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Abstract
We introduce a new markerless 3D face tracking approach for 2D video streams captured by a single consumer
grade camera. Our approach is based on tracking 2D features in the video and matching them with the projection
of the corresponding feature points of a deformable 3D model. By this we estimate the initial shape and pose of
the face. To make the tracking and reconstruction more robust we add a smoothness prior for pose changes as
well as for deformations of the faces. Our major contribution lies in the formulation of the smooth deformation
prior which we derive from a large database of previously captured facial animations showing different (dynamic)
facial expressions of a fairly large number of subjects. We split these animation sequences into snippets of fixed
length which we use to predict the facial motion based on previous frames. In order to keep the deformation model
compact and independent from the individual physiognomy, we represent it by deformation gradients (instead of
vertex positions) and apply a principal component analysis in deformation gradient space to extract the major
modes of facial deformation. Since the facial deformation is optimized during tracking, it is particularly easy to
apply them to other physiognomies and thereby re-target the facial expressions. We demonstrate the effectiveness
of our technique on a number of examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—Animation; I.4.8 [IMAGE PROCESSING AND COMPUTER VISION]:
Scene Analysis—Tracking

1. Introduction

In many industrial movie and computer game productions,
facial performance capture has evolved to an indispensable
part of the production pipeline. Modern systems are used
to (re)animate the face of an actor or to re-target her facial
expressions to another computer animated character. In gen-
eral, such systems require special equipment, such as large
and well calibrated camera arrays, laboratory lighting condi-
tions or expensive (marker-based) 3D scanning and tracking
devices. From the usability point of view a system would be
preferable which tracks 3D faces from simple videos cap-
tured with a consumer level camera.

In this paper we propose such a system which captures the
facial performance of an actor from simple 2D images. Since
this problem is ill-conditioned, we use the motion data con-
tained in a large database of different facial expressions as a
deformation prior to stabilize the tracking process. Different
to other approaches we derive a deformation model from the
database, which separates the facial movements from the in-

dividual face geometries. During the tracking this automat-
ically ensures that we do not blend between different faces
as a conventional shape model would do, but only deform
an individual face according to our deformation model. One
big advantage of this is, that the computed facial deforma-
tions can directly be applied to other faces, which instan-
taneously enables re-targeting of facial animations. Further-
more we analyze the deformation data in our database and
compute a general time dependent movement model for fa-
cial expressions which is used as a temporal prior for fa-
cial movements. Similar to a shape model [BV99], which is
able to reconstruct plausible facial shapes not contained in
the input database, this movement model is also applicable
to new persons and requires no individual training per per-
son. Potential applications include the generation of person-
alized avatars for computer games where individual facial
movements are recorded by a consumer-level webcam be-
fore transferred to a virtual character. Another scenario are
video chats, which require only a small bandwidth. Since
our deformation model encodes facial movements by only a
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few parameters, it is possible to transmit those parameters to
reconstruct and visualize an abstract version of the speaker
instead of transmitting the complete video stream.

The paper is organized as follows: after discussing the re-
lated work and giving details about our database, Section
4 defines the deformation space for faces and explains how
the deformation parameters are related to the appearance of a
face. In Section 5 we detail the actual tracking process which
tries to find deformation parameters and a rigid transforma-
tion such that projected feature points are close to feature
points observed by a 2D Active Appearance Model (AAM)
and such that the previously reconstructed motion sequence
is continued in a plausible way according to our motion
model. In Section 6 we show how the computed deformation
can be used for facial re-targeting and before concluding the
paper we present results in Section 7.

Contributions

• Instead of optimizing shape parameters and thereby
blending between different faces, we run our optimiza-
tion in a deformation space representation, which decou-
ples the dynamic motion from the individual shapes of the
faces, and which makes re-targeting of facial animations
particularly easy.
• Our system is purely image based and computationally

not involved. It can easily be integrated in a facial feature
tracker like AAMs, which runs at high frame rates even
on mobile devices.
• Our system uses a general deformation and motion model

derived from a large database. It does not need an individ-
ual training phase per persons, which makes it interesting
for simple consumer level applications.

