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Abstract
We are proposing a multiresolution representation which uses a subdivision surface as a smooth base surface
with respect to which a high resolution mesh is defined by normal displacement. While this basic representation is
quite straightforward, our actual contribution lies in the automatic generation of such a representation. Given a
high resolution mesh, our algorithm is designed to derive a subdivision control mesh whose structure is properly
adjusted and aligned to the major geometric features. This implies that the control vertices of the subdivision
surface not only control globally smooth deformations but in addition that these deformations are meaningful in
the sense that their support and shape correspond to the characteristic structure of the input mesh. This is achieved
by using a new decimation scheme for general polygonal meshes (not just triangles) that is based on face merging
instead of edge collapsing. A face-based integral metric makes the decimation scheme very robust such that we
can obtain extremely coarse control meshes which in turn allow for deformations with large support.

Categories and Subject Descriptors (according to ACM CCS):
I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations. Modeling packages.

1. Introduction

Due to the availability of reasonably priced 3D scanning
equipment the need for shape modeling techniques which
enable the flexible modification of (unstructured) high res-
olution 3D models becomes more and more evident. Ide-
ally such techniques should be independent from the actual
tessellation of the mesh and they should provide handles
through which the user can control the shape in a flexible
and intuitive way. Due to the high complexity of the scanned
meshes, necessary for representing the edited model with
a certain precision, multiresolution modeling techniques re-
sort to a coarse, low frequency representation (base domain)
of the input geometry, so that the designer can efficiently de-
scribe the editing operations. Such an approach imposes a
restriction on the used base-domain: it has to represent the
structure of the model as close as possible, so that a modifi-
cation expressed with respect to it propagates in an intuitive
fashion to the edited mesh.

On the other hand, the ability to simplify the base do-
main such that just the very basic features of the object are
present, allows large scale, almost global modifications to be
performed. In addition, such modeling framework has to be

flexible, permitting the designer to change the desired con-
trol resolution at any point, i.e., it needs to be progressive.
Finally, the automatic generation of such a representation
is highly desirable, especially in a production environment,
since the costs associated with a reverse engineering/rapid
prototyping cycle depend mostly on the amount of manual
work (time) required. In this paper we propose a modeling
framework in conjunction with a simplification algorithm,
which conform to these requirements and provide an easy to
use, flexible tool-set for editing polygonal meshes.

1.1. Contributions

Our first contribution is a new simplification scheme for
polygonal meshes (Section 2) which generates a progressive
sequence of coarser versions of the input mesh M adjusted
and aligned to the major geometric features. The algorithm
is specifically designed to overcome difficulties arising when
M is decimated to extremely coarse resolutions and provides
valid, non-folding, two-manifold polygonal meshes approx-
imating the structure of the model (Fig. 2). The scheme
is guided by two major principles: minimizing the integral
L2/L2,1 error for all faces (this provides the relation to the
input surface) and guaranteeing that each face is injectively
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Figure 1: From left to right: a) A tessellated CAD model as input. b) The model simplified to 24 faces. c) A corresponding
Catmull-Clark surface with 44 control points. d) Using c) as a base domain of our multiresolution model allows us to perform
several large-scale modifications on the original mesh (represented as a normal displacement field). Notice that moving a
control point leads to a “meaningful” deformation because the coarse control mesh captures the global structure of the model.

projectable to a plane (this weakly controls the quality of in-
dividual faces). As already observed in [CSAD04], the inte-
gral L2/L2,1 metric leads to a very robust and faithful align-
ment of the geometric clusters to the major anisotropic fea-
tures of the surface. Even if we run a greedy procedure for
the simplification instead of a global Lloyd-relaxation, we
can still exploit the same effect and hence obtain polygonal
meshes which reliably capture the shape and structure of the
input geometry very well. The additional injectivity condi-
tion prevents the polygonal faces (= clusters) from degener-
ating while not affecting the alignment properties.

