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Abstract

We present an extension of the anisotropic polygonal
remeshing technique developed by Alliez et al. Our algo-
rithm does not rely on a global parameterization of the mesh
and therefore is applicable to arbitrary genus surfaces. We
show how to exploit the structure of the original mesh in or-
der to perform efficiently the proximity queries required in
the line integration phase, thus improving dramatically the
scalability and the performance of the original algorithm.
Finally, we propose a novel technique for producing con-
forming quad-dominant meshes in isotropic regions as well
by propagating directional information from the anisotropic
regions.

1. Introduction

Anisotropic remeshing techniques are of great interest in
at least two research areas in computer graphics. As proven
in [21, 10], an optimal piecewise linear approximation of a
smooth surface is achieved if one aligns the linear elements
according to the principal curvature directions of the sur-
face. In [6], normal noise due to piecewise linear discretiza-
tion is reduced by exploiting the same property. Canonical
shapes such as cylinders easily illustrate the power of the
anisotropic alignment. Increasing uniformly the number of
elements along the circumference results in better approx-
imation, while splitting along the zero curvature direction
does not improve the approximation quality. Therefore, for
various computation intensive computer graphics and sim-
ulation applications, this purely geometrical argument ren-
ders anisotropic remeshing methods a very important mesh
processing tool. Despite advances in raw computational and
rendering power of recent hardware, polygon count is still
seen as a main performance bottleneck, mainly due to band-
width limitations.

Another important application for anisotropic remeshing
algorithms is free-form surface modeling. Artists implic-
itly exploit the anisotropy of a model when drawing line
strokes in a way which best describes the desired shape.

Figure 1. Anisotropic meshes.

Different rendering techniques [16, 18] simulating human-
made drawings were proposed based on this observation.
CAD professionals often compose a solid model by stan-
dard shapes such as cylinders, cones and spheres, thus again
exploiting implicitly the natural anisotropy or isotropy of
such primitives. In the view of this, anisotropic remeshing
algorithms, that are able to automatically extract the seman-
tical structure of a scanned object to a certain degree, are
of great interest due to the significant time and cost savings
achieved in the reverse engineering pipeline and the rapid
prototyping production cycle. In addition, for many CAD
applications quad-based representations are preferred, since
they reflect better the symmetry of the modeled object.



1.1. Previous work

Many researchers in computational geometry, finite ele-
ments discretization and computer graphics explored meth-
ods for constructing anisotropic and quad-dominated
meshes. A full review is beyond the scope of the pa-
per, so we just outline some of the most related work. Ini-
tially quadrilateral remeshing algorithms were developed
in [4, 19]. An interactive, user-guided method for generat-
ing quad-dominant meshes was proposed in [13]. In [12]
a regular remeshing scheme for genus 0 surfaces is pre-
sented, but it does not take any anisotropic mesh align-
ment into account. Techniques for producing anisotropic
triangle meshes were proposed in [5, 20]. A connec-
tion between quadric error metric simplification and the
anisotropic alignment of the decimated mesh faces is de-
rived in [15]. More recently, in [3] an anisotropic remeshing
algorithm is proposed, based on the principal curvature di-
rections estimation [9], which generates quad meshes
inside anisotropic regions and conforming isotropic trian-
gular meshes inside spherical and flat areas.

1.2. Anisotropic remeshing stages

The anisotropic remeshing technique introduced in [3]
can be separated into several distinct subsequent steps (Fig.
2):

1. Initially a continuous, piece-wise linear curvature ten-
sor field over the original triangle mesh is computed
and filtered.

2. The original mesh is then sampled by building a net-
work of curves following the principal curvature di-
rections. A user-prescribed approximation tolerance
in conjunction with the estimated curvature quantities
defines their local density in different regions of the
mesh.

3. The vertices of the newly generated mesh are obtained
by intersecting the integrated curvature lines and the
new mesh edges are defined along the curve segments
connecting these intersection points. Finally, the mesh
faces are generated from the extracted graph of vertices
and edges, which results in a quad-dominated mesh
due to the natural orthogonality of the principal cur-
vature lines.

