
Directed Edges | A Scalable Representation for

Triangle Meshes

Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel

University of Erlangen, Computer Graphics Group

Am Weichselgarten 9, D-91058 Erlangen, Germany

Email: fcampagna,kobbelt,seidelg@informatik.uni-erlangen.de

Abstract

In a broad range of computer graphics applications the representation of geomet-

ric shape is based on triangle meshes. General purpose data structures for polygonal

meshes typically provide fast access to geometric objects (e.g. points) and topologic

entities (e.g. neighborhood relation) but the memory requirements are rather high

due to the many special con�gurations. In this paper we present a new data struc-

ture which is speci�cally designed for triangle meshes. The data structure enables

to trade memory for access time by either storing internal references explicitly or

by locally reconstructing them on demand. The trade-o� can be hidden from the

programmer by an object-oriented API and automatically adapts to the available

hardware resources or the complexity of the mesh (scalability).

1 Introduction

Many algorithms use triangle meshes for representing geometric surfaces. The simple

triangle can serve as a basic surface primitive to adaptively approximate smooth freeform

geometry. A triangle mesh naturally allows to adapt the required number of primitives to

the geometric shape instead of the basic topology of an arbitrary object. Triangle meshes

are e�cient, since the triangle is currently the only surface patch that is directly supported

by computer graphics hardware and even software rendering methods like ray tracing or

radiosity prefer to use piecewise linear primitives to represent geometric objects due to

gains in performance [KS97, SP94].

A triangle is uniquely de�ned by the geometric position of its three vertices. Thus,

assuming 4 bytes
oat values, each 3d-triangle requires 3 � 3 � 4 = 36 bytes. This way of

storing individual triangles (cf. Fig. 1) is su�cient for several applications, e.g., when each

triangle is processed separately.

x
00

x
01

x
02

y
00

z
00

y
01

y
02

z
01

z
02

∆0 ∆1

Figure 1: Storing individual triangles.

x
0

y
0

z
0

x
1

y
1

z
1

v
00

v
01

v
02

v
10

v
11

v
12

v
20

v
21

v
22

∆0 ∆1

V0 V1

∆2

Figure 2: Shared vertex data structure.

Algorithms that perform operations on a triangle mesh, e.g., mesh editing systems

[KCVS98, ZSS97] or mesh decimation algorithms [Ros97, PS97], need more information

beyond the mere shape of each separate triangle. If the geometric position of one vertex

is modi�ed, this operation a�ects not only the shape of a single triangle that contains this

vertex. Instead, all triangles containing a vertex at the same geometric position should be

modi�ed. This can be achieved by the concept of shared vertices: all triangles sharing a

common vertex store (integer) pointers to the same physical instance. Thus, a vertex at

a certain geometric position needs to be speci�ed only once and it may be shared by an

arbitrary number of triangles.

Euler's formula V � E + F = 2 [FvDFJ92] tells us that a manifold triangle mesh

(3F � 2E) with n vertices contains m � 2n triangles. Therefore, the shared vertex

representation of a triangle mesh requires 3 � 4 � n = 12n bytes for the geometry (the

geometric position of the vertices) and 3 � 4 �m = 12m bytes for the topology (the triangles

referencing three vertices each), assuming 4 bytes for each reference (cf. Fig. 2). This results

in 12n+12m � 18m bytes for a triangle mesh consisting of m triangles and saves about 50

percent compared to individual triangles. This amount of memory can be considered as a

lower limit for storing triangle meshes with immediate and random access to each triangle.

In principle, every information required by an algorithm may be determined from the

shared vertex representation. Neighboring triangles sharing a common edge reference two

identical vertices that span this edge. Explicitly storing this neighborhood relation requires

additional 3 � 4 �m = 12m bytes and further 4 � n � 2m bytes for referencing one triangle

attached to each vertex. The set of triangles t

i

= (v

i0

; v

i1

; v

i2

) referencing a certain vertex

v describe the topological neighborhood of v: neighboring vertices v

j

, adjacent edges v v

j

,

triangles t

i

, orbit-edges v

a

v

b

� ft

i

g with v

a

; v

b

6= v, and so on. Unfortunately, access to

such and similar information requires a global search on the standard shared vertex data

structure, if the neighborhood information is not stored explicitly.

