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Abstract. In this paper we present a level-set framework for accurate
and efficient extraction of the surface of a brain from MRI data. To
prevent the so-called partial volume effect we use a topology preserving
model that ensures the correct topology of the surface at all times during
the reconstruction process. We also describe improvements that enhance
its stability, accuracy and efficiency. The resulting reconstruction can
then be used in downstream applications where we in particular focus
on the problem of accurately measuring geodesic distances on the surface.

1 Introduction

In recent years, the problem of reconstructing the cortical surface of a brain from
MRI data has received a good deal of attention [1], the main goals being:

1. The reconstruction should closely fit to the measured data.
2. To prevent the partial volume effect, the topology of the reconstruction

should match the topology of the brain itself.

In particular the second topic is of relevance if one wants to measure distances
within the surface itself (geodesics). Functional regions for example are asso-
ciated with the surface of the brain rather than with its interior. In this case
topological errors in the reconstruction, although geometrically negligible, can
lead to ”short-cuts” from one part of the surface to another and will render the
distance measurements useless, see Figure 1.

Deformable models have proven to be an effective tool to achieve the above
goals. These models come in two flavors: Parametric models (often called snakes)
represent the surface explicitly e.g. as a spline [2]. Level-set models (often called
implicit models), on the other hand, represent the model as the isosurface of a
scalar-valued function that is sampled on a Cartesian grid [3].

Because parametric models cannot change their topology, they have tradi-
tionally been favored over level-set models where the topology is difficult to
control. Hence, once the surface is correctly initialized, a parametric model will
keep its topology during the whole reconstruction process. On the downside,
however, this comes at the expense of complex reparameterization strategies to
avoid excessive internal stretch. Furthermore, parametric models require costly
(self-)collision detection in each update step. In this work, we propose the use



Fig. 1. Partial volume effect: Depending on the classification of the center voxel as
interior or exterior, a small geometric inaccuracy can result in large differences in the
distance of the two points.

of level-set models for cortical surface reconstruction. These models provide the
following advantages:

– They exhibit no parameterization artefacts and are always adequately sam-
pled to the resolution of the underlying grid.

– The complex time- and space-continuous collision detection of parametric
models is replaced with an efficient and robust discrete collision detection
on a grid. In particular, a collision can only happen on grid edges and only
when a grid point value changes its sign.

To prevent the partial volume effect, we make use of level-set models with built-
in topology control [4]. However, we improve upon our previous work in several
aspects that are described below.

2 Algorithm

2.1 Segmentation and surface extraction

For reconstructing the cortical surface we use a deformable model based on the
topology preserving level set framework that was introduced in [4]. The basic
idea is to represent the active contour as the zero level set of a scalar-valued
function f(x, y, z) that is sampled on the grid points fijk = f(ih, jh, kh). The
function f can be regarded as a signed distance to the contour, grid points ijk

within the contour are called conquered and have negative fijk-values while out-
side grid points are positive. The algorithm proceeds by successively conquering
grid points thereby expanding the contour. The order in which grid points are
conquered is determined by internal as well as external forces that are derived
from the intensity of the underlying MRI image. For each conquered grid point
the algorithm checks whether the grid point is complex, i.e. whether it connects
two previously unconnected components thereby creating a handle. If so, the
topology change is resolved by assigning the grid point to one of the neighboring
components and placing cuts on the edges to the other components, see Fig-
ure 2 for an illustration. When the contour has come to a halt, a variant of the
Marching Cubes [5] algorithm is used to extract an explicit polygonal mesh rep-
resentation of the contour. In the following sections we describe how to improve
this basic algorithm with respect to stability, accuracy and efficiency.



a) b) c)