2. Related work

3D Motion capture. In many industrial movie or game pro-
ductions facial performance capture is still based on motion
capture. Therefore special cameras track the movements of
3D marker points placed on the actors face. Sifakis et al. de-
duce muscle activities from the sparse motion data obtained
with such systems and feed the resulting forces in a finite
element simulation to drive a carefully designed, complex
and anatomically plausible muscle model [SNF05]. Curio
et al. computed blendshape weights from the motion cap-
ture data to drive a morphable shape model [CBK∗06]. Us-
ing such sparse sets of markers, wrinkles and fine details
within the facial movements disappear. Bickel et at. suggest
a thin shell based mesh deformation approach to simulate
the appearance of wrinkles in a physically plausible man-
ner [BBA∗07]. All systems use special camera systems to
track the 3D motion of marker points, while our system only
needs a simple video as input.

Dense reconstruction. With increased computational
power, dense reconstruction and tracking methods have
moved into focus and can roughly be divided into active

sensing and passive sensing systems. Zhang et al. use
a structured light scanner and compute a time varying
disparity map for two input video streams by solving a
global optimization problem [ZSCS04]. Fitting a generic
face template to the 3D movements, they are able to capture
the facial performance of an actor. Such scanners usually
have the problem of a low temporal resolution. This problem
was tackled by Weise et al. [WLVP09] by using a modified
structured light scanner capable of capturing at 30 fps. Ma
et al. use polarized light emitted from multiple directions
(lightstage) to separately measure a diffuse and a specular
normal map [MHP∗07]. In [ARL∗09] this technique was
further improved to compute high quality renderings of
the facial performance of an actor in an offline process.
Other active sensing methods [HVB∗07] use multispectral
photometric stereo to compute a dense normal field. Weise
et al. propose a real-time facial performance capture system,
which requires as input depth maps obtained from a Kinect
sensor [WBLP11]. While our temporal prior is similar to
theirs, we use a general model independent of the tracked
person and require only 2D videos as input.

In comparison to active sensing methods passive methods
usually reconstruct the facial movements from simple video
data. The main advantage might be, that the actor is not
distracted by changes of the illumination conditions at high
frequencies. Vedula et al. introduced dense scene flow as a
three dimensional, time dependent vector field [VBR∗99].
Employing an expensive, complex and carefully calibrated
camera setup, combining optical flow and 3D stereo recon-
struction can lead to impressive and realistic reconstruc-
tions of human actors as demonstrated in [BPL∗05]. Li and
Sclaroff improved the early work of Vedula by simulta-
neously computing depth and optical flow from binocular
stereo sequences [LS08]. Furukawa and Ponce us a multi-
view stereo system and define filters over the local neighbor-
hood of a vertex to smoothly track the vertices of a triangular
mesh [FP09]. In a recent work, Bradley et al. use a multiview
stereo setup with well controlled illumination conditions to
separately reconstruct single patches of a human face, from
which the face is reassembled [BHPS10]. One main disad-
vantage of such systems is that they usually need large com-
putation times to track the facial performance.

Passive as well as active sensing methods both only work
under laboratory conditions, with well calibrated systems,
while our system is also applicable using videos produced
by consumer grade hardware.

Vision based capture systems infer the 3D facial move-
ments from a single video and usually involve a priori
knowledge about the facial shape. Marker based methods
[WL90,LO05] produce quite robust motion parameters used
to deform a morphable model. In [XBMK04] Xiao et al.
use a non-rigid-structure-from-motion approach to augment
a 2D Active Appearance Model (AAM) [CET01, MB04]
with additional 3D shape modes in order to track 3D facial
features. Similar to [BV99, LRF93] and [DM96] Pighin et
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al. build a 3D morphable model and used it to track facial
expressions in an analysis by synthesis approach [PSS99].
Chuang and Bregler present a framework to manually model
facial animations assisted by the shape and motion informa-
tion of a large database [CB02]. Their system involves an
expensive search in the database and does not run in real-
time. Chai et al. track facial features to extract 2D motion
control signals, which are mapped to high quality 3D facial
expressions using a preprocessed database [CXH03]. While
all systems model facial expressions as some sort of shape
combination, we use a deformation model extracted from the
motion data itself. This decouples the shape of the face from
its dynamic motion and thereby reduces the number of pa-
rameters to be optimized and is user independent.