Several data structures have been developed to provide fast access (ideally O(1)) to the

information that is required by di�erent algorithms. The most popular ones are the winged-

edge [Bau72], quad-edge [GS85], and half-edge [Mae88] data structures. Fig. 3 shows the

winged-edges according to O'Rourke [O'R95]. Each vertex stores its geometric position and

2

va

vb

fbfa

ea

eb

ec

ed x
0

y
0

z
0

e
0

x
1

y
1

z
1

e
1

Vertices vi

e
0

e
1

e
2

e
3

e
4

Faces fj

v
0
a f

0
a f

0
b e

0
a e

0
b e

0
c e

0
d

Winged−edges ek

v
0
b

Figure 3: Winged-edge data structure.

a reference to one of its edges, while each polygonal face only points to one of its enclosing

edges. An edge stores references to the two vertices v

a

and v

b

spanning that edge, to the

two neighboring faces f

a

and f

b

, and to the four \wings" e

a

; : : : ; e

d

. This data structure

requires 4 � 4 � n + 4 �m + 8 � 4 �

3

2

m � 8m + 4m + 48m = 60m bytes for a triangle mesh

with m triangles. This is about three times the memory compared to the shared vertex

representation, but therefore the neighborhood and adjacency can be looked up directly.

For algorithms processing on a mesh data structure this means that we trade memory

for performance (even compared to the shared vertex representation with neighborhood

information that still requires some search operations).

We are not going to discuss the huge variety of mesh data structures in detail, nor will

we examine theoretical aspects like duality, completeness, and so on. Instead, we focus on

practical requirements and present a new scalable data structure for triangle meshes.

2 Practical Requirements

In practice, many objects represented by triangle meshes contain isolated vertices or edges

that are locally non-manifold for several reasons [CKS98]. On the other hand, many data

structures are restricted to orientable 2-manifold triangle meshes. Even if there are only

some few artifacts that are locally non-manifold within a large data set, these data struc-

tures are not able to represent such an object. Other data structures which are capable of

storing non-manifold meshes typically require more memory due to the fact that they have

to handle non-manifolds all over the whole object by using extra memory, even if most

entities are in fact 2-manifold. A compromise between the two approaches can be found

by using the data structure that we discuss in the next section.

As previously mentioned, several sophisticated data structures have been developed,

most of them capable to represent general polygonal meshes instead of just the special

instance of a triangle mesh. Specializing to triangles obviously allows to design more

e�cient data structures.

Of course, the more explicit information is stored, the more memory is required, but

3

va

vb

neigh

prev

next

Figure 4: The data structure records two vertices v

a

, v

b

, the neighboring edge e

ng

and the

previous and next edges e

pv

and e

nx

for each directed edge. The memory for some values

(gray) can be exchanged by a constant amount of additional calculations.

the faster is the access to the required data. Unfortunately, memory is a hard limit in

computer systems. Even virtual memory does not help in most cases, since the mapping of

a complex triangle mesh to the linear structure of the memory usually opposes the need for

local coherence access to memory. Drastic slowdown of the performance due to extensive

swapping is the result.

Performance is a very important aspect, but time is in general a soft limit. When

doubling the amount of input data to be processed, it is acceptable to wait even more than

twice the time to get a result, if this is necessary. But if doubling the amount of data

implies that the data structure does not �t into the memory of a computer, this makes it

impossible to work on a data set.

As a result, the implementation of a data structure can be considered as a compro-

mise between memory requirements and performance gains. We propose a scalable data

structure, where additional memory can be utilized to speed up the access and hence the

performance as long as enough resources are available. Once the hard memory limit is

reached, performance can be traded for memory in order to maximize the complexity of

meshes which can be processed on a given system. We will present a new data structure

for triangle meshes that has been motivated by this idea in the following section.

