
A Sketching Interface for Feature Curve Recovery of

Free-Form Surfaces

Ellen Dekkersa,∗, Leif Kobbelta, Richard Pawlickib, Randall C. Smithc

aRWTH Aachen University, Ahornstrasse 55, 52074 Aachen, Germany
bRRP & Associates
cOakland University

Abstract

In this paper, we present a semi-automatic approach to efficiently and
robustly recover the characteristic feature curves of a given free-form sur-
face where we do not have to assume that the input is a proper manifold.
The technique supports a sketch-based interface where the user just has to
roughly sketch the location of a feature by drawing a stroke directly on the
input mesh. The system then snaps this initial curve to the correct posi-
tion based on a graph-cut optimization scheme that takes various surface
properties into account. Additional position constraints can be placed and
modified manually which allows for an interactive feature curve editing func-
tionality. We demonstrate the usefulness of our technique by applying it to
two practical scenarios. At first, feature curves can be used as handles for
surface deformation, since they describe the main characteristics of an object.
Our system allows the user to manipulate a curve while the underlying non-
manifold surface adopts itself to the deformed feature. Secondly, we apply
our technique to a practical problem scenario in reverse engineering. Here,
we consider the problem of generating a statistical (PCA) shape model for
car bodies. The crucial step is to establish proper feature correspondences
between a large number of input models. Due to the significant shape varia-
tion, fully automatic techniques are doomed to failure. With our simple and

∗Corresponding author. Phone: +49 241 8021815, Fax: +49 241 8022899
Email addresses: dekkers@cs.rwth-aachen.de (Ellen Dekkers),

kobbelt@cs.rwth-aachen.de (Leif Kobbelt), richard.pawlicki@gmail.com (Richard
Pawlicki), 1randall.c.smith@gmail.com (Randall C. Smith)

URL: www.graphics.rwth-aachen.de (Ellen Dekkers)

Preprint submitted to Computer-Aided Design March 28, 2011



effective feature curve recovery tool, we can quickly sketch a set of character-
istic features on each input model which establishes the correspondence to a
pre-defined template mesh and thus allows us to generate the shape model.
Finally, we can use the feature curves and the shape model to implement
an intuitive modeling metaphor to explore the shape space spanned by the
input models.

Keywords:

Feature extraction, sketch-based interfaces, curve-based modeling, surface
registration, statistical shape model

1. Introduction

In this work, we address the problem of recovering smooth feature curves
from free-form surfaces. We do not impose any simplifying assumptions on
the characteristics of the input surfaces. Unrestricted input exhibits a variety
of challenging characteristics: An input model is a triangle or general poly
mesh, which is not required to be watertight or manifold, let alone genus
zero. It supposedly consists of a large number of surface patches which
intersect arbitrarily or contain gaps in between each other. In general, a
model can include much geometric detail which imposes difficulties on the
recovery of smooth curves as well as arbitrary geometric structure in its
interior. Furthermore, we do not require a consistent normal orientation.

The output of our system are B-spline curves that smoothly approximate
the features of the input model. Due to the complexity of the data, fully au-
tomatic approaches for feature recovery are doomed to failure. Furthermore,
the aesthetic question of what a feature actually is and what a method should
be able to recover cannot be modeled mathematically. However, our system
provides maximal user-support in recovering what he considers a feature.

Recovering features from free-form surfaces is an intensively investigated
field in Computer Graphics and CAGD. A closed network of feature curves al-
lows for the segmentation of an input model into meaningful sub-parts which
is a key issue for many further applications on meshes such as parametriza-
tion, morphing, matching, registration, or compression. There exist a large
number of mesh segmentation methods, automatic as well as semi-automatic
approaches, which incorporate some user-interactivity. Providing a detailed
survey on mesh segmentation is beyond the scope of this work. However,
one can roughly classify existing methods into two classes: The first class

2



tries to identify meaningful regions and then refines the borders separating
them. There exists a variety of approaches in the literature which make
use of watershed segmentation [1], clustering [2], [3], [4], region growing [5],
or random walks [6] to group similar mesh elements into meaningful regions.
Fitting of geometric primitives (e.g. [7], [8]) is suitable for decomposing mod-
els of mechanical parts in reverse engineering applications. The second class
of segmentation methods aims at the identification of segment borders which
implicitly define the segment regions. To extract meaningful patches, one
usually wants to align the borders to mesh features. However, depending
on the application, the definition of a feature varies. Graphical models on
the one hand impose different requirements than engineering objects or CAD
models on the other hand. For the first type of objects, the goal is to split it
into meaningful parts. From cognitive theory [9], we know that human per-
ception divides an object along significant concave features, widely referred
to as the minima rule. For objects of the latter type, one mostly aims at
segmenting the model into parts which can be fitted with some analytical
surface and hence in many cases the minima rule is not suitable for identify-
ing the borders. Therefore, several methods make use of snakes [10], [11], [12]
to identify features in a mesh, since an energy functional can be adapted to
the application-dependent definition of a feature. However, a drawback of
snake-based feature extraction is their restriction to detect local minima,
only. Once a snake settled to its final (locally optimal) position, it needs
to be detached manually to recover the global optimum. In [2] graph cuts
(e.g. [13]) were used to automatically refine an initial segment boundary
within a transition region derived from fuzzy clustering.

Approaches that automatically recover global features from surface meshes
[14], [15], [16] require the computation of higher-order surface derivatives thus
imposing limitations (2-manifoldness) on the meshes to be processed. Fur-
thermore, careful parameter tuning may be necessary since automatic feature
extraction is based on heuristics which might recover insignificant parts. [17]
require the user to provide a few control parameters and operators to be
applied to the input surface and hence are calling for a skillful user.

In recent years a lot of research has been spent on sketch-based inter-
faces. The user draws some strokes on a 2D canvas from which the system
e.g. creates smooth three dimensional surfaces (e.g. [18], [19], [20], [21]). [20]
consider the sketched curves as features of the resulting model and further
use them for surface editing.

The incorporation of user assistance into the task of mesh segmentation

3



greatly supports the detection of salient features. [5] let the user quickly
draw some freehand strokes on an input model marking subparts of interest.
A region growing algorithm then extracts the segment boundaries which are
finally smoothed using snakes. Furthermore, the user can manipulate the
resulting boundaries by, e.g., dragging them over the surface.