For a more complete overview about facial performance
capture see [PL06].

3. Database of dynamic facial expressions

To collect the motion data for our deformation model, we
used a rig of 4 cameras to capture moving faces at 40 frames
per second with a resolution of 780 × 580. We recorded 60
subjects performing 20 facial expressions related to the ex-
treme poses suggested in [EF78]. On average a facial expres-
sion took 2 seconds to perform, which leads to a total num-
ber of about 96.000 frames to be reconstructed. To robustly
and automatically perform this reconstruction and tracking
task for this amount of frames we used a system similar to
the one suggested in [SHK11] and generated for each subject
and each dynamic facial expression a sequence of meshes
M f . Here f represents the frame number within the respec-
tive dynamic facial expressions. Sliding a time window of
length k over an animation with F frames we can extract
F − k + 1 animation snippets of equal length k. Each ani-
mation in our database is split into such sets of animation
snippets, each containing exactly k frames. Since images are
taken at a rather coarse resolution the resulting meshes do
not show detailed features like e.g. wrinkles.

4. Deformation space Representation

Given a triangle mesh A and a deformed version A′ having
the same mesh connectivity, we can compute a deformation
gradient S(t) ∈ R3×3 for each triangle t. This matrix repre-
sents the change of shape relative to a reference shape. The
precondition to compute deformation gradients is that both
meshes are in full correspondence. That is why we designed
our facial capture system to be able to produce the required
consistent mesh topology where each mesh has m triangles
and n vertices. The concatenation of all gradients to a matrix
S ∈ R3m×3 encodes the deformation of A to A′ [BSPG06].

Using deformation transfer [BSPG06] the change of the
shape can be applied to another face. Since deformation gra-
dients encode this change and thereby represent the motion
independent from the underlying facial geometry, we encode
each reconstructed mesh M f in a sequence by its deforma-
tion gradient S f w.r.t. the neutral pose M0 of the respective

Figure 1: The eight largest eigen-gradients represent mean-
ingful facial actions. Each pair of a left and right face show
the lower and upper range of one deformation parameter.

person. We do this for all sequences of our database. The
resulting matrix S f for each frame can be represented as
a 9 ·m dimensional vector. We feed the entire database of
96.000 frames into a Principal Component Analysis (PCA).
By this we extract the average deformation gradient S̄ ∈
R3m×3 and a matrix of the l most important eigen-gradients
Seg ∈ R3m×3l encoding the main deviations from S̄ (Fig. 1).
Given l deformation parameters (s1, . . . ,sl), we assemble a
3l×3 parameter matrix

s =


s1

s1
s1

...
sl

sl
sl


and express an deformation gradient S as a linear combina-
tion of eigen-gradients:

S = S̄+Seg · s

We approximate each deformation gradient S f by such a
low dimensional parameter matrix s f , represented as a point
s f = (s f ,1, . . . ,s f ,l)

T in deformation space. In the following
derivation we switch between the matrix and vector nota-
tion where appropriate, but since a deformation gradient S
is always encoded as a matrix it will become clear from the
context which notation is meant. An animation snippet then
is a trajectory in this deformation space represented as a k · l
dimensional vector (sT

1 , . . . ,s
T
k )

T .

4.1. Deformation space to shape space Transformation

For our face tracking algorithm we need to be able to
compute the actual geometry, i.e. the vertex positions of
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Figure 2: Approximation error obtained using different
numbers of eigenvectors in a standard shape space and in
our suggested deformation space. For a small number of pa-
rameters the deformation space is able to approximate faces
significantly better than a standard shape model.

a mesh, given a point in deformation space. As described
in [BSPG06], deformation gradients S computed from a pair
(A,A′) can be applied to a new mesh B – having the same
topology as A – to produce a mesh B′ showing a similar de-
formation. The vertex positions p′ ∈ Rn×3 of the mesh B′

are computed by solving the linear system

GT DGp′ = GT DS ,

where G ∈ R3m×n and D ∈ R3m×3m are the gradient and
area matrix of B. Observe that GT DG evaluates to the well
known cotangent Laplace matrix. Since this matrix does not
have full rank, one normally augments the linear system with
additional constraints, e.g., by fixing some vertex to a cer-
tain position in space. Instead of fixing the position of an ar-
bitrary vertex, we suggest to use a Tikhonov regularization
[PTVF07], which adds the identity matrix I scaled by a small
value ε to the system. We select ε = trace(GT DG) · 10−6,
which affects the solution of the system only slightly:

(GT DG+ ε · I)p′ = GT DS .