The specific contributions of our work are mainly concen-
trated in the second and most important step of the algo-
rithm, while modifications of the first and the third part are
presented in order to complement the changes introduced
in the second stage. We improve the anisotropic remeshing
technique in the following aspects:

Generality: Our algorithm does not require the con-
struction of a global parameterization of the original mesh

Stage I - Curvature tensor field estimation

Stage II - Curvature lines integration

Stage III - Lines intersection and meshing

(this illustration is produced by our algorithm)

Figure 2. Anisotropic remeshing stages.

and therefore is inherently applicable to arbitrary genus sur-
faces. Avoiding the construction of a global parameteriza-
tion, we also remove significant computational burden and
implementation complexity from the remeshing process. It
is well known that even employing sophisticated precon-
ditioning and multi-grid techniques [17, 1], for high com-
plexity meshes the global parameterization problem is hard
to tackle.

Isotropic regions: The original algorithm uses a
straightforward approach for dealing with isotropic re-
gions by uniformly sampling them and building a con-
strained Delaunay triangulation using the samples. While
there are geometric arguments in favor of this approach, it
does not seem appropriate for meshing flat areas and tran-



sition regions between anisotropic patches (Fig. 3). Such
configurations are often encountered in technical mod-
els, and thus are relevant in many applications. There-
fore we propose a more sophisticated solution for sampling
these regions. To obtain a coherent quad-mesh we prop-
agate reliably estimated principal directions from the
adjacent anisotropic patches into the isotropic region. Ac-
cordingly, we invert the line seeding strategy. Instead of
placing the initial curvature line seeds in the umbilic re-
gions, we place them in strongly anisotropic regions
where the principal directions can be estimated reli-
ably.

Performance: By proposing a simple and efficient data
structure to speed up the proximity queries during the line
integration phase, we improve significantly the scalabil-
ity of the remeshing procedure. As a consequence our al-
gorithm is able to process very large meshes such as the
Buddha model (1M triangles) and even the full resolution
model of the head of Michelangelo’s David (4M triangles)
in acceptable time. Unlike the original work, we avoid us-
ing exact precision arithmetics during the entire procedure.
All the special cases we need to take care of are related to
distinguishing the vertices, edges and faces of the (piece-
wise linear) input surface. We give specific details when de-
scribing the according step of our algorithm.

1.3. Overview

In Section 2 the curvature tensor field estimation and flat-
tening procedures are briefly outlined. In Section 3 we de-
scribe a local parameterization approach used for integrat-
ing the curvature lines and an efficient data structure for per-
forming the proximity queries required during the sampling
phase. In Section 4, a novel technique for quad-dominant
meshing of isotropic regions is presented. Our algorithm for
directly meshing the extracted graph of vertices and edges
in 3D is presented in Section 5. Finally, the results of our
technique are discussed in Section 6.

2. Curvature tensor field

We compute the curvature tensor field of the mesh us-
ing the technique described in [9]. Since the obtained tensor
field might be imperfect due to noisy surfaces, one usually
applies a smoothing operator. To filter a tensor field, we use
modified Laplacian smoothing directly in 3D. Our smooth-
ing operator propagates curvature tensors from anisotropic
areas into isotropic regions by applying weights which de-
pend on the reliability of the local curvature direction esti-
mates. We will elaborate on this in Section 4.

During the line integration phase (Section 3) one has to
be able to evaluate and decompose the curvature tensor at
every point in a (local) parameter domain Ω ⊂ R

2 associ-

ated with one or more faces of the original mesh. Since our
curvature tensors live in R

3 they have to be aligned to the
tangent space, i.e., for every vertex v in Ω, we have to find
a representation of its curvature tensor matrix in R

2 (a pro-
cess called flattening). Projecting an edge adjacent to that
vertex to its estimated tangent plane in R

3, we compute the
angle ξ between the edge projection and the minimum prin-
cipal tangent at the vertex. Rotating this edge’s parameter-
ization by ξ yields the minimum curvature direction in Ω.
Since the maximum tangent vector is orthogonal, we can
compose a 2 × 2 flattened matrix representing the curva-
ture tensor in Ω. The curvature tensor at an arbitrary param-
eter point (u, v) ∈ Ω is calculated by linearly interpolat-
ing the flattened tensors at the vertices of the corresponding
face.