2. Overview & User Interface

Our system provides an intuitive sketch-based user interface that supports
the user in recovering smooth feature curves from highly complex free-form
surfaces where automatic approaches cannot be applied. Unlike the methods
described in Sec. 1, the input to our method can be arbitrary. Since an input
model may consist of a large number of surface patches, a feature curve
may have to span over several patches. Furthermore, when the position
of a curve is optimized it is also likely that it leaves one patch and moves
onto a neighboring patch. For non-manifold input, the definition of a patch
neighborhood is ambiguous and we cannot compute geodesic paths on the
model. Most existing methods align feature lines to edges of the input model.
Since mesh faces in CAD models often vary largely in scale, the resulting
boundary may suffer from artifacts caused by the poor mesh tessellation. In
contrast, our system generates smooth curves which follow feature regions of
the input model regardless of the underlying tessellation.

The fundamental idea of our work is the transformation of arbitrary input
into a regular intermediate structure which then allows for an evaluation of
the surface characteristics. To avoid general expensive 3D mesh repair, we
reconstruct the missing structural information locally. By using a “fishbone
structure” (cf. Sec. 3.3) we are able to reduce the reconstruction problem
from 3D surfaces to two 2D curves. The local structural information pro-
vided by the fishbone enables a graph-cut based algorithm that optimizes
a curve subject to various surface properties, thereby satisfying smoothness
requirements and guaranteeing to find the global optimum.

The user starts an interactive modeling session by loading an input model
into our system. The interface allows for intuitive navigation in 3D space
such that the model can be inspected from arbitrary viewpoints. To create a
new curve, the user roughly places some points in a region of interest on the
input mesh from which an an initial curve is automatically computed. Our
system supports the user in the task of recovering features by automatically
“snapping“ the sketch curve to regions of the most likely feature location.

4



The user can adjust the relative weighting of the optimization objectives
using a slider and scale the stiffness of the feature curve. In case he is not
yet satisfied with the result, positional constraints can be imposed by pulling
the curve over the input surface.

The optimization criteria as well as positional constraints for selected
points on the curve can be modified interactively. The feature curve then
automatically adopts itself to the new constraints in real time providing direct
feedback. We hide any technical details of the underlying algorithms such as
specific parameters from the user. This makes our system easily usable for
experts as well as inexperienced users.

We demonstrate the usefulness of our sketch-based interface by applying
it to two practical problem scenarios. In Sec. 4.1 we use the recovered feature
curves as handles for surface editing. In Sec. 4.2 we construct a statistical
shape model for car bodies, where the feature curves are used to establish
proper feature correspondences between the input models and furthermore
allow for intuitive navigation in the resulting shape space.

Please refer to the accompanying video for a demonstration of our inter-
face and of both application scenarios.

3. Implementation

In order to ensure high geometric quality, all curves created in an inter-
active modeling session are B-spline curves

c(t) =
n

∑

i=0

di ·N
p
i (t).

The number of control points di is chosen proportionally to the length of the
curve and N

p
i (t) are B-spline basis functions. By default, we set the curve’s

degree p to three, although the system is not restricted to cubic curves.

3.1. Initial Curve Generation

Given a set of surface points sketched by the user, our system generates
an initial curve by interpolation. To increase resolution, the resulting curve
is sampled at equidistant locations and the samples are projected onto the
closest point on the input mesh. In the following, we refer to these projected
curve points as surface samples S = {s0, . . . , sm−1}. A curve c(t) embedded
in the surface is then obtained by computing a chordal parametrization ti of

5



Figure 1: A fishbone structure on a car model: For each surface sample (green) a manifold
rib polygon (blue) is constructed which is orthogonal to the approximating curve (red).

the samples si as well as a knotvector U = {u0, . . . , un+p+1} that respects
the distribution of the parameter values ti [22]. We approximate the surface
samples si in the least squares sense such that

E(c) =

m−1
∑

i=0

‖si − c(ti)‖
2

is minimized. Since later some samples sj describe positional constraints
imposed by the user, they are required to be interpolated exactly. Hence, a
constrained least squares approximation is formulated by augmenting the ap-
proximation component N ·C = A with interpolation constraints M ·C = B.
Here, N and M are matrices of B-spline basis functions, C are the unknown
control points, A are samples to approximate and B are the samples to inter-
polate. We minimize the sum of the errors in the approximation component
subject to the interpolation constraints using Lagrange multipliers [22].

3.2. Curve Dragging

To pull a curve over the input surface, the user clicks on the curve and
the system computes the closest surface sample sc. Then, sc is projected into
the image plane and translated by a displacement defined by the movement
of the mouse on the screen. The new position s′c is obtained by reprojecting
the screen position back onto the mesh, which then induces an additional
interpolation constraint to the subsequent approximation.

We prefer the computation of the displacements in screen space over
their computation on the 3D surface itself using geodesic distances because
it allows for a more intuitive control of curve behavior. Furthermore, in

6



contrast to the computation of geodesic paths, reprojecting screen positions
back onto the mesh is always possible regardless of any mesh inconsistencies.

3.3. Feature Curve Optimization

In order to treat all different types of surface quality constraints in a
uniform manner, we do not optimize the curve c(t) itself but the positions of
the surface samples si that c(t) approximates. Allowing the si to move freely
on the surface during optimization would lead to clustering in areas which
best meet the optimization criteria. We therefore restrict their trajectories
to paths perpendicular to the approximating curve. On the one hand, this
avoids clusters since surface samples maintain a certain distance to each
other. On the other hand, it allows for easy local curve resampling in the case
that the sampling density falls below or exceeds certain density thresholds.

We use a fishbone structure as proposed by [23], to define the trajectories
along which the surface samples si are allowed to move during optimization.
The feature curve c(t) thereby forms the backbone while rib polygons are
created as follows. Since c(t) approximates a set of m surface samples S =
{s0, ..., sm−1}, there exists a curve parameter value ti for each sample si. At
each c(ti) we define a rib by a plane orthogonal to the curve, i.e. its normal
equals the curve’s tangent at c(ti). Intersecting the input mesh with a rib
plane traces out a set of edges which need to be joined to form a rib polygon
that represents the outer contour. A complete fishbone structure is obtained
by reconstruction a manifold polygon for each rib. Fig. 1 shows a fishbone
for a curve on a car’s roof.

