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Abstract

In this paper we present a novel method to compute Boolean operations on polygonal meshes. Given a Boolean
expression over an arbitrary number of input meshes we reliably and efficiently compute an output mesh which
faithfully preserves the existing sharp features and precisely reconstructs the new features appearing along the
intersections of the input meshes. The term "hybrid" applies to our method in two ways: First, our algorithm
operates on a hybrid data structure which stores the original input polygons (surface data) in an adaptively refined
octree (volume data). By this we combine the robustness of volumetric techniques with the accuracy of surface-
oriented techniques. Second, we generate a new triangulation only in a close vicinity around the intersections of
the input meshes and thus preserve as much of the original mesh structure as possible (hybrid mesh). Since the
actual processing of the Boolean operation is confined to a very small region around the intersections of the input
meshes, we can achieve very high adaptive refinement resolutions and hence very high precision. We demonstrate
our method on a number of challenging examples.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry

and Object Modeling—

1. Introduction

Creating a complex model by using a combination of sim-
ple primitives is one of the common paradigms in Computer
Aided Geometric Design (CAGD). The used primitives can
be as simple as spheres, cylinders and cubes, but arbitrar-
ily complex solids could be used as well. The combination
is usually described by a composition of so-called Boolean
operations: unions, intersections and differences.

Boolean operations are used in geometry processing not
only for modeling, but also for simulation purposes. One ex-
ample is the simulation of manufacturing processes such as
milling and drilling. Moreover, one can use Boolean opera-
tions for collision detection, e.g., in order to check the valid-
ity of a specific configuration of a mechanical assembly.

The evaluation of a Boolean expression can be described
by a tree of the corresponding Boolean operations used in
the expression, which is an approach well-known as Con-
structive Solid Geometry (CSG) [Req80, Man87]. On the
one hand this representation is very simple and intuitive. Al-
gorithms can be applied to CSG-models as if we had the
boundary representation of the final model represented by
the corresponding CSG expression. On the other hand the
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Figure 1: Boolean difference operation "Bunny—CGF".
From left to right: visualization of the SURFACE cells after
our adaptive refinement, the output mesh and two zoom-in
views of the output showing the feature-sensitive extraction
as well as the tesselation in the vicinity of the feature ar-
eas. Our method generates new geometry only in green areas
whereas the rest is preserved from the input.

CSG representation is not very effective, hence mainly for
performance reasons one is interested in boundary model
representations of the final result.

Among all boundary representations for models in com-
puter graphics the polygonal mesh is probably the most pop-
ular one. It has high approximation power, is very compact,



2 Darko Pavi¢ & Marcel Campen & Leif Kobbelt / Hybrid Booleans

efficient and also hardware-accelerated. When computing
Boolean operations on polygonal meshes the main problem
encountered is the numerical stability. In order to avoid this
problem the general approach in many applications is to first
convert the polygonal mesh representation into a volumetric
one. The polygonal mesh is rasterized and represented by
a number of volume elements (=voxels). Then algorithms
are applied to the volumetric representation, which is more
robust. Finally, the polygonal solution is extracted from the
volumetric result. In general this final extraction suffers from
typical artifacts due to the limited voxel resolution.

We present in this paper a novel, hybrid method for com-
puting Boolean operations on polygonal meshes. The most
important properties of our method are:

e Hybrid representation and computations: We combine
polygonal and volumetric representations and computa-
tions in order to achieve computational stability as well
as high precision and efficiency.

e Adaptivity: We use an adaptive octree data structure. The
octree is refined only in the intersection areas of different
input meshes. By this we generate a set of face-connected
finest-resolution voxels only in a very small region within
the bounding volume, which allows us to effectively work
with very high voxel resolutions.

e Structure preservation: During the hybrid extraction
phase new geometry is generated only in the intersection
areas of the given input meshes by using a well-
established, robust volumetric approach. All parts of the
input structure not affected by the Boolean combination
are preserved and appropriately connected to the newly
generated geometry.

o Feature-sensitivity: Since we are preserving the input
geometry where possible, most of the input features are
naturally preserved. But also in the intersection areas of
the given primitives we are able to properly extract sharp
features. Because of our hybrid processing we are not di-
rectly limited by the voxel resolution. Hence we are also
able to extract long and thin features occasionally created
by Boolean combinations. In our case features are always
meant to be geometric features, i.e. sharp edges or cor-
ners. Notice that there is also a different semantic notion
of features in the area of solid modeling [SMN94].

In Fig. 1 we show an example for a difference operation
between the bunny and a "CGF" model. Notice the highly
adaptive refinement of our octree and the quality of the sharp
features introduced in the output object.

2. Related Work

The methods for computing Boolean operations can be dis-
tinguished based on three main properties: the type of input

data, the type of computation (e.g. volumetric or polygonal)
and the type of output data.

Early methods compute Boolean operations on boundary
representations explicitly [RV85, ABIN8S, LTH86, Car87,
BNO90]. Difficult case differentiations are introduced in or-
der to capture all possible intersection cases between input
elements (faces, edges, vertices). Some of these methods use
adaptive octree structures like polytrees [Car87] or extended
octrees [ABJN85, BN90] but mainly as a searching struc-
ture for faster access to needed elements. These polygonal
algorithms in general suffer from numerical problems and
although there is a number of ways to approach these prob-
lems [HofO1] for robustness reasons often volumetric meth-
ods are preferred. Keyser et al. [KCF*02] have described
a system for Boolean operations on curved solids which is
completely based on exact arithmetics. They show that using
exact arithmetics can be done in acceptable times in practice,
but using floating point arithmetics is still one or two orders
of magnitude faster.