Next we propose an elegant two-scale framework (Section
3), which allows for modeling of an arbitrary input mesh
by simply moving control points as in [ZSS97]. The low-
frequency, base domain for performing the modification is a
smooth (almost everywhere) C2 subdivision surface S (Fig.
1). We take advantage of several properties of our simplifi-
cation scheme, which is used to produce the control mesh
of the subdivision surface: Since the user is able to browse
the sequence of fine-to-coarse representations of M, a de-
sired domain surface S is available at any level of detail.
The control points are placed at intuitive locations and the
mesh faces are aligned with the anisotropy of the input sur-
face, hence the support of the modification corresponding to
a control point movement is naturally defined and adjusted
with the structure of the model. Also, refining the control
mesh is not constrained to a uniform refinement of a fixed
base domain, but is completely irregular and new degrees
of freedom are placed adaptively in accordance to the em-
ployed approximation metric. Since our simplification algo-
rithm operates natively with general polygonal faces, both
Catmull-Clark [CC78] and Loop [Loo87] surfaces are sup-
ported. We focus on the former because quad-dominant con-
trol lattices are more relevant for CAD applications.

1.2. Related work

Simplification: Numerous techniques exist for simplifying
the complexity of a polygonal mesh, most of them are guided
by a specific approximation metric, sometimes augmented
by a quality measure for the produced elements. Greedy
mesh decimation schemes, such as the one we present, are

among the most popular methods. Partitioning through a re-
peated vertex collapsing was proposed by [SZL92, Hop96,
GH97, KLS96]. The dual technique, face clustering, was
employed for a high level description of the input geom-
etry by [KT96, GWH01, LPRM02]. Face clustering in the
context of mesh generation was specifically explored in
[She01, CSAD04, BMRJ04]. A global optimization tech-
nique for mesh simplification was proposed in [HDD∗93].

With the sole exception of [CSAD04, BMRJ04], all of
these techniques target at triangle mesh generation. How-
ever, quad-dominant meshes are required for producing
high-quality Catmull-Clark subdivision surfaces. Moreover,
none of them is able to produce extremely coarse artifact-
free meshes required for global, structure aligned deforma-
tions. Our simplification scheme is designed to overcome
exactly these issues: it produces extremely coarse, structure-
preserving, polygonal and artifacts-free meshes.

Modeling: We restrict our survey of free-form modeling
techniques to approaches similar to ours, i.e., surface ori-
ented methods. Direct polygonal mesh modeling was pro-
posed by [WW94]. In [ZSS97], an input mesh is converted
to a multiresolution Loop surface and deformations are per-
formed interactively by transforming degrees of freedom
on different levels of detail. In [LLS01], an arbitrary mesh
is converted into a multiresolution Catmull-Clark surface,
however, the user has to predefine the base control mesh. To
represent the input mesh without resampling, these methods
employ local frame encoding using multiple levels of detail.

In contrast to them, variational techniques for polygonal
mesh modeling [KCVS98, BK04] use single level of detail
to encode the fine scale geometry solely as normal displace-
ments (without resampling). Our approach is positioned in-
between these two paradigms: we use a subdivision sur-
face to control the deformation, but a single fine scale is
represented as normal displacements. However, unlike dis-
placed subdivision surfaces [LMH00], we do not require re-
sampling of the input geometry and hence avoid aliasing
and other under-sampling artifacts. Recently, several alterna-
tive ways for performing modeling operations on polygonal
meshes were proposed in [YZX∗04, SLCO∗04, LSCO∗04].
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Figure 2: From left to right: a) The fan model at full resolution, b) 200, c) 50, d) 17, e) 5 regions.

2. Face-based polygonal mesh decimation

Given an arbitrary two-manifold mesh M0 as input, our goal
is to find coarse polygonal approximations Mi whose faces
may be convex or non-convex regions with or without holes.
Since we are not restricted to triangles, the faces of our
polygonal meshes Mi are not necessarily planar. However, in
order to preserve a proper mapping from the input mesh to
the decimated ones, we have to guarantee at least a minimum
quality of the decimated faces, i.e., we require that for each
polygonal face Fi, j of Mi, there has to be a plane Pi, j such
that projecting the boundary loops of Fi, j into this plane is
an injective mapping. Moreover, we require that inner loops
(holes) project into the interior of the outer boundary loop
and their projections are not nested.