Note, that the planarity property of the ribs allows us to perform the
manifold reconstruction in a 2D plane. The watertight repair of 3D meshes
(see e.g. [24]) is considerably more difficult than 2D polygon repair due
to the much larger variety of artifacts and inconsistencies that can occur
(e.g., non-manifold vertices and edges, gaps, partial overlaps, holes and self-
intersections; see [25] for a survey). In the 2D case of contour repair, all we
need to do is to recover the proper vertex sequence for which we suggest a
local marching procedure in the following section. Notice that surface repair
based on a local marching technique is not guaranteed to work correctly since
objects like Moebius strips and Klein bottles might be generated accidentally.

3.3.1. Rasterization-based Manifold Reconstruction

Intersecting the input model with a rib plane creates an unordered set of
edges. Assuming that the initial curve is sketched in a region of interest and

7



Figure 2: A slice through an input model. Surface patches intersect arbitrarily, hence a
purely geometric repair algorithm is prone to failure. The image on the right shows a
close-up of the area enclosed by the red box in the left image.

hence is not supposed to change its location by more than a certain distance,
we can accelerate the construction of the rib polygons by reducing the search
space. We therefore discard all intersections of a rib plane with the input
model that do not lie within a circle with a predefined radius around the
backbone. The radius defines the region around the user-sketched feature
curve where the actual feature curve should be searched for. Hence the
choice of this parameter depends on our expectations of how close to the real
feature the user sketch lies. In our application scenarios (Sec. 4), this radius
is automatically chosen to be 15 cm (car models are given in full scale).

Since the input model can be arbitrary, a manifold polygon representing
the outer contour cannot be reconstructed in a simple mesh traversal. How-
ever, we can traverse each surface patch separately and connect its intersec-
tion edges to a manifold polygonal segment. What remains is the connection
of these segments to a single manifold contour polygon that interpolates the
outer silhouette. A simple and purely geometric approach merges the seg-
ments by concatenating them at coinciding endpoints. However, since surface
patches may intersect arbitrarily, this also holds for the segments (cf. Fig. 2).
Unfortunately, no robust criteria can be found to distinguish between seg-
ments that should be (partially) contained in the contour and those that do
not. However, prior to performing the following rasterization-based recon-
struction, we check the polygonal segments for intersection and fall back to
this purely geometric approach in the case that none are detected.

We propose a rasterization-based approach that is able to robustly re-
construct a planar manifold polygon given an arbitrary set of polygonal seg-
ments. We start by rendering all segments into an offline buffer to create an
image I showing a slice through the input mesh. Since small gaps may occur

8



(a) (b) (c)

Figure 3: Manifold extraction: Our algorithm gains topology information for the recon-
struction of a contour in an image traversal (a). Identifying the correct intersections of grid
edges with polygon edges (b) allows for the construction of a manifold contour polygon
(c) from a set of arbitrarily intersecting polygonal segments (orange, yellow, purple).

in-between the segments, we execute k dilation steps on I, where k depends
on the size of the gaps to be closed. During the subsequent k erosion steps,
we follow the approach of [24] and erode a foreground pixel px,y if and only
if it satisfies both of the following two conditions: First, px,y was not set
as foreground pixel during the initial rasterization. Secondly, when cycling
the 8-pixel neighborhood of px,y we encounter at most one switch from back-
ground to foreground and vice versa. This ensures that in the resulting image
small gaps are closed while the original topology is preserved otherwise.

The idea of our algorithm is to reconstruct a manifold polygon by walking
around the outside of the contour. To accelerate the computation we create
a uniform axes-aligned grid that partitions the image into quadrangular cells.
Our algorithm then identifies all cells containing geometry information and
forming the contour by walking along the grid edges. Simultaneously, it
identifies the edges within the visited cells that constitute the contour and
adds them to the manifold polygon in the correct order.

Consider Fig. 3 for an illustration of our method: (a) shows two exemplary
cells of size 8×8 pixels. Suppose we detect a first foreground pixel (black) on
the top grid edge of the upper cell as starting point for the contour extraction.
Starting from there, we walk along the cell’s grid edges in counterclockwise
direction and compare the colors of neighboring pixels. The next occurrence
of a black pixel indicates at which edge the contour leaves the current cell
and enters one of the four neighboring cells.

The image traversal serves as topological guide for the construction of a

9



(a) (b) (c)

p∗in
p∗out

pstart

pend

ein

eout

Figure 4: Different cases occurring in a single cell during the contour reconstruction: (a)
One segment intersects the cell. (b) Two segments intersecting the cell are connected to a
single manifold segment. (c) Ambiguous case: Grid edges are intersected multiple times.

manifold contour polygon. We add the points within each visited cell to the
polygon depending on the cell characteristics depicted in Fig. 4. A cell can
be intersected by a single polygonal segment (a), or by multiple segments.
In the latter case, we need to distinguish between a situation where both the
entering and the leaving grid edge are intersected by exactly one segment
(b), and the situation in which the entering and/or the leaving grid edge is
intersected multiple times by possibly different segments (c).

Suppose we enter a cell on the top edge ein, which is intersected by a
segment Sin, and leave it on the bottom edge eout, which is intersected by a
segment Sout. If Sin = Sout (a) we simply add all points pi ∈ Sin within the
cell to the final manifold polygon. If Sin 6= Sout (b) we compute two point
sets Pin ⊂ Sin containing all points within the cell that belong to segment Sin

and Pout ⊂ Sout containing all points that belong to Sout. We then compute
the pair of points p∗in ∈ Pin and p∗out ∈ Pout having the minimum distance

argmin
pin∈Sin

argmin
pout∈Sout

{dist(pin, pout−1pout)}.

We add the point set {p ∈ Pin|pstart ≤ p ≤ p∗in}, i.e., all points between pstart
and p∗in on segment Sin, and then add the point set {p ∈ Pout|p

∗

out ≤ p ≤ pend},
i.e., all points between p∗out and pend on segment Sout, in the correct order to
the final polygon. The relation < thereby refers to the index-based explicit
ordering of points in a manifold polygon. By pstart and pend we denote the
endpoint of the edge in Sin or Sout, respectively, which intersects the respec-
tive grid edge and lies within the current cell. In the case that we encounter a
situation with more than one intersection on the leaving grid edge (cf. Fig. 4
(c)), the choice for the leaving segment Sout becomes ambiguous. Since our

10



goal is to reconstruct the outer contour, we simply chose the first intersection
we encounter while traversing the grid edge, i.e., the intersection closest to
the edge’s starting point (red segment in Fig. 4(c)). Although the contour
extraction is topology-driven, the geometrical decision is inevitable, since
several intersections may be contained within one foreground pixel and the
image traversal does not provide enough topology information. The selected
outgoing intersection is kept as incoming intersection for the neighboring cell
and hence does not need to be recomputed.