Computing Boolean operations on implicit surfaces cor-
responds to an appropriate application of min/max opera-
tions on the input distance fields. Museth et al. [MBWBO02]
have introduced a framework for editing operations on level
set surfaces. Ho et al. apply their Cubical Marching Squares
[HWC*05] to extract Booleans from volume data. Varad-
han et al. [VKZMO06, VKSMO04] have shown how to reliably
extract a topology-preserving surface of a Boolean combi-
nation of given implicit surfaces. Their approach also allows
for capturing geometries below the voxel resolution just like
our hybrid extraction method. In general, volumetric meth-
ods are very robust but not as accurate as the polygonal ones.
Especially the feature extraction remains problematic.

In contrary, our method combines polygonal and volu-
metric computations and representations and thus is robust
and efficient at the same time. For polygonal computations
we show how to avoid using exact arithmetics in our spe-
cific case and so maintain high performance. The polygo-
nal representation is also exploited in order to extract sharp
features. In some special cases we introduce the sharp fea-
tures by using the method recently presented by Pavi¢ and
Kobbelt [PKO08] in the context of offset surface generation.

Chen and Cheng [CCO8] describe a hybrid hole filling
method where a mesh hole is first filled by a volumet-
ric approach and then stitched to the original geometry.
Bischoff and Kobbelt [BKO05] have proposed a hybrid struc-
ture preservation method in the context of CAD mesh re-
pair which is not directly applicable to computing arbitrary
Boolean expressions. We adopt and extend their idea to cre-
ate a hybrid method for Booleans. The main challenges are
how to detect the problematic regions and the extraction of
the new geometry. The surface extraction methods based on
the Marching Cubes idea [LC87] are not able to extract sharp
features directly, at best they can be approximated by extrap-
olation [KBSSO1, HWC*05]. Schaefer and Warren [SW05]
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have presented a Marching Cubes approach on dual grids,
which are aligned to features and thus improve the extracted
feature quality by construction. When polygonizing an im-
plicit surface Ohtake et al. [OBP02] have introduced an op-
timization method which is able to reconstruct sharp fea-
tures. We base our volumetric extraction on a variant of
Dual Contouring [BPKO05] which in contrary to the original
work [JLSWO02] is guaranteed to extract manifold surfaces.

Boolean operations on other input data types like free-
form solids [BKZ01] or point-based models [AD03,XQL06]
have also been introduced. Other methods are based on
non-manifold topology [Wei86] and compute non-manifold
Booleans [GCP91]. There are also methods presented
mainly concerned about how to render Booleans in real-
time [HROS5]. Although all these methods deal with Boolean
operations they are not directly related to our approach.

3. Overview of our Algorithm

The input to our method is an arbitrary number of polygonal
meshes M;,i € 0,...,n—1 combined in a Boolean expres-
sion B(My,...,M,_1) by using one of the following three
Boolean operations: union "U", intersection "N" or differ-
ence "—". Note that difference "—" can also be used as a
unary operator representing the complement operation. For
polygonal meshes this corresponds to simple flipping of the
normal directions. The input meshes M; must be consistent,
i.e. they must be water-tight and they should have consis-
tently oriented normals. In the case of small cracks and holes
our method would still work if the chosen voxel size is suffi-
ciently large, but in general we cannot guarantee correctness
for broken meshes. In the case of inconsistently oriented nor-
mals, the correct normal orientation can be computed, e.g.,
by using a minimal spanning tree as proposed by Hoppe et
al. [HDD"92]. For simplicity reasons for the rest of the paper
we assume that all input meshes are triangle meshes.

Our method consists of three main processing steps:

Rasterization In the first step we rasterize the volume
occupied by the input meshes (Section 4). A highly adap-
tive refinement in the intersection regions of different
meshes is applied on a single octree data structure, where
each leaf cell in addition to its structural information
like grid position and size, stores the polygonal and
volumetric information of the input geometry. The
polygonal information consists of references to triangles
which intersect the cell. The volumetric information is a
INSIDE/OUTSIDE/SURFACE labeling computed w.r.t.
each mesh individually.

Evaluation The second step is the evaluation of the given
Boolean expression B(My,...,M,_1) (Section 5) based
on the hybrid representation, where the final, volumetric
labeling of the output object is computed. During this
step we also determine which portions of the polygonal
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information, stored in each cell, should be considered in
the extraction stage. For this we tag all triangle references
as VALID and those which should be omitted during the
extraction are tagged INVALID.

Extraction Finally we apply our hybrid method for feature-
sensitive extraction of the output mesh (Section 6). We
first detect the critical regions, where the polygonal in-
formation of the input geometry is non-trivial. Here the
surface is extracted by Extended Dual Contouring (EDC)
as proposed by Bischoff et al. [BPKO5]. EDC is a vari-
ant of the Dual Contouring approach [JLSW02] guaran-
teed to produce a manifold output. In the non-critical ar-
eas, which are in general significantly larger, the original
geometry is explicitly preserved and appropriately con-
nected to the EDC surface.