Instead of using the well-established edge-collapse opera-
tion for the decimation, we use its dual, the face-merge oper-
ation. Although this operation is more complex than the edge
collapse, especially for general polygonal faces, we can still
define an inverse operation, the face-split, such that the hi-
erarchy of coarser and coarser meshes M0 ...Mn provides a
(generalized) progressive mesh representation. In this hier-
archy, we can browse up- and down-stream in constant time
to choose the desired level of detail Mi for a given modeling
operation.

In our multiresolution shape representation, the coarse
meshes Mi serve as subdivision control meshes which are
supposed to capture the global structure of the input geome-
try at a certain level of detail. Hence, we put more emphasis
on the global orientation and alignment of the coarse edges
and faces rather than minimizing the local geometric devia-
tion between Mi and M0. This is why we are using a com-
bined integral L2/ L2,1 measure as priority for a greedy dec-
imation scheme: In each step we merge the two polygonal
faces that cause the least increase of the L2/ L2,1- error if the
resulting face boundaries are still injectively projectable into
a plane.

Polygonal face data structure: Each face Fi, j has to store its
topological as well as its geometrical information. The geo-
metric information is specified by the mean (area-weighted)
normal Ni, j , the centroid Bi, j and the area σi, j of the input
surface’s region that is associated with Fi, j. Ni, j and Bi, j de-
fine the plane Pi, j which approximates this surface region.

The topological information consists of a set of polygonal
loops, one outer loop and maybe one or several inner loops.

There are two geometric embeddings for the vertices of these
loops. One is a spatial position on the input surface, the sec-
ond is a planar position in the plane Pi, j which is obtained by
orthogonal projection. We use the planar embedding to gen-
erate a (constrained Delaunay) triangulation T ′

i, j [BDP∗02]
of the corresponding planar polygon and by lifting this tri-
angulation into the spatial embedding, we obtain a piecewise
linear representation Ti, j of the (non-planar) face Fi, j.

Figure 3: Merging A and B produces a combined face with
three loops: the outer (black) contour and the two inner
(blue) holes corresponding to the adjacent faces C and D.

Face merge: Since we are allowing for arbitrary polygonal
faces with holes, the face merge operation can be quite com-
plicated. However, when using a half-edge data structure, the
merge operation can easily be implemented in terms of cut-
ting and splicing boundary polygons. If we want to merge
two faces Fi, j and Fi,k into a new face Fi+1,l we first have to
identify their common boundary segments. After removing
these segments, we are left with a set of loops again. One
of these loops consists of boundary segments that formerly
belonged to the outer loops of Fi, j and Fi,k. This is the new
outer loop. All the other loops are inner loops of the merged
face Fi+1,l (Fig. 3).

As stated above, we are only accepting polygonal faces
whose boundary loops project injectively into a plane.
Hence, the face-merge operation also computes a new plane
Pi+1,l as an area weighted average of the two planes Pi, j and
Pi,k, i.e., σi+1,l = σi, j + σi,k and

Ni+1,l =
σi, jNi, j + σi,kNi,k

∥

∥σi, jNi, j + σi,kNi,k
∥

∥

, Bi+1,l =
σi, jBi, j + σi,kBi,k

σi, j + σi,k
.

If the boundary loops of Fi+1,l do not project injectively
into this plane, we reject the merge operation.

Merge priorities: Our decimation scheme is a simple
greedy algorithm which in each step performs the face merge
operation with the highest priority, i.e., the lowest error, that

c© The Eurographics Association and Blackwell Publishing 2005.
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Figure 4: From left to right: a) A scanned (high genus) technical part. b) On a coarse level the complete right side is pushed
down and the left side is extended. c) Switching to a finer scale, we round a sharp corner using the additional controls.

does not violate the injectivity criterion. Each merge opera-
tion is potentially followed by a number of valence two ver-
tex removals. Then the priorities are updated and the next
merge operation is selected.