Now the system is invertible and we can express the new
vertex positions as a linear combination of deformation pa-
rameters s:

p′ = (GT DG+ ε · I)−1GT D(S̄+Seg · s)
= MDS · s+bDS

with

MDS = (GT DG+ ε · I)−1GT DSeg ∈ Rn×3l

bDS = (GT DG+ ε · I)−1GT DS̄ ∈ Rn×3 .

Note that the gradient and area matrices need to be derived
only once from the reference mesh – i.e. the mesh of the
neutral face of a specific person – and so MDS and bDS have
to be precomputed once for each person but the deformation
gradient model (S̄,Seg) itself is independent from the indi-
vidual person.

A standard shape model, computed from the distribution
of the vertex positions, simultaneously encodes individual
shapes as well as deformations. Therefore the variance in

such a model is higher than the variance of the pure de-
formation gradient data, where we factor out the “shape”
component leading to more coherence. This in turn results
in a more compact representation in deformation space and
thus requires fewer parameters for the actual tracking pro-
cedure. In Figure 2 we compare the approximation power
of the deformation gradient space with that of shape space.
For this we successively used more and more eigenvectors
to approximate the faces in our database and measured the
error (in mm) based on the accumulated vertex distances
between reconstruction and original mesh. To compute the
matrices MDS and bDS we used the mesh of the neutral
face of the respective person. When employing only a few
eigen-gradients, the deformation space representation actu-
ally shows a much better approximation error than a standard
shape model which allows us to use fewer parameters dur-
ing tracking. Thus our deformation space representation is
a very natural model for face tracking where the deforma-
tion state of the face changes over the sequence but not the
underlying physiognomy.

5. Expression tracking

The input to our tracking procedure is a sequence of facial
images. To get the initial shape of the neutral face, as seen
in the first frame, one can, e.g., use an approach similar to
[BV99] to optimize shape parameters of a morphable model
obtained from the neutral expressions of the database. From
such a reconstruction we compute the constant gradient and
diagonal matrices G and D, and thereby MDS and bDS.

To each frame of our video sequence we fit an 2D AAM
[MB04] in order to detect the facial features around the eyes,
the nose and the mouth. This captures the individual features
of the person to be tracked. The remaining part of the track-
ing algorithm is completely independent from the individual
face. Let the 2D feature positions in the current frame f be
a = (a1, . . . ,a|a|). For the rigid motion we allow three de-
grees of freedom for the translation t = (tx, ty, tz)T and three
degrees of freedom for the rotations, parametrized by Euler
angles ωωω = (α,β,γ)T , such that rigid motion parameters are
defined by r = (α,β,γ, tx, ty, tz)T . Given the 2D feature po-
sitions we want to compute the most probable deformation
parameters s as well as rigid motion parameters r, such that

1. The projections of the 3D feature points – i.e. vertices of
the resulting 3D mesh template corresponding to the 2D
features – are close to the points a in image space.

2. The sequence r̃ = (rT
f−k+1, . . . ,r

T
f−1)

T of rigid motion
parameters already computed for the k − 1 previous
frames is smoothly extended

3. The sequence s̃ = (sT
f−k+1, . . . ,s

T
f−1)

T of deformation
parameters encoding the already computed animation of
the k−1 previous frames is reasonably continued

Note that the resolution of the AAM is independent of the
resolution of the 3D mesh template and its vertex positions
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only drive the tracking process. Since increasing the resolu-
tion of the AAM effectively increases the number of energy
terms while the number of parameters stays constant, the op-
timization is expected to be more stable and accurate. Simi-
lar to Weise [WBLP11], we formulate this optimization as a
maximum a posteriori estimation