4. Rasterization

During the rasterization we create a hybrid representation of
the input meshes M; with respect to the given Boolean ex-
pression B (My,...,M,_1). An adaptive octree is built stor-
ing the hybrid information in the leaf cells. The polygonal in-
formation consists of references to all triangles which inter-
sect a cell. The volumetric information consists of n INSID-
E/OUTSIDE/SURFACE labels, one for each input mesh.

4.1. Adaptive Refinement

We create an adaptive octree up to the given maximal octree
depth d by refining an octree cell as long as it is intersected
by more than one input mesh. All references to triangles in-
tersecting a cell are stored. This adaptive refinement leads to
a configuration where the leaf cells are mostly not at depth d.
During the refinement we propagate the triangle references
through the octree, so that only the triangles of the parent cell
are used for future intersection tests. The cell-triangle inter-
section test can be efficiently computed by using the sepa-
rating axis theorem [GLM96].

In Fig. 2 the rasterization procedure is depicted on a 2D
example. After the adaptive refinement in all further process-
ing stages we always work on leaf cells only. Therefore for
the rest of the paper we are referring to leaf cells as cells.

4.2. Seed Filling on Adaptive Octrees

In order to compute the labeling with respect to an input
mesh M; we proceed as follows: First, all cells containing
references to triangles from M; are labeled SURFACE. Then
the remaining unlabeled cells must be labeled as either IN-
SIDE or OUTSIDE with respect to M;. For this we propose
the following seed filling procedure for adaptive octrees:

W.lo.g. we first conquer the OUTSIDE regions. For this
all unlabeled cells in the 26-neighborhood of the SUR-
FACE cells lying "outside" with respect to all normals of
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Figure 2: Rasterization and Evaluation. Two input meshes
and a Boolean expression are given (upper left). Then our
adaptive refinement is applied creating the octree structure
(lower left). The proposed seed filling on the adaptive oc-
tree creates the mesh labelings Lo and L (middle) used to
compute the final labeling L (upper right).

the referenced triangles are used as initial seeds and la-
beled OUTSIDE. Then recursively all unlabeled cells in the
6-neighborhood are visited and labeled OUTSIDE. Notice
that digital topology implies that for non-SURFACE voxels
the 26-neighborhood applies. The propagation of the OUT-
SIDE label to the 6-neighborhood is still sufficient because
the seeding is done in the complete 26-neighborhood of the
SURFACE voxels. Once the outside regions are conquered
all remaining unlabeled cells are labeled INSIDE.

After the execution of the seed filling procedure
for each input mesh M; the correct labeling Eic €
{INSIDE ,OUTSIDE,SURFACE} is determined for each
cell C (see 2D example in Fig. 2). Notice that our seed fill-
ing allows for more than one connected INSIDE or OUT-
SIDE component to exist and therefore is not limited to spe-
cific input geometries. Actually, our seed filling enables the
proposed refinement (Section 4.1), which could increase the
number of connected INSIDE/OUTSIDE components.

5. Evaluation of the Boolean Expression

The evaluation of the

given Boolean expres- My M; M, M;j
sion B(My,...,M,_1)
is in fact a combined
processing of the vol-
umetric and the polyg-
onal information. The
final labeling £¢ s
computed from the in-
dividual labelings £¢
and the polygonal in-
formation relevant for the output object is gathered from
the input meshes. These two processing lines (volumetric
and polygonal) are executed in parallel such that (interme-
diate) results from the one can support the computations in
the other one and vice versa. For the purpose of evaluation
we use the corresponding CSG-tree. This tree is induced by
the given Boolean expression where the leafs are the input

MoN M My UM;

(M() NM,; ) - (M2 UM3)
Figure 3: CSG tree example.
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Figure 4: Simple constellation of two meshes My and M, for
two different Boolean operations. All surface parts which do
not contribute to the compound object are tagged INVALID
(dashed lines). In the upper example the current status of the
red cells is additionally changed to OUTSIDE.

meshes and the inner nodes correspond to the used Boolean
operations. Each operation defines a binary connection in the
CSG-tree (example shown in Fig. 3).

The CSG-tree is traversed for each cell C in order to ob-
tain the final labeling £C. During the traversal we compute
the current INSIDE/OUTSIDE/SURFACE status at each in-
ner node. This can be done by applying the rules of Kleene’s
strong ternary logic [Kle52], where the three values "true",
"false” and "unknown" and the operations "logical AND"
and "logical OR" correspond to our INSIDE, OUTSIDE and
SURFACE labels and further to operations "N" and "U", re-
spectively. Notice that the difference operation A — B corre-
sponds to AN (—B). If the cell status turns out to be INSIDE
or OUTSIDE at some inner node we want to indicate that all
references to triangles of the input meshes that correspond to
the leafs of this node’s subtree do not contribute to the out-
put object. For this purpose all such references are tagged
INVALID.

Otherwise, if the current cell status turns out to be SUR-
FACE at an inner node and additionally has already been
SURFACE at both child nodes then the triangles of differ-
ent objects A and B meet within the cell. However, often not
all of them contribute to the actual compound object (see
Fig. 4). In order to avoid bad sample placement and over-
shooting geometry in the extracted surface that might arise
from these superfluous triangles we check for each triangle
reference whether it should remain VALID or not.