Since our method extracts a closed manifold contour polygon it happens
that if the input is not closed, we extract the inside of the input as well.
However, since the reconstruction is performed in a 2D plane, we are able to
compute consistent normals at each vertex of the resulting manifold polygon.
This on the one hand allows for distinguishing between the outer and the
inner part of the contour and furthermore overcomes the possible lack of a
consistent normal orientation in the input model.

In our experiments, we found an image resolution of 800×600 pixels and
k = 1 dilation and erosion steps together with a grid resolution of 8×8 pixels
sufficient for the construction of precise contour polygons.

3.3.2. Graph-Cut Optimization

A fishbone with one manifold rib polygon per surface sample establishes a
locally regular structure in highly unstructured surface areas and allows us to
optimize a feature curve c(t). Instead of optimizing c(t) directly, we compute
optimal positions of the samples si on the input surface and re-approximate
them by c(t). We optimize the positions of the surface samples w.r.t. a set
of criteria: They include external forces modeling surface properties as well
as an internal force imposing smoothness requirements to the optimization
problem. The latter is crucial since we would like the resulting polygon of
surface samples to exhibit low geodesic curvature.

We formulate the task of extracting optimal sample positions as a graph
cut problem as illustrated in Fig. 5. Each rib polygon bi is sampled at
dense but discrete locations bi,j, constituting a set of possible positions of
the associated surface sample si (a). By sampling each rib, we construct a
planar regular quad graph structure G = (V,E) with one column per rib
(b). Notice that the edges E, not the vertices of column i in G represent
the samples bi,j on rib i. Edges connecting samples of the same rib (vertical
edges) are in the following referred to as rib edges whereas edges connecting
vertices of neighboring ribs are referred to as cross edges.

11



c(t)

bi,j

bi

si

source

sink

(a) (b)

Figure 5: Fishbone structure: (a) The feature curve c(t) forms the backbone of a fishbone
structure with one orthogonal rib bi per surface sample si. The optimal positions of the
surface samples are obtained by embedding the fishbone into a planar graph structure (b)
and computing the minimum cut. The orange edges represent the backbone samples si.
Our algorithm guarantees the cut to be monotonic (green line) by assigning appropriate
edge capacities. A cut as depicted by the solid red line which results in ambiguous sample
positions is impossible since there always exists a cheaper cut (dashed red line).

Capacities are assigned to rib edges by evaluating the following two ex-
ternal optimization criteria at the corresponding rib samples bi,j . The first
criterion pulls the curve to regions of maximum curvature. We therefore eval-
uate the curvature at each sample bi,j as the average of the discrete normal
curvature in the directions of the adjacent rib edges e0 = (bi,j−1, bi,j) and
e1 = (bi,j, bi,j+1):

ωcurv(bi,j) =
1

2
(|κk|+ |κk+1|),with κk =

2 · (bi,k−1 − bi,k) · n

‖bi,k−1 − bi,k‖2

and n being the edge normal. The second criterion promotes feature curves to
approximate isophotes and hence encourages them to align to surface regions
with a specific normal angle. We evaluate the surface normal angle with one
of the axes of the coordinate frame at each rib sample bi,j as

ωnormal(bi,j) = | arccos(ni,j · a)− β|

where β is the desired surface normal angle and a is the x-, y-, or z-unit vector
of the coordinate frame. The surface normal ni,j at sample bi,j is obtained by
linear interpolation of the normals at the endpoints of the current polygon

12



edge. Since the criteria measure different quantities we normalize ωcurv and
ωnormal to the interval [0, 1]. To obtain the capacity τ of a rib edge in G, we
simply compute the weighted sum over the normalized external forces:

τ(bi,j) = α · ωcurv(bi,j) + (1− α) ∗ ωnormal(bi,j). (1)

The parameter α allows for weighting of the criteria. Note, that optimization
objectives are often application dependent and the external criteria presented
here are examples. It is straightforward to integrate any other forces that
can be evaluated on fishbone ribs.

The capacities assigned to rib edges model external forces that shift the
samples to those positions on the surface that best meet the optimization
criteria. However, optimizing the sample positions subject to these forces
only can lead to an arbitrary zig-zag shape of the resulting surface sample
polygon. We therefore introduce an internal smoothness criterion by assign-
ing an appropriate capacity to cross edges. This capacity θ is set to be always
greater than all capacities associated to rib edges

θ ≥ max
i,j

τ(bi,j).

which ensures that in each column ofG exactly one rib edge is cut. Hence, the
resulting minimal cut throughG is always monotonic (green line in Fig. 5(b)).
A cut as depicted by the red solid line, which would lead to more than
one optimal position for a surface sample, cannot occur since its costs are
guaranteed to be larger than the costs of the cut depicted by the dashed line.

The user can modify the stiffness of the resulting curve by adjusting a
stiffness factor f ≥ 1 which scales the capacity of cross edges. A positional
constraint for a surface sample sc is integrated into the graph embedding by
assigning a capacity equal to zero to the graph edge associated to the rib
sample bc,j that has minimum distance to the desired surface position, while
the capacities of all other edges in column c are set to infinity.

Finally, the top row of vertices of G is connected to the source, the bot-
tom row is connected to the sink and all edges connecting source and sink are
assigned an infinite capacity guaranteeing they are never cut. When comput-
ing the minimal cut through G, the quad-structure of G ensures that each
column is cut at least once, since otherwise it is impossible to disconnect
source and sink. Simultaneously, the choice of the capacities ensures that
in each column exactly one vertical edge is cut. The rib sample b∗i associ-
ated with the edge cut in column i is the optimal position for the surface

13



(a) (b) (c)

Figure 6: Geometric detail in the input model may induce the projection of surface samples
(large dots) to both sides of a sharp feature and hence results in a zig-zag shape of the
backbone samples (a). Constructing the fishbone and running the graph cut optimization
without synchronizing the ribs results in a feature curve suffering from high curvature (b).
Our rib synchronization establishes a smoothed line of backbone samples (yellow dots)
and hence results in a smooth optimized feature curve (c).

sample si. After reprojecting the b∗i onto the input model, yielding the final
optimal surface samples S∗ = {s∗0, ..., s

∗

m−1}, we recompute a least squares
approximation of S∗ to obtain the optimized feature curve c(t).