3 Directed-Edge Data Structure

We are �rst going to describe the directed-edge data structure for the case of oriented

2-manifolds. Afterwards we will present our extension to handle non-manifold triangle

meshes.

4

x
0

y
0

z
0

e
0

x
1

y
1

z
1

e
1

Vertices vi

Directed−edges ej (full sized)
v

0
a v

0
b e

0
ng e

0
nx e

0
pv

∆0
or (medium sized)

v
0
b e

0
ng e

0
pv

or (small sized)
v

0
b e

0
ng

Figure 5: Three variants with di�erent memory requirements of the directed-edge data

structure for a triangle mesh.

A single triangle is represented by three directed edges (cf. Fig. 4). Thus, the common

edge v

a

v

b

of two neighboring triangles corresponds to two directed edges v

a

! v

b

and

v

b

! v

a

. This is very similar to the concept of half-edges [Mae88]. For each directed edge

the following information is stored: a starting vertex v

a

, a target vertex v

b

, the previous,

next, and neighboring edges e

pv

, e

nx

, and e

ng

. We store all directed edge data structures

in an array, such that the i'th triangle is represented by the directed edges at the entries

3i, 3i+ 1, and 3i+ 2. Thus, we do not have to store explicit references from each triangle

to an edge and vice versa. Instead, we derive these references from the given algorithmic

context.

Storing a reference to a single directed-edge for each vertex provides fast access to the

local neighborhood of such an entity. As described so far, a total amount of 4 � 4 � n +

5 � 4 � 3 �m � 8m + 60m = 68m bytes is required for a triangle mesh with n vertices and

m � 2n triangles (cf. Fig. 5). Not explicitly storing the references between triangles and

edges saves 4 �m + 4 � 3 �m = 16m bytes.

Since we restricted to triangle meshes, we can further substitute memory by compu-

tation time. Access to v

a

of an edge e can be replaced by v

b

of the previous edge of e.

The inquiry to the next edge of e can be answered with the previous edge of the previous

edge of e (cf. Fig. 4). Thus, we can substitute the memory for the entries v

a

and e

nx

by

some few additional computations. Please note that these additional calculations are of

constant time and do not require a search (as would be necessary for general polygons).

Of course, we could replace v

b

and e

pv

by a similar strategy instead. But these entries are

required more frequently and thus should be available directly. The simpli�ed structure

requires 4 � 4 � n+ 3 � 4 � 3 �m � 8m+ 36m = 44m bytes of memory.

So far, we considered the entries v

a

, v

b

, e

pv

, e

nx

, and e

ng

as general references that could

be implemented either as pointers or as array-indices. If we decide to use only array-indices

5

as references we can save further memory and shift some load to the CPU instead. Given

an edge e, where e is an array-index, then the previous and next edge can be determined

by the following expressions (in C-style pseudocode):

prev(e) = (e%3 == 0) ? e+2 : e-1;

next(e) = (e%3 == 2) ? e-2 : e+1;

Thus, the data structure for a directed edge needs to explicitly store values only for v

b

and

e

ng

. This results in a total memory requirement of 4 � 4 � n + 2 � 4 � 3 �m � 8m + 24m =

32m bytes. This is optimal compared to the shared vertex representation with additional

neighborhood information, but the new data structure is more convenient to access the

required information from an algorithmic point of view. As an example, the following

pseudo-code returns the indices idx[0], : : :, idx[n-1] of the n neighboring vertices for the

v'th vertex:

int get_neighbors(int v, int idx[])

{

int ee = vertex[v].e(); // each vertex points to one emanating edge

idx[0] = edge[ee].v1(); // store the first vertex-index

int n = 1; // one index in the array

int e = edge[ee].prev(); // the previous edge of ee ...

int e = edge[e].neigh(); // ... and the respective neighbor

while(e != ee) { // until all emanating edges visited

idx[n] = edge[e].v1(); // store the current target vertex ...

n++; // ... and update the count

e = edge[e].prev(); // update the previous edge ...

e = edge[e].neigh(); // ... and the respective neighbor

}

return n; // n indices have been found

}

So far, we considered only orientable 2-manifold triangle meshes. As discussed in the

previous section, non-manifold vertices or edges should also be tolerated by a data structure

when used in practical applications. Since we do not want to spend any (or only few)

additional memory for this purpose and we assume that the number of non-manifold entities

is typically neglectable compared to the complexity of the whole mesh, we use the following

simple but e�ective strategy.