Intuitively a triangle should remain VALID in a cell if and
only if at least a part of it contributes to the actual compound
object surface within that cell. If all triangle references are
set INVALID during the test explained below, the surface
of the actual compound object obviously does not intersect
the cell. Hence, the cell’s status is switched from SURFACE
to INSIDE or OUTSIDE depending on the current operator,
thereby improving the volumetric representation. To actu-
ally check the validity of a triangle t of object A we test it
for intersection with the triangles of object B (Notice: Such
intersection is a segment on the intersection line of the cor-
responding triangle supporting planes):
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Figure 5: (a): Determination of a visible triangle in a mesh
from object B with respect to a point p from object A is clear
in region 1, but in region 2 it is ambigous. (b): If the nearest
point on the mesh is a vertex q then all incident edges lie in
the negative half-space defined by v and q.

If none of the intersection segments intersects the current
cell, we conclude that t (restricted to the cell) lies completely
inside or outside the object B. We pick a point p € t within
the cell and check for each input mesh that belongs to object
B whether this point p lies inside or outside the mesh. The re-
sults are inserted into the Boolean (sub)expression that cor-
responds to the current CSG node in order to obtain the final
decision. Depending on the operator, "inside" or "outside"
triangle references remain VALID and the others are set IN-
VALID. In order to compute the inside/outside status of the
point p with respect to an input mesh, we make the obser-
vation that this status is determined by any triangle of this
input mesh which is visible from p, depending on whether
it is front or back facing with respect to p. We find such a
visible triangle by the following procedure (Fig. 5): If the
minimum distance between p and the mesh inside the cell
is taken at an interior point of a triangle then this triangle
is visible and we are finished (region 1 in Fig. 5 (a)). If it
is taken at an edge, then this edge and at least one of the
two incident triangles are visible from p (region 2 in Fig. 5
(a)). Such a visible triangle is found by maximizing the term
|v - ng|, where ny are the triangle normals and v is the vector
connecting the nearest point on the input mesh edge and the
point p. Finally, if the minimum distance is taken at a ver-
tex q, at least one of the edges incident to q is visible from
p. namely the one which minimizes the term |v-¢j| /|lej]|,
where e; are the edge vectors (see Fig. 5 (b)). Having found
such a visible edge we can again apply the aforementioned
method to determine a visible triangle incident to this edge.

In the other case, i.e. some intersection segments intersect
the current cell, the decision whether to keep the triangle ref-
erence depends on whether any of these segments lie on the
actual surface of the current compound object surface. If ob-
ject B consists of only one input object, this trivially is the
case, otherwise some more calculations are required. Since
three or more objects only rarely meet in one cell these com-
putations do not significantly affect the overall performance.

Notice that wrong validity decisions that might arise from
numerical inaccuracies can only lead to sub-optimal sample
placement during the (volumetric) EDC extraction in Sec-
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Figure 6: Visualization of all 10 possible EDC cases for a
single cell face (without rotated or flipped instances). De-
picted are what we call "reference EDC faces" and "refer-
ence EDC normals" in the corresponding "reference EDC
samples".

tion 6.2 in the worst case, but will never affect the topologi-
cal integrity of the final output mesh.

6. Hybrid Surface Extraction

We have several requirements on our extraction procedure:
we want to preserve as much as possible of the original struc-
ture in the output, the extraction procedure should be as ro-
bust as possible and we also want to preserve the newly in-
serted thin components or sharp features.

In order to achieve our goals we first detect the critical
areas among the SURFACE cells in our octree. Intuitively,
in such areas computations based on polygonal information
only would be very complicated and numerically unstable,
e.g., in the presence of several possibly intersecting input
meshes. For this reason there we apply a more robust volu-
metric extraction. In general, critical areas are proportionally
very small in relation to the whole surface. This fact was al-
ready exploited during the highly adaptive refinement of our
octree in Section 4. Hence, major parts of the input geome-
try can easily be preserved, i.e. extracted from the polygonal
component of our hybrid representation as done during the
clipping stage later on. The boundaries of the extracted parts
(the volumetric and the clipped one) will be identical by con-
struction. Regarding the features, in the non-critical areas
they are naturally preserved. In the critical areas, although
we apply a volumetric extraction, the computed samples are
placed by exploiting the underlying polygonal information.
Hence, here we are also able to reliably extract the feature
information.

6.1. Critical Cells Detection

All cells labeled SURFACE will now be categorized as criz-
ical or non-critical. In the critical cells volumetric EDC sur-
face extraction will be applied whereas in the non-critical
ones we preserve the input geometry by clipping the input
polygons on the critical/non-critical cell boundary. Notice
that for the rest of the paper when we refer to critical or non-
critical cells then these cells are always SURFACE cells, by
definition.
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Figure 7: LEFT: the common critical face of the two cells
(the critical one shaded) is "inconsistent" since the number
of mesh intersections with the cell edges do not coincide with
the one produced by the EDC surface. RIGHT: here the de-
picted critical face is also inconsistent since the input mesh
and the EDC surface topologies do not match.