A special case that needs to be taken into account in the curve optimiza-
tion is posed by geometric detail contained in the input model (cf. Fig. 6).
During the projection of an initial sketch curve (cf. Sec. 3.1), the surface
samples si are projected onto different sides of a sharp feature (a). Regard-
less of the lack of smoothness, the graph cut embedding would encode the si
as opposite horizontal edges in the center row of the graph structure. Hence,
the zig-zag shape is assumed to be maximally smooth since no horizontal
edges would need to be cut. A curve that approximates these samples suffers
from high curvature as illustrated in Fig. 6 (b). To overcome this problem,
we compute an index offset to ”synchronize“ neighboring ribs prior to the
computation of the graph cut embedding. Sampling each rib as usual and
starting at the backbone sample s̃i = si of rib i (with i being either the first
or some rib in the middle), we determine the sample on the neighboring rib
i + 1 that has minimum Euclidean distance to s̃i and define it as the new
backbone sample s̃i+1. The number of samples in between the original surface
sample si+1 of rib i+ 1 and the new sample s̃i+1 determines in which direc-
tion and how many steps the rib must be shifted to smooth the backbone.
Running the graph cut optimization on the synchronized fishbone produces
a smoother feature curve (cf. Fig. 6(c)).

The costs of the computation of the fishbone depend on the number of ribs

14



that need to be reconstructed using the rasterization approach in case that
the simple geometric approach cannot be applied due to inconsistencies in
the input model. When the geometric approach is chosen, the entire fishbone
is constructed in real time. It takes additional 0.3 sec. per execution of the
rasterization-based repair algorithm (on an Intel Core2 Duo 2.66GHz with
4GB RAM). The number of executions depends on the complexity of the
model’s area that is being repaired. In our experiments we observed that
on average the image-based repair algorithm was selected (instead of) the
geometric fallback approach for about ten percent of the rib polygons.

4. Applications

We demonstrate the usefulness of our system by applying it to two prac-
tical problems: feature curve-based surface modeling (cf. Sec. 4.1) and the
generation of a statistical shape model for car bodies (cf. Sec. 4.2).

4.1. Feature Curve Based Surface Modeling

Feature curves describe the main characteristics of a surface and hence
modifying them changes the overall shape of the surface in a meaningful way.
There exists a variety of surface deformation methods in the literature on
which [26] provide an excellent overview. A widely used paradigm to deform
a surface is to let the user define a region of interest (ROI) on a model and to
edit this region by moving or rotating a handle. This rigid handle metaphor
is well suited for our setting, since we would like to manipulate feature curves
and propagate the modification to the input model. For surface deformation,
we use the well-known ”Laplacian surface editing” technique [27].

Laplacian based modeling approaches require the input model to be man-
ifold and hence they cannot be applied to our models directly. However,
during curve optimization a fishbone structure has been established that
reconstructs the missing manifold information locally. Now, we further ex-
ploit this structure to enable Laplacian surface editing on unrestricted input
models in the following way: From the fishbone, a manifold mesh patch is
constructed, which uses a feature curve as deformation handle. After manip-
ulating the curve, this patch is deformed accordingly using Laplacian surface
editing and finally its deformation is transferred to the non-manifold input
model using normal displacements.

In more detail, our methods works as follows (consider Fig. 7(a) for an
illustration): A feature curve c(t) constitutes the backbone of its associated

15



(a) (b)

Figure 7: Curve-based modeling: (a) We exploit the regular structure of a fishbone
(cf. Fig. 5(a)) to generate a manifold mesh patch. The handle vertices (green) are directly
related to the feature curve, gray vertices represent fixed boundary constraints while the
remaining inner vertices (blue) represent the deformable region of the mesh. (b) 2D illus-
tration. Top: Initial configuration, bottom: configuration after deformation. When the
user modifies a feature curve, the positions of the associated handle vertices (green) in
the fishbone patch are updated accordingly, while the blue vertices are deformed using a
Laplacian-based modeling technique. The deformation of the patch (black) is transferred
to the input model (red) using normal displacements.

fishbone (cf. Fig. 5(a)) and together with its ribs naturally induces a regular
quad structure, from which we construct a local manifold mesh patch P by
triangulating neighboring rib samples. There exist three types of vertices
in this mesh: handle vertices (green) constituting the handle region, model-
ing vertices (blue) representing the deformable ROI, and boundary vertices
(gray) which impose boundary constraints into the modeling and which rep-
resent the fixed part during the deformation. We select the handle vertices to
be directly related to the feature curve and hence they are given by the cen-
ter row in the fishbone patch P . All inner vertices of P constitute the ROI,
which later undergoes the deformation, while all boundary vertices describe
the non-deformable boundary constraints.

Since in the end we do not want to deform a fishbone patch which locally
resamples the input geometry but the input model itself, we must transfer
the deformation of the patch to the model. Therefore all model vertices vi
that are covered by the patch P are identified and project onto their closest
point on P . This yields projected positions vproji which can be described as a
barycentric combination of the vertices of the patch triangle ∆P (wi, wj, wk)
onto which vi was projected. Furthermore, we store the normal displacement
ni = v

proj
i − vi in the local coordinate system of the triangle ∆P .

Our feature curve based surface modeling then works as follows (cf. Fig.
7(b)): The user manipulates a feature curve in 3D space which directly

16



defines new positions for the handle vertices in the associated fishbone patch.
The thereby induced Laplacian modeling step yields a deformed patch P ∗

that fulfills these positional handle constraints. Finally, the new position
v∗i of a model vertex vi that was covered by the original fishbone patch
is obtained by applying its barycentric coordinates to the deformed patch
triangle ∆P ∗(w∗

i , w
∗

j , w
∗

k) and adding the normal displacement n∗

i which is
transformed according to the deformed triangle ∆P ∗ :

v∗i = (αi · w
∗

i + βi · w
∗

j + γi · w
∗

k) + n∗

i

Here, αi, βi, γi are the barycentric coordinates of the projected model vertex
v
proj
i w.r.t. the undeformed patch triangle ∆P (wi, wj, wk).
To control the range of a feature curve-based deformation on the input

model, the user can adjust the width of the fishbone patch, i.e., the length
of the ribs using the mouse wheel. Short ribs result in a local deformation
while long ribs allow for editing larger regions of the input model.

Since the user often modifies more than one feature curve while editing
the input model, a model vertex may be influenced by multiple fishbone
patches. In these cases, we compute the final vertex position as the average
of its deformed positions in all fishbone patches.