Similarly to [CSAD04] we base our error measure on a
combined integral L2/ L2,1- metric. In order to estimate its
value for a given (merged) face Fi+1,l , we integrate the L2

deviation of the lifted CDT Ti+1,l with respect to the proxy
plane Pi+1,l : Let d0, d1, d2 be the distances from the vertices
of a triangle t ∈ Ti, j ∪ Ti,k from the plane Pi+1,l . The integral
L2 error of Pi+1,l with respect to t is:

L2(t,Pi+1,l) =
1
6

(d2
0 + d2

1 + d2
2 + d0d1 + d0d2 + d1d2) |t|

as shown in [CSAD04]. Finally we estimate the total L2 error
for the face Fi, j as:

L2(Fi+1,l) = ∑
t∈Ti, j

L2(t,Pi+1,l)+ ∑
t∈Ti,k

L2(t,Pi+1,l) .

The L2,1 deviation is estimated by computing an area
weighted sum of the deviation between the normals before
and after the merge:

L2,1(Fi+1,l) = σi, j ·
∥

∥Ni, j −Ni+1,l
∥

∥

2
+σi,k ·

∥

∥Ni,k −Ni+1,l
∥

∥

2
.

Notice that both error measures are only approximations to
the true errors with respect to the original input mesh M0.
However, since the integral has a low-pass filtering effect
anyway and since we never noticed a significant difference
in the quality of the resulting coarse meshes Mi when using
the true measure, we decided to use the approximate mea-
sure which can be evaluated much more efficiently, in con-
stant time.

Since a weighted sum of the two error measures is not
scale independent, we rather combine the two measures by
multiplying them so that the L2,1 metric acts as a weighting
factor for the L2 metric and vice-versa:

E(Fi+1,l) =
[

1 + L2(Fi+1,l)
]

·
[

1 + L2,1(Fi+1,l)
]

. (1)

Contour decimation: The face-merge operation does not
remove any vertices from Mi. Hence we need a second op-
eration to actually reduce the geometrical complexity. In our

algorithm, this operation is simply removing the valence two
vertices that appear after several faces have been merged
(Fig 5).

Figure 5: To decimate the contours of the merged regions we
remove all excess valence two vertices.

For closed meshes, we decimate every valence two vertex
vk as soon as it appears. For meshes with boundary we have
to take some error measure into account in order to preserve
the shape of the input surface’s boundary. As there is only
one face incident to a boundary valence two vertex, we sim-
ply compute the corresponding L2 error integral in closed
form by

L2(vk) =
1
3

∥

∥v j − vl
∥

∥d2 ,

where v j and vl are the two adjacent vertices to vk and d is
the orthogonal distance of vk to the edge v jvl . The L2,1 error
vanishes because the face normal does not change after the
vertex removal, hence E(vk) = 1 + L2(vk).

In any case, in order to prevent fold-overs in non-convex
faces or in faces with holes, we allow removing any vk only
if the injectivity criterion is true for the adjacent faces after
the removal. Moreover, in order to avoid inconsistencies in
the mesh Mi+1, the removal operator is permitted only if the
edge (v j,vl) did not already exist in the mesh Mi.

Performance considerations: The most time consuming
step in the decimation procedure is the construction of the
CDT Ti, j after every merge or removal operation. The Ti, j is
necessary to evaluate the approximate L2/L2,1 error mea-
sures. The complexity of this step grows like O(m logm)
with the valence m of the polygonal face Fi, j. This can lead
to performance problems in flat surface regions where the
error measure (1) is very small and faces with very high va-
lence can occur. In order to avoid these pathological config-
urations, we add another criterion to the decimation scheme
which prefers low valence faces. However, this criterion has
to be designed in such a way that it does not influence the

c© The Eurographics Association and Blackwell Publishing 2005.
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decimation scheme in regions where the error measure (1)
has non-vanishing values.

Consequently, we add two more factors (1 + ε(m− 4)2)
and (1 + ε ∑q(αq − π/2)2) with some small weight coeffi-
cient ε to the combined error measure (1) where m is the face
valence and αq are the inner angles at the vertices incident
to the removed boundary segment(s) shared by Fi, j and Fi,k.
These two factors penalize high valences and non-regular
inner angles. However, due to the small weight coefficient
ε these factors can influence a greedy decision only if the
other factors are close to constant and hence they act like a
“tie-break”. Note that these penalty terms are not meant to
enforce the quality of the mesh elements in general — we
need them only to prevent uncontrolled growth of the CDTs
computation time in regions where the input mesh is nearly
planar.