In short, critical cells are either cells which are intersected
by more than one input mesh, or cells adjacent to these, for
which the results of the EDC-based extraction would topo-
logically disagree with the input meshes and hence the con-
nection to the clipped original geometry would not be con-
sistent. Regarding the potential EDC surface, it can inter-
sect each of the four edges of a cell face zero, one, or two
times. Fig. 6 shows the 10 different possible topological con-
figurations (without rotated or flipped instances) that EDC
might create for a cell face. One can easily imagine that in-
put meshes in fact can have an arbitrarily large number of
such intersections leading to incompatible boundaries. But
there are also other ambiguous cases which are all addressed
by the following procedure.

Initially we tag all SURFACE cells that store VALID ref-
erences to triangles of more than one input mesh critical.
Note that all of these cells are leafs at maximal depth d by
construction. In the next step this set of critical cells is pos-
sibly expanded in order to ensure that the surface parts that
will be extracted later on by EDC and the clipped parts of
the input meshes can be connected seamlessly along the criz-
ical cell faces (-« cell faces between critical and non-critical
cells). Since the expansion depends on the topology of the
potential EDC surface, which again depends on the voxel
topology, we always refine large SURFACE cells in the 26-
neighborhood of critical cells to the maximal depth d before
expansion. While this refinement is not required in order to
achieve correct results, it prevents the critical area from get-
ting larger than necessary, thus allows for better preservation
of the input structure. Note that the cells which are generated
during this refinement may initially lack INSIDE/OUTSIDE
information. This can easily be propagated from the neigh-
bors or obtained using the method for seed classification as
explained in Section 4.2. The expansion is done iteratively:

For all critical cell faces we check whether the topology
of the EDC surface and the topology of the input meshes —
restricted to this cell face — match. Critical cell faces that do
not satisfy this condition are considered inconsistent and the
non-critical cells incident to those critical faces are tagged

M,
0 ]w1
M,

B(Mo,My,Mp) = (Mo —M1) UM,

Figure 8: Boolean expression with three cuboids. In the
magnified area four octree cells Cy...C3 are visualized. The
intersection point of the critical cell edge incident to all C;
and the mesh My is not considered when checking the criti-
cal cell face between C and C5 since the non-critical cells
C; and C5 do not store VALID references to M.

critical to circumvent the inconsistency. After this check has
been carried out for all critical cell faces, the EDC surface —
that is to be extracted in the critical regions — and the input
meshes — restricted to the non-critical regions — are guaran-
teed to topologically comply along their interface, i.e. along
the critical faces.

In order to check the above-mentioned compatibility of
the topology, for a specific critical cell face F* we intersect
the four edges of F with the input meshes. Here we only
need to consider the triangles, whose references are stored
in one of the incident cells. In order to guarantee correctness
even in the case of numerical inaccuracies, those references
set INVALID (Section 5) are also considered. If the per edge
intersection counts do not agree with the EDC case, we can
already consider F inconsistent (example in Fig. 7 left).

Otherwise further computations are required: Starting
from a triangle that intersects one of the four edges of F we
conquer the path of F-intersecting triangles that reaches an-
other intersection with an F-edge. We repeat this for all edge
intersecting triangles and hereby determine the connectivity
of all edge intersections. If it does not agree with the EDC
topology we can again consider F inconsistent (example in
Fig. 7 right).

At the end we also need to check whether the input
meshes have additional curves of intersection with F that do
not intersect the incident edges, thus have not been consid-
ered before, e.g., imagine that in the left example in Fig. 7
the two upper intersections do not occur on the cell edges,
but instead within the cell face only. This check can be car-
ried out by testing the triangles that have not been conquered
during the path finding process above. If an intersection with
F is found, then F again is considered inconsistent.

Note that later on during the clipping stage an input mesh
will not only be pruned in critical cells but also in cells that
do not contain triangle references of this mesh (Section 6.4).
Hence the clipped mesh will not touch critical cell edges
(«~cell edges incident to critical and non-critical cells) where
each of the surrounding non-critical cells does not contain
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Figure 9: Topology extraction in the critical cells. First we
apply EDC to get the initial topology (a). Then for the sake
of compatibility with the boundary of the later clipped input
geometry we insert edge vertices by using 1-3 or 2-4 splits
(b) and align the topology to the boundary between the crit-
ical and non-critical cells (c). Next we remove all triangles
outside the critical region (d). Finally for full compatibility
with the clipped geometry we also insert the face vertices
with 1-2 splits (e).

references to faces of this input mesh. To respect this during
the described critical cells expansion process, we only con-
sider intersections of a critical cell edge with an input mesh
which is referenced in any of the one, two, or three incident
non-critical cells by at least one VALID reference (Fig. 8).

6.2. Volumetric Surface Extraction in Critical Regions

Once the critical regions are detected we are ready to pro-
ceed to the actual surface extraction. The main goal is to ex-
tract sharp features as well as possibly generated thin com-
ponents. For this purpose we apply EDC where per cell — de-
pending on the output topology — up to eight different sam-
ples are generated. The main difference to the original EDC
method [BPKOS5] is the way how we compute the samples
which will be explained afterwards.