Results. Fig. 8 depicts some results we obtained with our system. In (a)
a feature curve on a car’s trunk was edited to create a spoiler. In (b) two
feature curves were recovered from a wheel opening and were modified to
expand the car’s wheelhouse. In the third example (c) we show the front of a
car model, where one feature curves was recovered from the lower part of the
bumper and another one from the top of the headlights. Both curves were
deformed to make the car’s front area appear more bulky. In figures (b) and
(c) the fishbone patches are omitted to avoid overloading the images.

4.2. A Morphable Shape Model for Cars

In our second application we apply our system to the practical problem
of generating a morphable shape model for car bodies. After recovering a
set of feature curves from an input model, we automatically construct a
feature network which establishes correspondences to a pre-defined template
mesh. The input model is then registered to the template guided by the
feature network in a fully automatical way. Having registered a set of car
bodies to the same template finally allows for the construction of a statistical

17



(a) (b) (c)

Figure 8: Curve-based editing of car models. (a) A manifold mesh patch (red) is con-
structed from the feature curve’s fishbone (top). The deformation of the patch is trans-
ferred to the non-manifold input model (bottom). (b),(c): The input model with the
recovered feature curves (top) and a result obtained with our modeling system (bottom).

(PCA) shape model. In addition, the feature network implements an intuitive
metaphor for exploring the shape space spanned by the input models.

There exists a variety of related work in the context of conceptual de-
sign for automotive shapes. We will briefly review three approaches that are
closely related to our work. [28] align a 3D template model to 2D sketches.
The aligned model is then refined by tracing a car’s characteristic lines on
the sketch. [29] represent a car by a network of polylines capturing the main
features. The user can manipulate the network by pulling single vertices
and sketching over lines to generate new shapes. However, the feature net-
work was extracted from input models in a solely manual process. In [30]
a framework for navigation in a shape space of registered models of auto-
motive shapes is presented. Again, the registration problem is solved in a
tedious manual preprocessing step. The user can explore the shape space by
dragging single feature points or manipulating shape space parameters.

4.2.1. Registration

To reduce distortion in the later PCA model, we segment a car into
four components: roof, body and front and rear wheelhouse. We thereby
employ the symmetry w.r.t. the plane that separates the driver’s side from
the passenger’s side and register the driver’s half only, while the remaining

18



(a) (b)

(c) (d)

r = 6

r = 5

Figure 9: Template mesh and associated curve network: (a) Roof/body mesh, (b) wheel-
house mesh, (c) roof/body network, (d) wheelhouse network.

half is obtained by mirroring the result. For each component, we define a
network of feature curves as well as a template mesh as depicted in Fig. 9.
An input model is registered in a two-step procedure.

Network construction. Since usually the endpoints of a recovered feature
curve are not placed precisely, we compute the feature endpoints by pairwise
intersecting the input curves yielding the red nodes in the curve network in
Fig. 9 (c) and (d). If three feature curves do not intersect in a common point,
we compute the average of the three pairwise intersection points.

Mapping. In the second step, a pre-defined template quad mesh is mapped to
its associated curve network thereby roughly approximating the underlying
geometry of the input model.

Our system constructs a template mesh on-the-fly letting the user define
its resolution. Note that the computation of a PCA shape model requires a
common resolution of all registered models. Fig. 9 (a) shows an exemplary
template mesh where the roof and the body are a topological cube with
four or five faces, respectively. The wheelhouse component is depicted in
(b). Each template component contains feature vertices (red and green)
and non-feature vertices (not highlighted). The red feature vertices directly
correspond to the red intersections of feature curves in (c) and (d). The green
feature vertices correspond to samples on the network, which are obtained
by uniformly sampling the relevant interval of the respective feature curve at
r − 2 locations, depending on the template resolution r.

19



(a) (b)

Figure 10: Mapping problem: (a) The outmost intersection of a vertex normal with the
input model may lie on geometric detail which should not be captured with the tem-
plate mesh. (b) We eliminate these outliers in the mapping step by integrating a vertex
regularization into the sampling of the input surface.

While the final positions of the feature vertices are defined by the curve
network, the final positions of non-feature vertices are computed as a combi-
nation of a sampling of the input surface and a vertex regularization. First,
we construct a uniform Laplace system with all feature vertices as positional
boundary constraints and solve for the coordinates of the non-feature ver-
tices pmem

i . This distributes the non-feature vertices on the membrane surface
spanned by the feature vertices (for more details, please see [31]) and allows
us to compute vertex normals ni. In the following projection step, we com-
pute the outmost intersection of the vertex normal with the model, i.e.,

pinteri = pmem
i + γmax · ni

is the point of intersection with the maximal parameter γmax. Notice that if
pmem
i lies outside the model, the outmost intersection lies inside the template
and hence the maximal parameter γmax is negative.

In situations where the geometric detail is finer than what can be captured
with the template mesh resolution, alias effects occur. E.g. a vertex that
is supposed to lie on the driver’s side window may be projected onto the
exterior mirror since this detail is further outside (cf. Fig. 10). To overcome
this problem, we include the positions of neighboring vertices to detect if an
intersection is reliable. The optimal position p∗i of a non-feature vertex vi
is supposed to be some weighted average of the outmost mesh intersection
pinteri and the membrane position pmem

i . The larger the distance between the
two positions, the less reliable is considered the intersection pinteri . To define

20



an appropriate weight, we compute

di = min

(

‖pinteri − pmem
i ‖

δ · emin

, 1

)

,

which measures the ratio of the distance between pinteri and pmem
i and the

minimum length emin of edges adjacent to vi. Taking the minimum of this
ratio and 1 establishes a smooth transition between pinter and pmem and at
the same time discards outliers by clamping them to 1. In our experiments,
we found δ ∈ [1, 3] to lead to the best results. The following transfer function
finally maps vertex distances to weights ω ∈ [0, 1]:

ωinter(vi) = 1− di (2)

ωmem(vi) = di

Considering the membrane position as well as the mesh intersection addition-
ally enables us to correctly handle vertices for which an intersection of their
normal with the mesh cannot be computed due to gaps between neighboring
surface patches. If there is no intersection, we simply use the membrane
position only.