Due to our local parameterization approach, not all edges
adjacent to a flattened vertex are parameterized. Neverthe-
less, we always have at least two adjacent edges (Section
3.1) in the parameter domain and our flattening procedure
picks the one that spans a smaller angle with the tangent
plane. In order to make the projection to the tangent plane
more robust after the tensor field computation and filtering
we rotate the estimated principal directions at every vertex
so that the normal derived from them coincides with the nor-
mal obtained through (weighted) averaging of the adjacent
face normals. This is necessary especially after smooth-
ing the tensor field, since the tensor-derived normals near
strongly bended regions can deviate significantly from the
actual surface normals and therefore the tensor flattening al-
gorithm might yield incorrect results.

3. Curvature lines integration

Curvature lines tracing is the most essential part of the
anisotropic remeshing procedure. In Section 3.1 we propose
a robust method to integrate lines directly on the original
surface using a local parameterization approach inspired by
the technique described in [22]. At any time every line sam-
ple position is identified globally by the face fi where it is
located and its position inside it, i.e., by its global barycen-
tric coordinates [fi, (ui, vi, wi)].

In order to ensure that the lines satisfy some prescribed
sampling density, proximity queries to the previously gener-
ated samples are performed at every integration step. There-
fore the performance of the remeshing technique is very
sensitive to the way how these queries are computed. We
propose an efficient, yet simple solution for this problem in
Section 3.2.

Four types of lines are tracked on the original surface. In
addition to lines following minimal and maximum principal
curvature directions, we distinguish also boundary and fea-
ture lines. The later are build by first constructing the fea-
ture graph [6], and then for every feature graph edge a line



consisting of its crease vertices is created. Similarly, bound-
ary lines are defined for every boundary loop on the surface.

Line seeding: Since we do not have a global
parametrization available, we have to place the seeds
for the curvature line integration directly on the in-
put mesh. Initially we start with a number of sparse
random seeds that we place in the most anisotropic sur-
face regions where the principal curvature directions can be
estimated most reliably. Then while marching along a (min-
imum or maximum) curvature line we place additional
seeds for the opposite type (maximum or minimum cur-
vature resp.) along the way. The relative spacing of these
additional seeds depends on the local curvature and the pre-
scribed approximation tolerance. Later we re-start the
curvature line integration at these seeds again spawn-
ing new curvature lines in orthogonal direction. This
process is repeated until no new curvature lines can be gen-
erated without violating the estimated local line den-
sity.

3.1. Local parameterization approach

Given a line seed, we parameterize isometrically the tri-
angle where the seed resides by mapping one of its ver-
tices to the parameter plane origin (0, 0) and its outgoing
half-edge to the u axis. Accordingly we flatten the three
curvature tensors at the vertices of the seed triangle. Us-
ing the barycentric coordinates of the seed point inside the
seed face, we find the initial parameter value (u0, v0). Now
we start integrating the line from it.

At any time ti during the integration procedure there is
only one operation which requires parameterization: given
the current parameter value (ui, vi) and a corresponding up-
date direction d(ui, vi), advance the line (and its parameter-
ization) to the point (ui+1, vi+1) = (ui, vi) + hi · d(ui, vi),
where hi is an estimated integration step width [23]. We
are then able to evaluate the surface point corresponding to
(ui+1, vi+1) and decompose the (locally) flattened curva-
ture tensor field at (ui+1, vi+1) to obtain the next direction
d(ui+1, vi+1). The following special cases have to be con-
sidered:

1. If (ui+1, vi+1) is inside the parameterization domain
of the current triangle then there is nothing to do.

2. If (ui+1, vi+1) lies
across an edge of the cur-
rent triangle F , we unfold
its neighbor face F ′ at that
edge. That is done isomet-
rically by simply rotating
the only one non-assigned vertex of F ′ to the parameter
plane and correspondingly flattening the associated curva-
ture tensor. This process is performed until that face is un-
folded, which contains the point (ui+1, vi+1). To execute

the in/out triangle check, we simply compute the barycen-
tric coordinates of (ui+1, vi+1) with respect to the parame-
terization of the F ′.