3. Multiresolution modeling

Subdivision control mesh generation: Once the input mesh
M0 is simplified to the coarsest possible level Ml , the user is
able to browse the resulting hierarchy and choose a level of
detail (an intermediate mesh) Mi which we use to define the
base domain for subsequent modeling operations. We con-
vert the selected Mi into a proper subdivision control mesh
Li defining a (limit) surface Si. For Catmull-Clark surfaces,
we have to construct Li in a way that guarantees fair limit
surfaces. In particular this means that we have to avoid non-
convex faces and faces with high valence and that we prefer
quad-dominant meshes. Since we do not want to insert addi-
tional vertices, we have to find a convex partitioning without
Steiner points for each face Fi, j. This partitioning has to be
applied to the planar embedding of Fi, j and is then lifted
to its spatial embedding. The convex partitioning algorithms
available in the literature [HM83, KS98] do not provide the
required solution since they do not take the valence of the
generated convex faces into account.

Suppose Γ is some convex partitioning of a polygonal
face Fi, j. We define a score function ω for every cell f ∈ Γ:
ω( f ) = 0 if val( f ) = 4, ω( f ) = 1 if val( f ) = 5, ω( f ) = 2
if val( f ) = 3 and ω( f ) = ∞ otherwise. Valence 5 cells are
preferred due to the better quality of the subdivision limit
surface compared to valence 3 cells. The score of the com-
plete partitioning Γ is defined as ω(Γ) = ∑ f∈Γ ω( f ).

We are interested in finding a partition Γ which minimizes
ω(Γ). The already computed CDT Ti, j of Fi, j exhibits angle
optimality with respect to the choice of available diagonals
in the planar embedding of Fi, j. Hence, similarly to [HM83]
we restrict our convex partitioning to diagonals existing in
Ti, j . Since the number of vertices in Fi, j is usually small,
a brute force approach with branch caching rapidly finds the
optimal Γ by simply checking all possible decompositions. If
Fi, j happens to have higher valence than a certain threshold
(20 vertices), we fix several diagonals from Ti, j in order to

split Fi, j into a few smaller polygons and run the brute-force
algorithm on each of them.

Normal displacement: In order to represent the input mesh
M0 as a normal displacement of the subdivision limit sur-
face Si, we need to find for every vertex vk ∈ M0 a foot-point
Si(tk) on the surface Si such that the displacement vector
vk − Si(tk) is orthogonal to the tangent plane of Si at Si(tk).
Since there is no analytical solution to this problem, we first
have to generate some initial estimate rk for tk and then itera-
tively improve this estimate by an exact closest point search
on Si [MK04]. The convergence of the closest point search
depends on the quality of the initial estimate rk. Hence, we
generate these estimates by computing a global parameteri-
zation of M0 which uses the subdivision control mesh Li as a
domain. Notice that our conversion procedure from Mi to Li
is based on a convex partitioning of the planar embedding of
each face Fi, j. As a consequence, all we have to do is to map
this partitioning back onto the input mesh M0 and then com-
pute an individual parametrization for each of the resulting
patches (Fig. 7).

Figure 7: Left: The Rocker Arm model simplified to 5 re-
gions. Middle: The global map corresponding to this resolu-
tion (visualized as normal map). Right: The corresponding
clusters.