In Fig. 9 the individual steps of our extraction method
are visualized. We apply EDC for each cell edge incident
to at least one critical cell creating the triangles of the initial
topology (Fig. 9 (a)). Let us call the vertices of this initial
topology cell vertices. Their geometric positions are com-
puted later. For each triangle or quad created around a crit-
ical cell edge we perform a 1-3 or 2-4 split along this edge,
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Figure 10: When computing geometry of the cell vertices
during the EDC extraction only those input triangles which
are front-facing with respect to the reference EDC normals
are used. The reference EDC normals are computed in each
sample by averaging the normals of the incident reference
EDC faces (Fig.5); here the reference EDC samples are
slightly displaced for clarity. Hence, we are able to place
samples on the correct side of the output and also on fea-
tures if available (middle cell).

respectively (Fig. 9 (b)). We call the hereby newly inserted
vertices edge vertices. Now we flip all edges having one in-
cident cell vertex from a non-critical cell and one incident
cell vertex from a critical cell (Fig. 9 (c)). After the flip-
ping the triangles are perfectly aligned along the critical cell
faces and we remove all triangles incident to a non-critical
cell vertex (Fig. 9 (d)).

Once we have determined the topology we still have to
compute the geometry for the final EDC output. Notice that
the geometric information for the edge vertices, as defined
above, will later be implied during the clipping stage (Sec-
tion 6.4). In order to compute the geometry of a cell vertex
in a cell C we proceed in two steps (see (Fig. 10)):

1. Among all VALID triangle references stored in C
(Section 5) we select only appropriate ones to be used
for the computation. If EDC extraction results in only
one vertex in C all triangles are considered appropriate.
Otherwise, all with respect to the reference EDC normal
(Fig. 6) front-facing triangles are appropriate. With this
approach the samples are placed on the correct side
of the final output and we are also able to detect and
extract thin components lying completely inside a sheet
of SURFACE cells.

2. Let 7 be the set of the chosen "appropriate" faces. Now
we want to compute a sample which definitely lies in-
side the cell C, if possible on a potentially existing feature
built by faces from 7 and otherwise as close as possible
to the cell mid-point and still on one of the faces in 7. We
proceed as follows: If the faces in 7 originate from only
one input mesh then we choose the midpoint-closest sam-
ple among those with the highest discrete curvature lying
inside the cell. If the faces in 7 originate from several dif-
ferent meshes then we set up a least-squares system using
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383%

Figure 11: Feature visualization on the example of a
Boolean created from three input spheres (computation time
less than a second). From left to right: combined extraction,
SURFACE/OUTSIDE extraction, SURFACE/INSIDE extrac-
tion, zoom-in images for the convex (top) and concave fea-
tures (bottom), when wrong (left) and correct (right) extrac-
tion side is chosen.

the plane equations of the supporting planes of faces in 7
and compute the sample by using the singular value de-
composition (SVD). If the computed sample is a corner
feature (this can be estimated by comparing the singular
values) and it lies inside C we are finished. Otherwise,
we compute all intersection segments between pairs of
triangles 19,t; € 7 with ty € M;,t; € Mj,i # j and then
as before we choose the midpoint-closest sample among
those with the highest discrete curvature lying inside the
cell. If still all such intersection segments lie outside the
cell C then we compute the sample lying on one of the
faces in 7 closest to the cell-midpoint.

6.3. Sharp Features

So far we have explained how to reliably extract the criti-
cal parts of the output mesh including the features by ap-
propriate placing of the samples during the EDC surface ex-
traction. Depending on whether the extraction is done be-
tween SURFACE and OUTSIDE or between SURFACE and
INSIDE cells either convex or concave features are recon-
structed faithfully. In order to capture both types of features
we proceed as follows:

We group the initial critical cells in connected critical
components and explore their neighborhoods. For each crit-
ical component we count the number of critical cell faces
between SURFACE and OUTSIDE and between SURFACE
and INSIDE cells and the dominant "non-surface side" de-
termines whether to apply SURFACE/OUTSIDE or SUR-
FACE/INSIDE extraction for this critical component. (see
Figure 11). If only one feature type occurs in each critical
component all features are appropriately extracted, other-
wise in each component only the features of the dominant
type are reliably detected. For the few remaining, yet unde-
tected features we use the feature insertion approach recently
presented by Pavi¢ and Kobbelt [PKO08] in the context of off-
set surface generation.

Figure 12: Clipping. The example constellation for one in-
put triangle is shown in (a), where the critical area is shaded
in grey, edge vertices shown in yellow and the face ver-
tices in blue. The clipping method of Bischoff and Kobbelt
[BKOS5] produces the tesselation in (b) introducing a num-
ber of new intersection points (green). Our method creates a
constrained tesselation from the input in one go (c).

6.4. Clipping in Non-Critical Regions

The input mesh triangles referenced in the non-critical cells
need to be clipped against the critical cells. Bischoff and
Kobbelt [BKOS5] have introduced an algorithm for this oper-
ation in a similar context. Their algorithm operates in three
steps: First the edges of the critical cells are intersected with
the input triangles and the resulting intersection points are
inserted into the mesh by 1-3 or 2-4 splits (depending on
how close an intersection point lies to a mesh edge). Second
the mesh edges are intersected with the critical cell faces and
the resulting intersection points are inserted into the mesh by
2-4 splits. After step two, each triangle lies either completely
inside or completely outside the critical cell and those lying
inside can be discarded.