Fig. 2. Cut edge grid: The conquered grid points ◦,
�
, � ,4 in configuration (a) locally

make up three connected components that would incorrectly be connected by conquer-
ing the center grid point 4 in (b). To avoid this, the center point is assigned to one of
the components and the edges to the other components are cut (c).
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Fig. 3. Upwind scheme: To determine the cut edges we compute the upwind direction
in each grid point (a) and then connect to the grid point with the most similar one (b).
Compared to previous work [9] that shows strong bias towards the coordinate axes (c),
the sub-voxel accuracy of the cut edge framework results in a better stability of the
reconstruction (c).
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Fig. 4. Computing the cut location. In a post-processing step the two adjacent compo-
nents P, Q of each cut edge e = (p, q) are advanced separately across the cut interface
(a, b and c). The location x of the cut is then computed from the intersection of the
two height-profiles of the arrival times of P and Q resp. (d).
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Fig. 5. Extracting the contour: Given a cut-edge grid (a) we first introduce virtual
cuts between conquered and non-conquered voxels (b). In a second step we compute a
sample point for each voxel that is adjacent to at least one cut (c). Finally we connect
these sample points by quadrilaterals (d).



Initialization We initialize the deformable model with the interface of the grey
and white matter which is usually easy to segment in MRI data. To ensure the
correct topology of this initial surface, we apply the algorithm of Kriegeskorte
and Goebel [6].

Determining the cut edges In the original formulation, a complex grid point
is always connected to the nearest (in terms of arrival time of the contour)
neighboring component. However, in a level-set framework, it is also possible
to explicitly compute for each grid point the so-called upwind direction, i.e. the
direction from where the contour arrives at the grid point. Comparing these
upwind directions instead of the arrival times significantly improves the stability
of the algorithm in the sense that it does not exhibit a directional bias towards
the coordinate axes, see Figure 3 for an illustration.

Computing the cut location In the original algorithm, the location of a cut
on an edge e = (p, q) is determined by extrapolating the arrival times at the
grid points p, q adjacent to that edge. This leads to inaccuracies in particular if
the direction of the edge is close to tangential to the contour. To improve upon
this we proceed as follows (compare Figure 4): In a post-processing step, we
locally advance each of the two connected components P, Q adjacent to the cut
edge separately and then deduce the cut location from the corresponding arrival
times.

Extracting a polygonal mesh To extract a polygonal representation of the
contour, the original algorithm uses a variant of the Marching Cubes algorithm
that respects the cut edges and then locally applies a mesh decimation scheme.
This algorithm is hard to implement efficiently and furthermore often produces
unnecessarily many triangles. Hence we propose an extraction method that is
similar to the dual contouring algorithm presented in [7]. Let us call the cube
spanned by 8 grid points a voxel. First we introduce virtual cuts on edges con-
necting conquered and non-conquered grid points, i.e. edges that cross from the
interior of the contour to the exterior. Then we collect all voxels that are adja-
cent to a cut-edge in a set V . For each voxel v ∈ V we compute a sample point
pv as the average of the location of the cuts that are adjacent to v. Then we
construct two opposing quadrilaterals for each cut-edge e by connecting the four
sample points of the voxels adjacent to e (in the case of a virtual cut we only
construct one quadrilateral), see Figure 5. If necessary, the resulting quadrangle
mesh can then be triangulated and smoothed.

2.2 Geodesic measurement

Our system lets the user specify an arbitrary reference point on the reconstructed
surface and then computes the geodesic distances from this point to all other
points on the surface. This is done by an accurate level-set model which directly
operates on triangulated manifolds [8].



3 Results

We have found that our new update strategies for computing the collision points
on the cut-edges increase the stability and accuracy of the algorithm significantly
and compare favorably to the model proposed in [9], see Figure 3.

We have applied our algorithm to synthetic as well as to real MRI datasets.
The running times for steps 1 and 2 of the algorithm are in the order of a
few minutes for a typical 256 × 256 × 256 dataset. The computation of the
geodesic distances in step 3 is only a matter of seconds and allows for an efficient
measuring and interactive exploration of the reconstructed surface. Figure 6
demonstrates these results.

Fig. 6. Geodesic distances. For visualization purposes the geodesic distances are color-
coded as black and white stripes. Left: Reconstruction of a part of the cortical surface.
Middle: Without topology control the sulci are not correctly reconstructed. Right:
Using topology control the distance field correctly follows the sulci and gyri.
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