003, 263-270.

RAY, N., L1, W. C., LEVY, B., SHEFFER, A., AND ALLIEZ, P.
2006. Periodic global parameterization. ACM Transactions on
Graphics 25, 4, 1460-1485.

RAY, N., VALLET, B., L1, W. C., AND LEvVY, B. 2008. N-
symmetry direction field design. ACM Transactions on Graphics
27,2,10:1-10:13.

RAY, N., NIVOLIERS, V., LEFEBVRE, S., AND LEVY, B. 2010.
Invisible seams. In Proc. EGSR’10, 1489-1496.

RUBNER, Y., TOMASI, C., AND GUIBAS, L. J. 1998. A metric
for distributions with applications to image databases. In Proc.
ICCV ’98, 59-66.

SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H.
2001. Texture mapping progressive meshes. In Proc. SIG-
GRAPH 01, 409-416.

SANDER, P. V., GORTLER, S. J., SNYDER, J., AND HOPPE, H.
2002. Signal-Specialized Parametrization. In Proc. EGRW 02,
87-98.

VAXMAN, A., CAMPEN, M., DIAMANTI, O., PANOZZO, D.,
BoOMMES, D., HILDEBRANDT, K., AND BEN-CHEN, M. 2016.

Directional field synthesis, design, and processing. Computer
Graphics Forum 35, 2.

WELCH, W., AND WITKIN, A. 1994. Free-form shape design
using triangulated surfaces. In Proc., SIGGRAPH *94, 247-256.

WESSELING, P. 2004. An Introduction to Multigrid Methods. R.T.
Edwards.

A Coarse-to-Fine Operator Details

Below we give some implementation details about and insights
into the un-flip and un-collapse operator briefly mentioned in Sec-
tion 6.3. Refer to Figures 6 and 7 for illustrations of the symbols
used in the following.

Un-Flip Operator

Given a flip operator w;, the corresponding un-flip operator é; com-
putes £ and t* ! as

£ (hap) = £ ()
£ (ha) = thip(£'(ha))
ta;pl = (téip)_l

i—1 ., 41 i
tb = tb o tﬂip

£ (hiip) = £ (ha)
£ () = (téip)il(fi(hb))

th = th o (thy)

and as well as
£ (h) =f(h) and ti =t

for all remaining half edges h not specified above. Figure 6 illus-
trates the different half edges h and transition transition functions t
referred to above.

Observe how dom(fi~!) = dom(f*) for the un-flip operator.
Un-Collapse Operator

Given a half edge collapse operator w;, the corresponding un-
collapse operator @; computes the transition functions t*~* as

t(i)_l = tgmk&

it = t;;ll =1d

ti =t forall2<j<k-—1
with the accumulated transition functions

¢ tf*ot’tlfl)*o...ot;; 7 <l
gt 1d otherwise

£ (hg) =t (F(a)
£ () = £'(b)
£ (hi) = £1(0)
£ (i) = oty) T E TR)+
Bt L) T ET)+

Figure 7 provides an overview of the half edges h, a, b, ¢ and tran-
sition functions t referred to above. The factors «, 8 and +y are the

Figure 14: An illustration of all the pointers and quantities stored
in an example of a flip record (left) and a collapse records (right) in
the decimation log. Note that both illustrations represent the state
prior to the decimation operation. Figures 6 and 7 provide a before
and after view.

barycentric coordinates used to interpolate the UV coordinates of
the vertex removed during the half edge collapse (c.f. Figure 4 (e)).

Note how the inverse collapse operator extends the domain of the
parametrization:

dom(f*™ 1) = dom(f*) U {ho, b1, hi_1, hi, hi, hj_1}.

B Decimation Log Storage Format

The following piece of EBNF notation describes the decimation
log. Refer to Figure 14 for an illustration of all the half edges and
quantities referred to.

(decimation log) = { (record) }
(record) = (flip record) | (collapse record)
(flip record) = 0, haip, ha, hp
(collapse record) = k, a, b, ¢, ia, 18, i~, &, B,
ho, ha, ... hi—1

The flip record starts with O to distinguish it from a collapse record
that always starts with a positive integer. hg;p represents a pointer
to one of the half edges of the flipped edge. h. and hi, point to
the preceding half edges of hgip, and hg;, prior to the flip operation,
respectively (cf. Figure 14).

The collapse record starts with k& = |v|, the valence of the vertex
that is collapsed along hg. Consequently, ho, ..., hi_1 represent
the half edges pointing to v in clockwise order. a, b and c represent
the preceding half edges of ho, h1 and hi_1, respectively. Three
of the half edges pointing away from v identified by their local 1-
ring indices iq,18, iy € {0,...,k — 1} (i.e. hi, h:fﬁ yhi)serve a
special role: They are used to interpolate v in the parameter domain
using the weights «, 5 and v = 1 —a — 3 when the un-collapse op-
eration is performed as described in Section 6.3. The interpolation
vertices and weights are determined by intersecting the removed
vertex with the new triangulation of its 1-ring in its local paramter
domain and computing its barycentric coordinates within the inter-
secting triangle (cf. Figure 4 (e)).

Assuming that we store all global half edge indices as 32 bit inte-
gers, the local 1-ring indices ¢q, g, and i~, as well as k as 8 bit
integers, and the barycentric coordinates o and 3 as 64 bit dou-
ble precision floating point numbers, this format incurs 13 bytes of
storage cost for a flip record and 32 + 4k bytes of storage cost for a
collapse record (i.e. 56 bytes on average). This very compact repre-
sentation is crucial when implementing the decimation log so that
performance is not limited by the memory bandwidth.