3. If during the un-
folding in a face F we
arrive exactly at a ver-
tex v, we have to deter-
mine the adjacent face
F ′ to continue. In gen-
eral, there is no way to
map isometrically all
neighbor faces of v. Therefore we need to use an ap-
proximate solution. We compute the barycentric coordi-
nates of (ui+1, vi+1) with respect to the parameterization of
F . Mapping v to (0, 0), we compute the polar map approxi-
mation [24] at it. Using the barycentric coordinates, we can
recompute the parameterization of (ui+1, vi+1) with re-
spect to the new map of F and find F ′. F ′ is again
re-mapped isometrically and we continue from it.

There is one more consideration, which leads to a sub-
stantial boost in performance when using the described ap-
proach. In case we need to compute the tensor at a predicted
point during a higher order integration scheme (e.g. fourth
order Runge-Kutta method), we need to have fast access to
the parameterization of the current parameter point (ui, vi).
We define as parameterization context the current triangle,
its map and the flattened tensors at its vertices. For every
prediction point step, we save the current context, execute
the advance operation, evaluate the tensor at the predicted
point, and then restore the context, thus returning quickly at
our current position.

3.2. Proximity queries

An important aspect for the efficiency of the anisotropic
remeshing scheme is the ability to quickly answer proxim-
ity queries of the following type: given a point p on the sur-
face (with its global barycentric coordinates), find all previ-
ously computed curvature line segments which are inside a
sphere with a given radius r centered at p. Here, the radius
r depends on the local line density, while p is either a candi-
date line seed or a line sample generated during integration.
A straightforward approach would be to use BSP-tree, oct-
tree or another kind of a space-partitioning structure. How-
ever, global space-partitioning structures are not well suited
for our case due to the fact that our search structure has to
be updated frequently. At every integrated line point a query
is performed, then once the line advances forward, the ac-
cepted sample is inserted into the structure, making it acces-
sible for subsequent queries. Therefore we propose a simple
and very effective solution which fits ideally to our needs.

During the integration of a line, we ensure that all of its
segments are contained in just one face by splitting all line



segments which cross an edge of the input mesh. Every face
keeps a list of all lines which pass through it and their seg-
ments inside it. This provides a natural, very localized de-
composition of the samples in groups corresponding to the
faces of the original surface.

Later on, once a query point p is given, we simply start
conquering in a depth-first fashion all faces which have at
least one vertex within r distance to p starting from the face
where it resides. The set of all such faces we call a p-cell.
We can traverse then every cached line sample inside the
faces belonging to the p-cell and compute the distance to
it, thus answering exactly the distance query. A subsequent
query using p and larger r could be answered by simply ex-
tending the p-cell starting from its front faces. To avoid con-
quering large portions of the mesh when queries are exe-
cuted during integration inside flat areas, we trim the query
distance to some reasonable value set by the user, e.g., 5%
of the bounding box diagonal of the model. Once p moves,
we simply update the p-cell by removing all faces which are
left out of the query distance and including all faces which
now fall into it.