Especially in the presence of triangles that are large rel-
ative to the size of the cell, the above procedure tends to
trigger a cascade of splitting operations leading to a clus-
ter of near- degenerate triangles. As noted by Bischoff and
Kobbelt [BKO05], the use of exact arithmetics is advised in or-
der to avoid numerical inconsistencies. However, this slows
down the computation significantly.

For this reason, we propose an alternative approach. For
each triangle to be clipped, we collect sequences of intersec-
tion points with critical cell edges (see Fig. 12). Their order-
ing is derived from a traversal of the critical cell faces. These
sequences either from closed loops or they end in an inter-
section point between a triangle edge and a cell face. The
sequences are then used as constraints in a 2D constrained
Delaunay triangulation which also has the property that each
resulting triangle is either completely inside or completely
outside the critical cell. As shown in Fig. 12 this procedure
reduces the complexity of the resulting triangulation consid-
erably.

In finite precision arithmetics, it is sometimes not possible
to correctly represent all constraint constellations. Very close
constraints can be rounded to the same location and intersec-
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Figure 13: Two slightly rotated cubes (left) are used to cre-
ate the final Boolean (middle). Our method is able to extract
also very thin features below the voxel resolution (right).

tion points on one side of a triangle edge can be rounded to
a position on the other side. However, since the cell edges
and faces are aligned to the coordinate axes, such configura-
tions happen quite rarely and can be detected easily. Only in
these extremely rare cases we actually switch to exact arith-
metics. In all our experiments this happened only once for
one single triangle in the example shown in Fig. 12 at an
octree resolution of 81923

At the end we have to discard all triangles lying on the
critical side of the above computed intersection segments.
One possibility is to discard all triangles having its center
of gravity inside a critical cell [BKOS]. This geometrical ap-
proach lacks robustness in the case of degenerate triangles
and is also not sufficient in our case. For this reason we ap-
proach the problem in a purely topological manner: the in-
tersection segments already computed are used as seeds to
conquer all triangles lying on the critical side and finally to
discard them. By using our approach here we can guarantee
correctness, which is very important in order to appropri-
ately connect the clipped input to the EDC surface.

7. Results & Discussion

We have evaluated our method on a number of different
CAD and organic models. All our experiments were run on
an Intel 3GHz PC with 4GB main memory. In all figures
which show our hybrid Booleans we depict the extracted vol-
umetric EDC surface in green.

The example in Fig. 1 shows a Boolean between the
Bunny model and the "CGF" model. For visualization pur-
poses we used a pretty low resolution of 128 and the whole
computation took less than a second. The statistics for this
Boolean when using different, higher resolutions are shown
in Table 1. Here we also compare the timings between the
original clipping method of Bischoff and Kobbelt [BK0S5]
with our method as described in Section 6.4. Notice that our
method is at least two orders of magnitude faster.

Our volumetric extraction based on EDC allows for ex-
traction of very thin features below the voxel resolution. We
visualize this in Fig. 13 where two slightly rotated cubes are
used for computing the final Boolean (octree resolution 323).

submitted to COMPUTER GRAPHICS Forum (10/2009).

Sprocket, 52 input objects, 11K input triangles

octree resolution | 1024° | 2048 | 4096° | 8192°
#cells 360K | 645K | 1,6M | 3,3M
#critical cells 28K 56K 113K | 233K
#output triangles | 186K | 353K | 689K | 1,4M
time 5s 9s 19s 47s

Figure 14: Sprocket Wheel. Top left: the input constellation
of the 52 objects. Top right: the final Boolean computed with
our method. The zoom-in images from left to right: badly
tesselated input, output Boolean and output Boolean after
the decimation stage.

BunnyCGF, 4 input objects, 78K input triangles
octree resolution | 1024° | 20487 | 4096° | 8192
#eells 73K | 147K | 292K | 585K
#critical cells 48K | 9,5K 19K 38K
#output triangles | 104K | 132K | 189K | 300K
time 1,3s 2s 3,4s 6,4s
clipping <ls <l1s <l1s 1,5s
clipping[BKO5] 29s 72s 192s 836s

Table 1: Bunny—CGF statistics. The last two rows compare
the timing performance of the clipping method from [BKOS5]
and our method as described in Section 6.4.

Here the large critical part (green) lies in one sheet of criti-
cal cells. Our method can reliably extraxt such thin features.
Notice that on the connection between the original surface
and the EDC-surface an artifact is created since EDC gener-
ates only one output vertex in the outermost critical cells of
such one-layered cell configurations.

In Fig. 14 we show a typical CAD example, a sprocket
wheel created out of 52 input objects (11K input triangles).
Although the input meshes consist of very long, bad shaped
triangles (as seen in the magnified images), our method is
still able to produce the correct output. One obvious conse-
quence of our volumetric extraction procedure is the fact that
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Organic, 3 input objects, 115K input triangles Chair, 9 input objects, 1,5K input triangles
octree resolution | 512° | 2048% | 8192° | 32768° octree resolution | 1024° | 2048% | 4096° | 8192°
#cells 31K | 133K | 530K 2, 1M #eells 137K | 158K | 310K | 736K
#critical cells 1,7K 10K 43K 174K #critical cells 3,3K | 6,8K 14K 28K
#output triangles | 108K | 136K | 250K 709K #output triangles 21K 41K 80K | 160K
time 1,6s 2,6s 6,3s 24s time 1,3s 2s 4,4s | 13,4s

Figure 15: Organic Boolean. For this example we first cre-
ated the three in-between models as depicted above by a sin-
gle difference operation with a cube each. This took about 1s
of computation time on a 5123-octree. Then the final union of
the three models was generated for different resolutions, for
which the statistics are shown. The magnified images show
the feature areas (green) between the head (blue) and the
dragon body (red). This region is also depicted by the ellipse
on the final output.

the output complexity of the final Boolean increases with the
higher resolutions. In order to reduce this output complexity
we can apply a post-processing decimation step, if neces-
sary. During the decimation stage care can be taken not to
decimate the original, not clipped triangles in order to en-
sure maximal structure preservation of the input geometry.