More precisely: Since the decimated faces Fi, j have been
generated by face-merging, there is a unique surface patch
Ci, j on M0 which is associated with Fi, j. In particular, the
boundary of the patch Ci, j is associated with the planar
embedding of the boundary of Fi, j. The diagonals used in
the convex partitioning of Fi, j can be mapped to shortest
paths (inside Ci, j) between the corresponding vertices of M0.
These shortest paths are easily computed by Dijkstra’s algo-
rithm. If several diagonals are adjacent to the same bound-
ary vertex of Fi, j then we might have to locally refine M0
in order to keep the shortest paths disjoint (Fig. 8). After
we have fixed the parameterization of all vertices of Ci, j
mapped to the edges of the convex partitioning of the pa-
rameter domain Γ, we setup a sparse linear system for each
cell to compute the parameterization of the remaining ver-
tices using Floater’s mean value weights [Flo03]. Then for
every vk ∈ M0 we improve the initial parameter value rk by
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Figure 6: From left to right: a) The bunny model simplified to 14 regions. b) The corresponding control mesh and its first level
Catmull-Clark subdivision. c) Using b) large scale modifications are applied to the back and the head. d) A finer resolution (83
regions) is selected. e) The new control vertices are used to alter the ears.

iteratively updating it towards the exact foot-point parameter
value tk [MK04].

Figure 8: Close-up view on a parameterization around the
hole of the Rocker arm model. The map constraints are setup
on the blue lines. Note the vertices (red points) refining M0
so that disjoint vertex paths corresponding to the diagonals
of the domain partition are possible.

Two-scale model: We define the two-scale model Qi which
represents the vertex positions of the original input mesh M0
as normal displacements Di with respect to Si. More pre-
cisely, Qi is the collection of the following entities: the sub-
division surface Si (base scale), the parameter values tk of
the foot-points of the vertices of M0 on Si (parameteriza-
tion) and the normal displacements dk such that

vk = Si(tk)+ dk ·Ni(ti) , (2)

where vk ∈M0 and Ni(tk) is the normal of Si at tk (fine scale).

Editing: By moving control vertices of the control mesh Li,
the user deforms the two-scale model Qi in a region defined
by the resolution of Li, i.e., in the region corresponding to the
support of the respective subdivision basis functions. Since
our decimation scheme produces structure-aligned meshes
Mi, the distribution of subdivision control vertices as well as
the shape of the corresponding basis function’s support are
well-adapted to the shape features of the underlying input
surface. In this sense, our automatically generated multires-
olution representation allows modifications which align to
the geometric structure of the input model M0.

Note that while initially the two-scale model Qi represents
the geometry of the of the input mesh M0, any subsequent

deformations are implicitly encoded by the (modified) posi-
tions of the control points of Li. Hence, the deformed posi-
tions of the fine scale vertices can be always computed by
evaluating (2).

Resolution change: If another modification should be made
on a different scale, i.e., another level of detail M j is chosen
by the designer, we first convert M j to a subdivision con-
trol mesh L j as before. Since the current two-scale model Qi
might have been deformed, we first propagate this deforma-
tion on the new model Q j . To do that, we simply obtain the
vertex positions of the fine scale vertices vk by evaluating
(2). Note that since every control vertex of L j corresponds
to a fine scale vertex (our decimation procedure is a sub-
sampling process) the control vertices of L j are implicitly
shifted to their new (possibly deformed) positions. Accord-
ingly the new normal displacements D j are computed with
respect to the new base surface S j (Fig. 4, 6).

4. Results

We tested our algorithm on various models, with empha-
sis on CAD objects: Fig. 1, 2, 4. Recall that our simplifi-
cation scheme discards the best possible merge operation in
terms of approximation error, if its result does not meet the
minimum requirement of injective projection as specified in
Section 2. Not surprisingly, this approach leads to a slightly
suboptimal approximation quality when compared to estab-
lished methods such as [GH97] and [CSAD04]. However,
we trade a small increase of the approximation error for the
possibility to generate much coarser meshes which are still
consistent (Fig. 9).

In fact the initial prototype of our modeling frame-
work used [CSAD04] to generate low complexity (control)
meshes. However, since we did not find a way to produce
unconditionally artifact-free meshes using this method, we
developed the presented simplification algorithm. We inten-
tionally avoided dependence of any user-specified parame-
ters, hence our decimation is fully automatic and not a “trial
and error” experience. The decimation stops when there are
no more possible valid simplification steps to be performed.