While it might seem that the proposed structure does
more work than necessary, i.e., by evaluating distances to
vertices of the original mesh and to line samples, this pays
off even on very dense meshes, due to the fine granular-
ity of the sample groups and the fact that a query does
not have to traverse a tree like structure, but a simple ar-
ray of faces. During the integration of the 2M line sam-
ples used for the high fidelity remeshing of the 1.09M tri-
angles Buddha model, the structure answered on average
42K queries/second. The structure scales with respect to
the original mesh density. This compensates the fact that
the number of the integrated line points might be by magni-
tudes larger, especially during high fidelity remeshing. Ad-
ditional advantages are its simplicity and especially the con-
stant time insertion. The structure balances very well the
different sampling density settings - during dense remesh-
ing more samples are integrated, but the average query dis-
tance r is smaller, therefore less distance evaluations to the
original mesh vertices are needed. Accordingly, in a sparse
remeshing setting, the smaller number of integrated sam-
ples offsets the fact that r is larger. A possible pitfall are
dense meshes which include a few very large faces - these
however can be split easily in a preprocessing step.

4. Isotropic regions

Very few surface classes such as cylinders, tori and hy-
perboloids can be fully re-sampled exclusively using an
anisotropic sampling technique. Complex technical models
for example combine isotropic and anisotropic areas, rang-
ing from flat regions to highly bended cylindrical shapes, of-
ten connected with hyperbolic blends. In the original work

of Alliez et al., the remeshing algorithm employs a simple
strategy for handling isotropic regions. They are uniformly
sampled starting from the umbilic points which reside in-
side such regions and additional samples are added to satu-
rate large flat areas. The samples are then meshed by build-
ing a constrained Delaunay triangulation which conforms
to adjacent anisotropic mesh patches. It would be straight-
forward to adapt this approach in our setting, either by con-
structing the CDT directly in 3D [8], or mapping locally the
isotropic surface areas to 2D and then building the CDT in
the parameterization domain.

In this section we propose an alternative solution which
propagates curvature directions from anisotropic areas to
isotropic regions adjacent to them and seamlessly connects
cylindrical and hyperbolic patches into a conforming quad-
dominated mesh. In spherical regions the proposed tech-
nique is not so effective, and while it produces acceptable
results, one would probably combine it with the original
method. However for most flat and transition regions, most
often encountered in technical modes (Fig. 5), our solution
is clearly preferable.

In Section 4.1 we derive a robust criterion for distin-
guishing between reliable and non-reliable principal direc-
tion information and classify the faces of the original mesh
according to it. Later on, during the line integration phase,
whenever we have to cross an non-reliable region, we ig-
nore the directional information inside it and continue the
integration along a geodesic curve using a trusted direction,
obtained during the tracking inside the last anisotropic area.
Finally, once we leave the isotropic region, we snap the line
to the most similar curvature direction, switching between
minimum and maximum curvature lines if necessary.

4.1. Confidence estimation and propagation

We start by pointing out that geodesic disks around um-
bilic points are not sufficient to distinguish whether the re-
gion is isotropic or not. Sometimes the transition regions
have the shape of long snakes which divide hyperbolic from
cylindrical patches, even more complicated forms might ex-
ist (Fig. 3, left). Moreover, due to the smoothing opera-
tor, the estimated principal curvature values change signif-
icantly. In consequence, the umbilics of the filtered tensor
field reside sometimes in incorrect locations, which do not
correspond to the surface’s true geometrical structure (Fig.
3, middle) and therefore we do not consider them as poten-
tial line seeds.

In [23, 3], the deviator norm quantity, based solely on the
difference between the values of the principal curvatures at
a point in the tensor field, is used to rate the confidence dur-
ing the curvature line integration process. The norm of the
deviator matrix shows correctly critical points of the tensor
field, however we need an answer to a more general ques-



Figure 3. On the left we illustrate the integrated lines of curvature in a computed tensor field w/o
any post-processing. Pink dots denote umbilic points. Blue lines follow the minimum curvature di-
rection, and red lines the maximum one. Note the behavior of the lines inside the non-reliable (col-
ored) areas on the surface. Our confidence estimation detects such areas even if there are no umbil-
ics in proximity to them. In the middle, the change caused by smoothing the tensor field is shown.
The number of umbilics is largely reduced, however the trajectories of the integrated lines are not im-
proved - they still converge towards the remaining umbilics. On the right the result of our trusted di-
rection integration is presented. The lines instantly change their type after leaving non-confident ar-
eas - their color represents now only the type of the initial principal direction used. The different
sampling pattern is caused by the nature of the lines density estimates and the greedy seed plac-
ing strategy.

tion: how to detect regions where the principal directions do
not align to the surface shape, but instead follow the direc-
tions leading to umbilic points? Therefore, away from um-
bilics, we base our confidence estimation not on a quantity
related to the principal curvatures values, but on principal
direction coherence.