We formulate the computation of the final vertex positions as a weighted
constrained least squares problem: The approximation component

W ·

[

L

K

]

·X =

[

0
Q

]

(3)

consist of two parts: Matrix L is a uniform Laplace system modeling the
membrane positions while matrix K is generated by starting with an iden-
tity matrix and removing all rows corresponding to vertices for which an
intersection cannot be computed. Finally, we multiply Eq. (3) with a di-
agonal matrix W containing the weights computed with Eq. (2) to account
for the reliability of the surface intersections. The points of intersection are
stored in the vector Q. We augment Eq. (3) with interpolation constraints

M ·X = P (4)

given by the positions of the feature vertices P . Minimizing the sum of the
errors in Eq. (3) subject to the interpolation constraints (4) using Lagrange
multipliers (cf. Sec. 3.1) yields the final positions for all template vertices.

21



Notice that computing the outmost intersection of the vertex normal with
the mesh is not always feasible. For template vertices of the body that are
actually occluded by the roof or a wheelhouse, we cannot compute a mean-
ingful new 3D position on the input model. To determine these vertices, we
intersect the normals of all body vertices with the roof and both wheelhouses.
If an intersection is detected they are excluded from the projection onto the
input model and only their membrane position is used in the optimization.

4.2.2. Statistical Shape Model

The registration of a number of input models to the same template mesh
establishes full vertex correspondence and hence enables us to construct a
statistical shape model. We represent the geometry of each registered model
by a shape vector Xi = (x0, y0, z0, . . . , xn−1, yn−1, zn−1)

T ∈ R
3n which con-

tains the x-, y- and z-coordinates of the n vertices of the template mesh.
Writing all k shapes as columns in a data matrix X = [X0, X1, . . . , Xk−1]
and subtracting the mean shape X allows for the computation of a statisti-
cal shape model by applying Principal Component Analysis (PCA) to X . A
new shape S can then be computed as

S = X + Φα (5)

with Φ ∈ R
3n×k−1 being the matrix of eigenvectors of the covariance matrix

and α = (α0, . . . αk−2)
T being a vector of coefficients. Note that there are

only k − 1 meaningful eigenvectors since the mean was subtracted from the
input shapes.

The benefit of a PCA shape model compared to simple affine combina-
tions of the input shapes is that the PCA model allows for dimensionality
reduction. Selecting the eigenvectors corresponding to the largest l < k − 1
eigenvectors in Eq. (6) enables the user to explore the shape space containing
the most important variances. This is especially useful when the number of
input models becomes large.

Since we would like to enable the user to explore the shape space spanned
by the input models in an intuitive way, we need to implement a suitable mod-
eling metaphor. On the one hand, defining target positions by repositioning
individual vertices of the shape S is too laborious. On the other hand, ma-
nipulating the coefficients αi using, e.g., one slider per coefficient does not
provide intuitive control. However, the feature vertices in a shape are related
to feature curves. Since these curves express the main characteristics of a
surface, we employ them as an intuitive modeling metaphor.

22



Every manipulation of a feature curve on the PCA model defines a set of
target vertex positions T ∈ R

3m where m < n is the number of feature ver-
tices in the template mesh. To compute the shape S∗ that best approximates
the target positions, we compute the PCA coefficients αi such that

‖T − B(X + Φα)‖2 → min (6)

is minimized. Matrix B eliminates all rows in X and Φ that do not represent
a feature vertex. Since the number m of feature vertices is supposed to be
larger than the number k of input shapes, the coefficients α are obtained by
solving the overdetermined system (6) in the least squares sense. The final
shape S∗ is then computed using Eq. (5). To avoid degenerated configurations
in which S∗ does not lie within the shape space spanned by the input models,
we clamp the αi to the bounding box of the coefficients expressing the original
input models in the PCA space. Hence, the αi satisfy λmin

i ≤ αi ≤ λmax
i .

4.2.3. Results

We applied the registration to a set of complex 3D models of car bod-
ies, which are triangle as well as general poly meshes that are non-manifold
and lack a consistent normal orientation. Each model consist of 100 to 300
surface patches that may intersect and contain gaps between each other.
The complexity ranges from 10k to 40k vertices. From each model we re-
covered a complete curve network, which took between 10 and 20 minutes
per model. Fig. 11 shows some example models together with the recovered
feature curves in the top rows as well as the result of the fully automatic
registration in the bottom rows. The resolution of the template mesh was
chosen as n = 1614 vertices in total.

In general, prior to defining a feature network the question about what a
feature actually is, needs to be answered. Once the topology of the feature
network is defined, every other geometric structure is no feature by definition.
The pre-defined set of feature curves used in the registration is considered the
lowest common denominator since we are always able to identify all curves
on each model. However, some cars exhibit additional characteristic lines as,
e.g., sharp edges on the engine hood or the trunk area. We are aware that
these additional characteristics can by missed by our template mapping since
we can only guarantee the proper alignment of those edges that are defined
as features in the template. Increasing the set of feature curves would on the
one hand allow for a more precise approximation of the input model but on

23



(a) (b) (c)

(d) (e) (f)

Figure 11: Top rows: Six example models of car bodies (driver’s half) from which we
recovered a set of feature curves. The recovery took between 10 and 20 minutes per
model. Bottom rows: Results we obtained with our fully automatic registration method.

the other hand evoke the problem of how to correctly place the additional
curves in cases when a car does not exhibit the additional features. To avoid
ambiguity, we restricted ourselves to the minimal set of feature curves.

From a database of 13 registered car models we computed a statistical
shape model and explored the shape space using the feature network. Fig. 12
depicts three exemplary results obtained with our system. Please refer to the
accompanying video for an illustration of all registered input models as well
as an exploration of the shape space.

5. Conclusions

We have presented an intuitive sketch-based user interface that allows
for the recovery of feature curves from highly complex free-form surfaces.
Using a fishbone structure, we reduce the task of reconstructing structural
information on which optimization criteria can be evaluated from 3D surfaces
to 2D curves. This enables a graph cut based optimization method that

24



(a) (b) (c)

Figure 12: New car models can be modeled intuitively by manipulating the feature net-
work. Our system computes the best matching PCA coefficients in the least squares sense.

globally optimizes a feature curve w.r.t. several surface criteria, regardless of
the complexity and consistency of the input model.

When a feature curve exhibits high geometric curvature its fishbone ribs
may overlap. During optimization, the trajectories of the surface samples
may hence cross each other and cause kinks and loops in the approximating
curve. This problem could be solved by relaxing the orthogonality property
of the ribs. However, since in our applications the goal was to recover curves
that smoothly approximate the features in the input surface, this problem
almost never arose.