Using integer values as array-indices for the references to neighboring edges allows

us to use the sign-bit without any additional implementation-e�ort. The value for the

neighboring edge e

ng

is zero or positive for every pair of directed edge mates that represent

a 2-manifold interior edge. A directed edge on a topological boundary is marked by a certain

6

x
i

y
i

z
i

e
c0

−4

2 3e
c1

e
c2

e
c3

e
c4

Vertices

Array for non− manifold regions

−(−4)−1 = 3 (array index)

Figure 6: The entry �4 is used to determine the array-index �(�4)� 1 = 3 of a separate

array that lists the connected components attached to non-manifold vertices by referencing

one edge of each component.

negative entry for e

ng

, e.g. �1. A non-manifold edge or an edge whose two triangles are of

opposite orientation may be marked by �2.

A 2-manifold vertex references one of its emanating edges. For non-manifold vertices

the same strategy can be used as for edges. A negative array-index indicates such a node.

Removing the negative sign provides a positive value that points to a separate array which

lists either all edges emanating from that vertex or the connected components attached

to that vertex. Fig. 6 shows an example for the second strategy. This simple trick saves

memory (compared to linked lists for each vertex where only one list-entry is used for most

entities) and is easy to implement.

4 Results

We used the presented data structure for our mesh decimation algorithm [KCS98]. Using

object-oriented techniques allowed us to simply switch between the described strategies:

a full, medium, and a small sized data structure. Currently, we may use only one of

these three implementations at the same time within a single executable. By using further

object-oriented techniques it is possible to provide all data structures at the same time and

to decide at runtime, which one should be used, e.g., considering the memory requirements

of a certain model.

Figure 7 shows the results when using the three di�erent strategies for decimating dif-

ferent meshes (measured on a MIPS R10000 CPU at 250 MHz) when using our highly opti-

mized mesh decimation algorithm (implementation optimizations are described in [CKS98]).

The dashed line shows the results for the mesh with additional color attributes that is shown

in Figure 8. The other two lines show the results for decimating a mesh without attributes

at two di�erent target resolutions (it is a property of the mesh decimation algorithm that

the average performance decreases with the total number of removed triangles). As ex-

pected, the smallest data structure provides the slowest performance since we exchanged

speed for memory. Spending additional memory enhances the performance of the algo-

rithm in this case. The performance-results do not di�er in a broad range, since we exploit

7

3600

3700

3800

32
small

44
medium

68
full

sized data structure

removed
∆/sec.

bytes/∆

Figure 7: Using three di�erent instances of the scalable data structure within a highly

optimized mesh decimation algorithm. The dashed line shows the result for the mesh

shown in Figure 8, while the solid lines show the results for another mesh.

local caching of intermediate calculations within the mesh decimation algorithm and thus

reduce access requests to the underlying mesh data structure to a minimum.

There may be circumstances, where the above behavior need not be true, since lower

memory may sometimes result in higher CPU-performance due to the architecture of mod-

ern computer systems (�rst and second level caches, main memory, swap memory). The

number of additional calculations can be less than the time required for waiting for data

that has to be passed through the memory hierarchy. This behavior depends on the speci�c

application and the used computer architecture.

As mentioned before and as shown in Figure 8, a mesh may also contain additional

attributes, e.g. colors, surface normals, or texture coordinates [CB97]. Of course, such

attributes may also be added to the directed-edge data structure at the cost of additional

memory.