We map every face of the original mesh individually to
the parameter plane (as in Section 3.1) and flatten the mini-
mal principal directions at its vertices. After computing the
cosines of the three angles αj=0..2 between every pair of
minimum directions, we define the confidence at this face
by:

Λ(fi) = min
j=0..2

|cos(αj)| . (1)

We now have a piecewise constant confidence scalar
field on the original surface, ranging from 0 to 1, which
we will use to alter the tensor field smoothing and the line
integration phase. We extend the confidence definition (1)
to the vertices of the original mesh by averaging the con-
fidence of the faces adjacent to them. Now it is a simple
matter to propagate curvature directions from confident re-
gions to non-confident ones by weighting the coefficients in
the discrete Laplacian operator:

T k+1
i =

Λ(vi)

2
T k

i +

(

1 −
Λ(vi)

2

)

∑

j∈Nb(i) Λ(vj)T
k
j

∑

j∈Nb(i) Λ(vj)
,

where T k
i is the 3× 3 symmetric curvature tensor matrix at

the vertex vi during the k-th smoothing iteration. Note that
due to the damping factor of 1/2 for the confidence weight,
the proposed operator not only propagates, but also smooths
curvature tensors inside anisotropic regions.

4.2. Integration along trusted directions

We have now propagated trusted curvature tensors into
isotropic regions, thus extending and smoothing the regions
where we can integrate principal curvature lines reliably.
However this is still not sufficient - some of these regions
can never be annihilated completely since they represent
significant discontinuities in the tensor field. The smooth-
ing technique presented in the previous section only eas-
ies the identification of these regions and sharpens the dif-
ferences between them and the adjacent anisotropic surface
patches. We now alter the core of the anisotropic remesh-
ing technique by swapping between minimum and maxi-
mum lines if necessary (Fig. 3, right).

Recall that we initially seed lines inside the confident,
anisotropic areas. So we have a confident direction to start
with. After entering a new face fi during the line integra-
tion procedure, we check if the curvature directions inside
fi are sufficiently reliable by comparing Λ(fi) with some
user-defined confidence threshold Λmin. We found out that



the threshold value choice is not very critical, so we set
it through all of our experiments to cos(π/6). If Λ(fi) ≥
Λmin then we continue to follow the principal directions
given by the tensor field. However, if Λ(fi) < Λmin, we in-
stead follow the last trusted direction ttr, defined as the av-
erage of the last few (reliable) directions used, thus integrat-
ing a geodesic curve crossing the non-reliable area. Once
we leave the isotropic region, i.e., again Λ(fi) ≥ Λmin,
we check if ttr is closer to either the minimum (tmin) or
the maximum (tmax) principal curvature directions at the
newly reached confident point and potentially alter the line
type from here on according to the result of this test. More
precisely, if |ttr · tmin| ≥ |ttr · tmax| we treat the follow-
ing line segments as minimum line segments, otherwise as
maximum line segments.

Several modifications are needed throughout the remain-
ing components of the line integration phase to accommo-
date for the proposed change. The line integration proce-
dure must be able now to change dynamically its behavior
depending on the type of currently followed principle di-
rection. In addition, since we do not have any notion of line
type available inside isotropic regions, a modified proxim-
ity query is performed. Namely the trusted direction of the
current line is compared with the (averaged) direction of the
line segments of the already integrated lines within the cur-
rent sampling density. If the angle between ttr and the so
computed approximate line directions is less than π/4, we
then stop the integration of the current line, since continu-
ing it, we will introduce small acute and large obtuse angles
in the new mesh at the intersection point.