We demonstrated the usefulness of our system by applying it to two
practical problems. In the first setting, the recovered feature curves were used
as modeling handles for real-time editing of highly complex input models.
In our second scenario we created a statistical shape model for car bodies
by recovering the same feature network from several input models. Since
feature curves represent the essential characteristics of a surface the user can
intuitively model new cars by manipulating the feature curves in 3D space.

In the future, we would like to extend our system such that it is able
to recover feature curves from point clouds. This requires a manifold repair
method that reconstructs fishbone ribs from points that lack any topology
information. Furthermore, we would like to integrate additional optimization
criteria into the graph-cut optimization. In the case that the input geometry
exhibits some regularity in the mesh tessellation, an interesting criterion
would enforce the feature curve to align to isolines contained in the input.

Acknowledgements

We would like to thank General Motors R&D for their support.

25



References

[1] A. P. Mangan, R. T. Whitaker, Partitioning 3d surface meshes using
watershed segmentation, IEEE Transactions on Visualization and Com-
puter Graphics 5 (4) (1999) 308–321.

[2] S. Katz, A. Tal, Hierarchical mesh decomposition using fuzzy clustering
and cuts, in: Proc. ACM SIGGRAPH 2003, 2003, pp. 954–961.

[3] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, R. R. Martin, Feature sensitive mesh
segmentation, in: Proc. ACM symposium on Solid and physical model-
ing, 2006, pp. 17–25.

[4] S. Shlafman, A. Tal, S. Katz, Metamorphosis of polyhedral surfaces
using decomposition, Comput. Graph. Forum 21 (3).

[5] Z. Ji, L. Liu, Z. Chen, G. Wang, Easy mesh cutting, Comput. Graph.
Forum 25 (3) (2006) 283–291.

[6] Y.-K. Lai, S.-M. Hu, R. R. Martin, P. L. Rosin, Fast mesh segmentation
using random walks, in: Proc. ACM symposium on Solid and physical
modeling, 2008, pp. 183–191.

[7] M. Attene, B. Falcidieno, M. Spagnuolo, Hierarchical mesh segmentation
based on fitting primitives, Vis. Comput. 22 (3) (2006) 181–193.

[8] J. Wu, L. Kobbelt, Structure recovery via hybrid variational surface
approximation, Computer Graphics Forum 24 (3) (2005) 277–284.

[9] D. D. Hoffman, W. A. Richards, Parts of recognition, Cognition 18
(1985) 65–98.

[10] Y. Lee, S. Lee, Geometric snakes for triangular meshes, Comput. Graph.
Forum 21 (3).

[11] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, H.-P. Seidel, Intelligent mesh
scissoring using 3d snakes, in: Proc. 12th Pacific Conference on Com-
puter Graphics and Applications, 2004, pp. 279–287.

[12] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, H.-P. Seidel, Mesh scissoring
with minima rule and part salience, Comput. Aided Geom. Des. 22 (5)
(2005) 444–465.

26



[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, 2nd Edition, The MIT Press, 2001.

[14] K. Hildebrandt, K. Polthier, M. Wardetzky, Smooth feature lines on
surface meshes, in: Proc. Eurographics symposium on Geometry pro-
cessing, 2005, pp. 85–90.

[15] Y. Ohtake, A. Belyaev, H.-P. Seidel, Ridge-valley lines on meshes via
implicit surface fitting, in: Proc. ACM SIGGRAPH 2004, 2004, pp.
609–612.

[16] S. Yoshizawa, A. Belyaev, H.-P. Seidel, Fast and robust detection of
crest lines on meshes, in: Proc. ACM symposium on Solid and physical
modeling, 2005, pp. 227–232.

[17] A. Hubeli, M. Gross, Multiresolution feature extraction for unstructured
meshes, in: Proc. Visualization 2001, 2001, pp. 287–294.

[18] T. Igarashi, S. Matsuoka, H. Tanaka, Teddy: a sketching interface for
3d freeform design, in: Proc. ACM SIGGRAPH 99, 1999, pp. 409–416.

[19] O. A. Karpenko, J. F. Hughes, Smoothsketch: 3d free-form shapes from
complex sketches, in: Proc. ACM SIGGRAPH 2006, 2006, pp. 589–598.

[20] A. Nealen, T. Igarashi, O. Sorkine, M. Alexa, Fibermesh: designing
freeform surfaces with 3d curves, in: Proc. ACM SIGGRAPH 2007,
2007, p. 41.

[21] J. Zimmermann, A. Nealen, M. Alexa, Silsketch: automated sketch-
based editing of surface meshes, in: Proc. 4th Eurographics workshop
on Sketch-based interfaces and modeling, 2007, pp. 23–30.

[22] L. Piegl, W. Tiller, The Nurbs Book, Springer, 1995.

[23] M. Botsch, L. Kobbelt, Resampling feature and blend regions in polyg-
onal meshes for surface anti-aliasing, Computer Graphics Forum 20 (3)
(2001) 402–410.

[24] S. Bischoff, L. Kobbelt, Structure preserving cad model repair, Comput.
Graph. Forum 24 (3) (2005) 527–536.

27



[25] T. Ju, Fixing geometric errors on polygonal models: a survey, J. Com-
put. Sci. Technol. 24 (1) (2009) 19–29.

[26] M. Botsch, O. Sorkine, On linear variational surface deformation meth-
ods, IEEE Transactions on Visualization and Computer Graphics 14 (1)
(2008) 213–230.

[27] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, H.-P. Sei-
del, Laplacian surface editing, in: Proc. Eurographics symposium on
Geometry processing, 2004, pp. 175–184.

[28] L. B. Kara, K. Shimada, Supporting early styling design of automobiles
using sketch-based 3d shape construction, Computer-Aided Design &
Applications 5 (6) (2008) 867–876.

[29] I. Kókai, J. Finger, R. C. Smith, R. Pawlicki, T. Vetter, Example-based
conceptual styling framework for automotive shapes, in: Proc. 4th Eu-
rographics workshop on Sketch-based interfaces and modeling, 2007, pp.
37–44.

[30] R. Smith, R. Pawlicki, I. Kokai, J. Finger, T. Vetter, Navigating in a
shape space of registered models, IEEE Transactions on Visualization
and Computer Graphics 13 (6) (2007) 1552–1559.

[31] L. Kobbelt, S. Campagna, J. Vorsatz, H.-P. Seidel, Interactive multi-
resolution modeling on arbitrary meshes, in: Proc. ACM SIGGRAPH
98, 1998, pp. 105–114.

28