When compared to previous approaches, our modeling

c© The Eurographics Association and Blackwell Publishing 2005.
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The fan model simplified to 36 triangles

The car model simplified to 92 triangles

Figure 9: From left to right: a) [GH97], b) [CSAD04], c) our result. The QEM decimation
produces acceptable meshes, but important features are smoothed out. On the other side the
VSA meshes capture precisely the geometry structure, however at so coarse level of detail,
exhibit artifacts and fold-overs. These issues can be resolved using more proxies, but at the
expense of additional triangles. Our algorithm preserves the structure of the original models,
without introducing any artifacts, even on such low resolutions.

Figure 10: Michelangelo’s
David simplified by our
method (395 vertices, 481
convex faces, 235 quads).

framework exhibits several advantages. Switching to finer
levels in the hierarchy is not constrained to dyadic points as
for multiresolution subdivision surfaces [ZSS97]. Therefore
less degrees of freedom are necessary to control the surface
locally, which in turn allows for more natural modifications
using fewer controls (Fig. 11). Note that a dyadic refinement
of a current (sub) set of control vertices is still straightfor-
ward, in case one needs it at all. Also the support of the mod-
ification is intuitive, since the control faces are adjusted to
the structure of the mesh. In addition, our framework is con-
ceptually simpler since only plain subdivision surfaces are
used, instead of the more complex multiresolution subdivi-
sion surfaces [Zor97]. Compared to [LMH00], the advantage
of our approach is that we do not have to re-sample the input
mesh and hence avoid alias artifacts. The supplemental video
provided with the paper demonstrates editing operations on
the fan model and the car model using our framework.

Figure 11: From left to right: a) A scanned male head. b) An
intermediate base Catmull-Clark surface. c) The final result
after several modifications. Note the new position of the left
ear - it was moved by just translating a few control vertices
of b). On a finer resolution, both of the ears were bended.

Beside modeling, the coarse meshes produced by our sim-
plification technique can be exploited in a number of differ-
ent applications, e.g., re-sampling and approximation. For
example the control mesh on Fig. 6b has 25 vertices and
23 faces (9 quads, 7 pentagons, 7 triangles) and still cap-
tures the global shape of the bunny including the most prob-
lematic region: its ears. The mesh subdivided once using
Catmull-Clark subdivision consists of 92 faces, all quads,
i.e., its complexity is 60% of the coarsest control mesh of
the bunny model presented in [BMRJ04]. On the other side,
the finer control meshes which our method produces are not
particularly optimal with respect to the number of extraor-
dinary control vertices. However, this was never a problem
in practice, since for our purposes C1 continuity is fully
sufficient. Also, with the availability of techniques improv-
ing the surface smoothness in vicinity of extraordinary ver-
tices [Loo04], this issue becomes less and less relevant for
other applications as well.

Timings: For most models our simplification algorithm per-
forms in-between the QEM simplification and the VSA ap-
proach. Despite the greedy nature of the algorithm, the con-
struction of a CDT in every simplification step increases the
computation cost considerably. Our “prototype” implemen-
tation takes about 3min for producing the simplification of
Fig. 10, starting with a mesh consisting of 413K triangles.
The simplification times for the Rocker Arm (80K faces),
the car model (60K faces) and the fan model (13K faces) are
respectively 34sec, 26sec and 6sec. The computation time
required for the parameterization of the input mesh on a
base domain (including the normal displacement computa-
tion) depends not only on the complexity of the input model,
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but also on the coarseness of the base mesh. Hence, it varies
between several seconds for low complexity input meshes
(4sec for the technical part in Fig. 4 — 18K faces) and a few
minutes for dense models parameterized over very coarse
base domains, e.g., 1min for the bunny (74K faces) over the
domain in Fig. 6b. Timing are taken on P4, 2.8GHz system.

5. Future work

One of the possible directions for improving our work is
combining a uniform and an irregular refinement [GKSS02]
to build automatically a hierarchy which more closely con-
forms to the standard for a CAD model, i.e., large regular
patches cover feature-less regions of the surface. Another
interesting route is topology removal. In fact, by introduc-
ing an additional operator, our decimation is able to reduce
the input topology in certain cases, however for now we did
not investigate that direction any further.
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