5. Meshing

Using the structure proposed in Section 3.2, it is ex-
tremely efficient to find the line intersections which con-
stitute the new mesh vertices. For every confident face we
just intersect all line segments inside it belonging to differ-
ent line types. Inside non-confident faces we have to inter-
sect line segments of the same curvature type too. Also if
two lines intersect exactly at a vertex of the original mesh,
then in general the same intersection point can not be com-
puted in any of the faces adjacent to that vertex. Therefore
we also keep for every vertex of the original mesh a list of
the line segment identifiers coincident with it. Edges are de-
fined along every line by connecting all subsequent inter-
section points on it. We merge all intersection points which
are very close to each other and then remove all dangling
and isolated vertices.

5.1. Building the half-edge structure

Since we will perform meshing directly in 3D, we have
to remain consistent with the original surface orientation.

Therefore, for every vertex in the new mesh we compute a
normal vector based on the original mesh. If the vertex is a
line intersection inside a face, we assign to it the face nor-
mal, and if the vertex coincides with an original vertex, then
we assign to it the average normal at that original vertex.
In order to build a half-edge (HE) mesh structure [7], for
every vertex, we project all edges connected to it into the
tangent plane defined by its precomputed normal. We se-
lect one of these edge projections and then compute the an-
gle from it to all other edge projections. We sort the edges
with respect to their angles in a counter-clockwise direc-
tion. Now we can easily define the HE structure around that
vertex. The next HE for every incoming HE is the outgo-
ing HE of the next edge in the sorted array. Correspond-
ingly the last incoming HE is connected to the first outgo-
ing HE.

5.2. Creating mesh faces

We construct the set of free HEs, which initially con-
sists of all HEs, except those that correspond to a bound-
ary line in the original mesh. Starting from one free HE, we
traverse all next HEs determined by the next-previous rela-
tion defined above, until we reach the starting edge again. A
new mesh face is created using the so extracted HEs, which
are then removed from the free set. This operation is exe-
cuted until no more free HEs remain.

In some cases, especially if we perform very coarse sam-
pling, it is possible that the HE structure we obtained is not
consistent everywhere and therefore the free HEs list can-
not be emptied using the above operation. This situation is
detected if the free list is no empty, but it is not possible
to find another loop. Then we remove all edges which have
two free HEs since these are exactly the inconsistently ori-
ented edges. A final pass of the face creation operation takes
care of the remaining mesh gaps.

Convex partitioning: During the face creation proce-
dure, some extracted faces might be concave. Concave faces
are undesired due to numerous problems when rendering
and modeling them. We propose a simple algorithm for par-
titioning them directly in 3D, aiming at generating quad,
anisotropic elements. It is well-known that convex partition-
ing in 3D is significantly more complicated problem than its
2D counterpart. Fortunately, in our case it is simplified by
the fact that we can use the correct normals evaluated on
the original mesh. Given a polygonal face of the remeshed
mesh, for every of its HEs we define the sector normal at the
vertex pointed by that HE as the cross product of its next HE
vector and its opposite HE vector. Comparing the direction
of the sector normal with the original normal at the vertex
(by the sign of their dot product) reveals whether it is con-
vex or concave.
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Figure 4. High fidelity remeshing of the Buddha (top) and Michelangelo’s David (bottom) models.

Given a concave vertex in a face, we find all face diag-
onals going out from it, and choose one of them based on
a score evaluated for each of the two faces which are pro-
duced if we split the concave face at it. The score function
favors rectangular elements by rating highly angles which
do not deviate significantly from π/2. Once a diagonal is
chosen, we split the face at it, and then recursively run the
algorithm on the resulting two new faces. Splits are per-
formed until no more concave vertices remain. The same al-

gorithm is used to partition faces which exceed some used-
defined maximum valence, splitting them at the diagonal
which yields the highest score.