Finally, Table 1 shows a comparison of the mesh data structures considered in this

article. Please note that the individual triangles and shared vertex representation do not

provide any immediate neighborhood information which is crucial for many applications.

5 Conclusion

We presented a new scalable data structure for triangle meshes that allows to trade per-

formance for memory, depending on the speci�c application or the size of the data that

has to be processed. Implementation details can be hidden from the programmer by an

object-oriented API. Nonetheless, implementation and use of this scalable data structure

is very simple.

We have veri�ed our design goals by using this new data structure as a core component

of our mesh decimation algorithm. Especially memory e�cient handling of meshes with

8

Figure 8: The upper row shows the original mesh consisting of 770,436 triangles (topological

boundaries in blue). The mesh in the lower row has been reduced to 286,103 triangles.

only few local non-manifold entities has proven to be very important when using such a

data structure in practice.

References

[Bau72] B.G. Baumgart. Winged-edge polyhedron representation. Technical report,

STAN-CS-320, Stanford University, 1972.

[CB97] Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference Manual.

Addison-Wesley, Reading, Massachusetts, 1997.

[CKS98] Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. Enhancing Digital Doc-

uments by Including 3D-Models, 1998. To appear in Computers & Graphics.

[FvDFJ92] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Jughes.

Computer Graphics - Principles and Practice. Addison-Wesley, Reading, Mas-

sachusetts, 2nd edition, 1992.

9

supports neigh-

data structure bytes/4 non- bor- point prev. next

manifold hood reference edge edge

individual triangles 36 yes - - (M) (M)

shared vertex 18 yes - M (M) (M)

shared vertex with neig. 32 no M M (M) (M)

winged-edge 60 no M M M M

full directed-edge 68 yes M M M M

medium directed-edge 44 yes M M,C M C

small directed-edge 32 yes M M,C C C

Table 1: Comparison of several data structures. \M" indicates entities that are explicitly

stored, \C" means that the information may be calculated in O(1), and \-" marks entities

that require computations of complexity � O(1).

[GS85] Leonidas Guibas and Jorge Stol�. Primitives for the Manipulation of General

Subdivisions and the Computation of Voronoi Diagrams. ACM Transactions

on Graphics, 4(2):74{123, April 1985.

[KCS98] Leif Kobbelt, Swen Campagna, and Hans-Peter Seidel. A General Framework

for Mesh Decimation. In Proceedings of Graphics Interface '98, pages 43{50,

1998.

[KCVS98] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Inter-

active Multi-Resolution Modeling on Arbitrary Meshes. In Proceedings of

SIGGRAPH '98 (Orlando, Florida, July 19{24, 1998), Computer Graphics

Proceedings, Annual Conference Series, pages 105{114, July 1998.

[KS97] Krzysztof S. Klimaszewski and Thomas W. Sederberg. Faster Ray Tracing

Using Adaptive Grids. IEEE Computer Graphics and Applications, pages 42{

51, January-February 1997.

[Mae88] Martti Maentylae. An Introduction to Solid Modeling. Computer Science Press,

1988.

[O'R95] Joseph O'Rourke. Computational Geometry in C. Cambridge University Press,

Cambridge, 1995.

[PS97] Enrico Puppo and Roberto Scopigno. Simpli�cation, LOD and Multiresolution

Principles and Applications, 1997. Tutorial Eurographics '97.

[Ros97] Jarek Rossignac. Simpli�cation and Compression of 3D Scenes, 1997. Tutorial

Eurographics '97.

[SP94] Fran�cois Sillion and Claude Puech. Radiosity & Global Illumination. Morgan

Kaufmann, 1994.

10

[ZSS97] Denis Zorin, Peter Schr�oder, and Wim Sweldens. Interactive Multiresolution

Mesh Editing. In Proceedings of SIGGRAPH '97 (Los Angeles, California,

August 3{8, 1997), Computer Graphics Proceedings, Annual Conference Series,

pages 259{268, August 1997.

11