(s,r)∗ = argmax
s,r

p(s,r|a, s̃, r̃)

where p(·|·) represents the conditional probability. Using
Bayes’ rule and the independence of rigid motion and de-
formation we can split this into three probabilities

(s,r)∗ = argmax
s,r

p(a|s,r)︸ ︷︷ ︸
likelihood

· p(r, r̃)︸ ︷︷ ︸
rigid prior

· p(s, s̃)︸ ︷︷ ︸
shape prior

and iteratively maximize this probability by computing the
minimum of its negative logarithm:

E(s,r) =− ln p(a|s,r)− ln p(r, r̃)− ln p(s, s̃)

In what follows we explain the individual terms of this en-
ergy function. Derivatives w.r.t. the parameters s and r are
given in the Appendix.

5.1. Likelihood of the AAM

Intuitively, the observed facial feature positions ai are a
probable explanation of the projected feature points qi, if
the distances between those points in image space are small.
This can be modeled by the probability

p(a|s,r) =
|a|

∏
i=1

1
2πσaam

e
− ‖qi−ai‖

2

(2σaam)2 ,

where σaam controls the kernel size of the probability func-
tion. The negative logarithm of this expression evaluates to
an energy term of the form

Eaam(s,r) = λaam ·
|a|

∑
i=1
‖qi−ai‖2

where λaam is a constant dependent on the kernel param-
eter σaam. In order to compute the 2D positions qi we only
need to project those 3D vertices p j of the face model, corre-
sponding to the facial feature points ai. Therefore we define
a selection matrix N ∈ R|a|×n as

Ni, j =

{
1 if ai corresponds to p j
0 otherwise

By taking the respective rows Ni,· we can directly compute
the 3D positions of the i-th facial feature point given a set of
deformation parameters

p j =
[

Ni,· · (MDS · s+bDS)
]T

Then the points are transformed according to the rigid mo-
tion parameters and projected into the image by using the
camera’s intrinsic calibration matrix K ∈ R3×3, such that

qi =

(
a
c
,

b
c

)T

where (a
b
c

)
= K · (R0 ·Rα ·Rβ ·Rγ ·p j + t)

In order to avoid the problem of a Gimbal lock, we com-
pute an initial rotation R0 ∈ R3×3 for the first frame of the
sequence and start the tracking with α = β = γ = 0.

5.2. Rigid motion prior

We consider the rigid motion of an animation as probable,
if linear and rotational acceleration are small. Acceleration
can be estimated by computing the second derivative of the
position and rotation w.r.t. time. Instead of using a higher
order interpolation taking k−1 previous frames into account
we decided to use a simple backwards scheme to estimate
the acceleration from two previous frames only:

ẗ =
t−2t f−1 + t f−2

dt2

ω̈ωω =
ωωω−2ωωω f−1 +ωωω f−2

dt2

The probability of a plausible rigid movement, i.e. with low
acceleration, then is given by

p(r, r̃) = 1
(2π)3 ·

√
σt ·σω

· e−
‖ẗ‖2

2σt
− ‖ω̈ωω‖2

2σω ,

which again boils down to a simple energy term Erigid when
applying the negative logarithm

Erigid(r, r̃) = λt‖ẗ‖2 +λω‖ω̈ωω‖2 ,

where λt and λω are constants controlling the influence of
this energy term and depending on the kernel parameters σr
and σω.

5.3. Shape deformation prior

In Section 3 we explained how to split the animations in
our database into snippets. Each snippet can be represented
by concatenating its sequence of deformation parameters
(s̃T ,sT )T to a k · l dimensional vector. Similar to Weise et
al. [WBLP11] we compute a Gaussian Mixture Model to es-
timate the likelihood of a given animation snippet w.r.t. our
observed animation data stored in the database. The main
difference to the original approach of Weise is that our de-
formation gradient model is independent of individual faces
and needs to be computed only once.