6. Results and discussion

The choice of the examples in this section reflects the
three main contributions of our work. The Buddha model is
a well-known, high genus closed surface and therefore il-



Figure 5. Anisotropic remeshing of the Rocker Arm model.

lustrates the ability of our scheme to handle arbitrary genus
meshes. We remeshed the head of Michelangelo’s David in
its original resolution, thus focusing on the scalability of
our technique. Finally, the Rocker Arm is a technical object
which exhibits many isotropic regions and demonstrates the
results of our reliable direction propagation algorithm.

Input Complexity

Model Buddha David Rocker Arm
Faces 1.09M 4M 80K
Vertices 545K 2M 40K

Output complexity: Low resolution (Fig. 1)

Faces 18K 30K 2.3K
Vertices 19K 31K 2.3K

Output complexity: High resolution (Fig. 4, 5)

Faces 120K 135K 5K
Vertices 125K 140K 5.2K
Timings 3-4min 8-9min 20-25sec
Memory 460MB 1.6GB 49MB

Timings depend on the input mesh complexity and slightly vary w.r.t. the output.

Table 1. Input, output complexity and timings.

Low resolution re-meshes of the three models are shown
on Fig. 1. On Fig. 4, 5 we illustrate detailed, high-fidelity
results produced by our technique. For quality comparison
with [3], one could use the zoom-ups on Fig. 4c,d. Since
we are able to process the original resolution input mesh

of Michelangelo’s David’s head (in [3] a 80K vertices dec-
imated version is used - [2]), the remeshing technique is
able to capture more detail, which is visible on a fine scale,
e.g., around the mouth, the eyes and the ears. On the other
hand the increased level of detail causes a slightly less uni-
form line density in less curved regions, e.g., the cheeks.
The radius of the averaging area for computing the curva-
ture tensors was set to 1% of the bounding box diagonal
for the Buddha and Rocker Arm models and 0.5% for the
David’s head model. The maximum valence was set to 5 for
all examples because this leads to output meshes consist-
ing of quads, T-joints and triangles. Depending on the pre-
scribed approximation tolerance, it is possible that the out-
put mesh has smaller genus than the original since tiny han-
dles might not be sampled during the line integration pro-
cess. This can be seen as a side effect which removes topo-
logical noise from the input mesh [14].

As noted in Section 3.2, the performance of our algo-
rithm scales with respect to the complexity of the input
mesh and only slightly varies depending on the output den-
sity. In the view of the timings (Table 1), we consider the
performance of our algorithm to be competitive even with
greedy decimation algorithms such as [11]. On the same
computer (Pentium IV 2.8GHz, 2GB RAM), decimating the
full resolution David’s head mesh to 140K vertices takes
7min. Note that some of the parameters of the anisotropic
remeshing algorithm, e.g., the tensor field averaging area,
the amount of curvature adoption, etc, affect the perfor-
mance considerably.

Implementation details: We used as a base mesh li-
brary the freely available OpenMesh [7]. Information re-



quired during the remeshing is on-demand attached and de-
tached to the original mesh entities, using the convenient
OpenMesh property mechanism. After the tensor field fil-
tering, the vertices keep their normal vector, the minimal
principal direction, the principal curvature values and a list
of pointers to line segments passing through them. Tempo-
rary valid distance and parameterization properties of the
vertices are frequently reused by different functions during
the integration phase. For every face a list of line segments
residing inside it is maintained. Standard double precision
(64 bits) was used for performing the calculations and stor-
ing geometry information.

Future work: Our next goal is to investigate meth-
ods for improving the distribution of the integrated lines.
While the local sampling density is estimated with re-
spect to the prescribed approximation tolerances, in some
applications one would like to be able to impose global uni-
formity requirements. A multi-resolution approach could
help tackling such constraints - our experiments show
that it is significantly easier to capture uniformly the ob-
ject shape on smoothed, coarse versions of the models,
while high frequency features could be re-sampled sepa-
rately on finer resolutions. Another line of research would
be to investigate the improved approximation by using
asymptotic directions instead of principal directions in hy-
perbolic regions of the surface.

Acknowledgements: The used models are courtesy Cy-
berware, Stanford University and Igor Guskov. We would
like also to thank the anonymous reviewers for their con-
structive comments.
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