In Fig. 15 we present a Boolean combination out of or-
ganic models. For the generation of each of the in-between
models (head of the bust, ears of the bunny and the dragon
part) we needed less than a second of computation time (oc-
tree resolution 512%). Then for computing the final Boolean
we took the union of these models and the statistics are
shown in the table of this Figure. The magnified images vi-
sualize the extracted feature boundary between the head and
the dragon body. Notice that the extraction between the head
and the dragon was done with respect to the INSIDE com-
ponent and thus enabled the correct feature extraction there.
The large green area indicates that here a very thin part of
the output surface is generated.

Figure 16: Chair design example. The nine input meshes
consist of very few triangles as seen on the left. Computing
the final Boolean union operation results in a high number
of very bad shaped clipped triangles as seen in the magnified
images. Our method remains robust also in such cases.

A chair design example is shown in Fig. 16. This chair
consists of nine, independently designed, separated compo-
nents. In order to create one consistent mesh out of these
components, which can be used, e.g., for simulation pur-
poses, a Boolean union operation is applied.

In order to compare our hybrid Booleans with other
methods we have tested a number of different tools. Hou-
dini (www.sidefx.com) performs quite well in evaluating
Boolean operations for rendering purposes but it was not
able to extract an appropriate polygonal representation of
the final result in any of our examples. With Blender
(www.blender.org) we were able to generate some of our
examples, but Blender gets unstable and very slow already
for moderate input complexity. E.g., for the Bunny-CGF ex-
ample in Fig. 1 the computation took 85s and the output
was an inconsistent mesh. Finally, we have also used CGAL
[CGAOS8] which provides a polygonal processing algorithm
using arbitrary precision exact arithmetics for Boolean eval-
uations. CGAL performs very well in cases where the input
complexity is rather low. For the examples in Fig 14 and
Fig 16 Boolean computations with CGAL took 16s and 4s,
respectively, which is comparable with our algorithm when
using high octree resolution of 4096°. For examples in Fig. 1
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and Fig. 11 Boolean computations with CGAL took 68s
and 52s, respectively, which is about one order of magni-
tude slower even when compared with the highest resolu-
tions used in our computations in Table 1. The organic ex-
ample in Fig. 15 could not be processed at all with CGAL,
although all input meshes were consistent.

Our experiments have shown nearly linear asymptotic be-
havior in practice with respect to the used resolution in
one dimension. This results from the fact that the intersec-
tion regions between the meshes form one-dimensional sub-
manifolds. The reported timings show that our method is
able to compute Booleans in reasonable times also when
extremely high octree resolutions of (215 )3 are used. Our
hybrid Booleans are very accurate since the polygonal in-
formation is used for placing the samples during the vol-
umetric EDC extraction. In order to support this statement
we have computed the error as the largest mesh-to-mesh
distance between our results and the corresponding ground-
truth Booleans computed with CGAL using arbitrary preci-
sion exact arithmetics for the four examples shown in Fig-
ures 1, 11, 14, and 16. For the octree resolution of 512% the
error was already below 1%o of the diagonal of the bounding
box in every case.

7.1. Limitations & Future Work

Although we are in general able to reliably extract sharp fea-
tures, in some cases the extraction of the corner features
remains problematic. This problem occurs in those areas
where different types of features — convex and concave —
meet, i.e. where the corner features are convex and concave
at the same time. Additional treatment of these special cases
is needed. For this the polygonal information which is stored
in each cell should be examined more closely.

Due to the nature of Dual Contouring the special case of
several sharp features lying in one sheet of voxels as shown
for two features in Fig. 13 cannot be properly reconstructed.
We would like to address these special cases as a part of our
future work.

When using very coarse input meshes and high resolu-
tions for the octree a number of very bad, i.e. long and thin,
triangles is created. Although our method is able to appropri-
ately construct the final Boolean, these bad triangles could
be an obstacle in the further processing pipeline. One pos-
sibility to avoid this problem in the future work would be
to apply some kind of structure preserving remeshing in the
proximity of the intersection areas.

8. Conclusion

We have presented a hybrid method for computing Boolean
operations on polygonal meshes. We have used a hybrid oc-
tree data structure and applied hybrid surface extraction in
order to achieve robustness as well as high accuracy wher-
ever possible. The proposed seed filling on adaptive octrees

submitted to COMPUTER GRAPHICS Forum (10/2009).

has made our highly adaptive refinement possible thus al-
lowing for high resolutions as shown in our examples. Our
method preserves as much as possible of the input geome-
try and in the critical areas the newly introduced features are
reconstructed during the volumetric extraction by exploiting
the underlying polygonal geometry information.
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