A Gaussian Mixture Model is able to approximate com-
plex data distributions by a set of local Gaussian models.
Given weights πi, center positions of local Gaussian kernels
µµµi and covariance matrices ΣΣΣi one can compute the probabil-
ity of a point x ∈ Rd as a sum of normal distributions

pGM(x) = ∑
i

πi
1√

(2π)d |ΣΣΣi|
e−

1
2 (x−µµµi)

T
ΣΣΣ
−1
i (x−µµµi)

In our setting the goal is to compute a probability value for
a given animation snippet. The snippet representation still
contains a lot of redundancy and with typical values for
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Figure 3: Our tracking approach allows to directly transfer an expression to other faces. In this example we demonstrate the
re-targeting of facial expressions by carrying over a tracking result of an intermediate frame to four different facial shapes.

k = 3 and l = 15 it is of a rather high dimension. Silverman
theoretically derived that the number of samples, needed to
compute a density distribution function, grows exponentially
with the dimensions of the samples [Sil86]. So we decided
to learn the Gaussian Mixture Model in a space of reduced
dimensionality obtained by a PCA and thereby stabilize the
learning procedure.

Training the parameters of the mixture model. Perform-
ing a PCA on the snippet coefficients y = (s̃T ,sT )T results in
a vector ȳ ∈ Rk·l representing the average coefficient and a
matrixA∈R(k·l)×d storing the main variations modes w.r.t.
the average deformation. Keeping 99% of the energy reduces
the dimensionality with the above parameters to d = 20. We
define the sample points x to be the compact representation
of the snippet coefficients y

x =AT · (y− ȳ)

and employ the EM Algorithm [Bil98] to robustly learn the
parameters πi ∈ R, µµµi ∈ Rd and ΣΣΣi ∈ Rd×d in this reduced
space. Finally we define the last energy term as

Eshape(s, s̃) =− ln(pGM(AT · (y− ȳ)))

6. Re-Targeting Facial Animations

Mapping the tracking result (s,r) of a single frame to an-
other physiognomy encoded as a mesh B is peculiar easy.
Therefore we only need to precompute the matrix MDS and
the vector bDS depending on the shape of B (cf. Section 4.1)
and compute the new vertex positions of B as

p(s,r) = Rα ·Rβ ·Rγ · (MDS · s+bDS)+ t

In Figure 3 we exemplarily re-target a facial expression from
an intermediate frame to the faces of four different persons.

7. Results

We run all our experiments on an Intel R© CoreTM i7 CPU
with 2.67GHz and used a Stingray F-046B camera for the
capture. Since the suggested system has only to fulfill a
few constraints (AAM vertex positions) and is minimally
parametrized using the deformation space formulation, our
Levenberg-Marquard [PTVF07] implementation only needs
16 milliseconds on average to optimize the energy function
in each frame. Using the approach of Matthews [MB04] fit-
ting an AAM to one frame takes 20ms. By parallelizing the

3D face tracking in a given frame with the AAM computa-
tion of the next frame we obtain a frame rate of 40 fps with
one frame latency.

Our experiments indicated that using rather small snippets
(k = 3) is a good choice to predict the facial movement. This
is not surprising when considering the fact that facial move-
ments are quite fast: even at capture rates of 40 frames it
takes only 3 to 5 frames to change a facial expression from,
e.g., “neutral” to “surprised”. For all our experiments we
used 45 Gaussians to train the Gaussian Mixture Model.

In Figure 4 and the accompanying video we used se-
quences of a length of up to 10 seconds and show results pro-
duced with our system. In each experiment we excluded the
facial movements of the tracked person from the database.
The left image in each example shows one image of a video
sequence overlayed with the detected facial feature points.
The middle image shows the result produced by our track-
ing approach. Since we used our own multiview stereo cap-
ture system to acquire the database we are able to compare
our result with a ground truth 3D stereo reconstruction ob-
tained from a 4 cameras rig (right image). We use the stereo
reconstruction of the neutral face as reference mesh to ini-
tialize the tracking procedure. One can see that the result-
ing deformations are quite similar to the ground truth recon-
structions. To quantify this a bit more, we took the tracking
result of one subject performing different facial expressions
and measured in each frame the error as the average distance
between vertices of the tracked mesh and their correspond-
ing vertices of the stereo reconstruction. This allows us to

compute an average error and its standard deviation for each
sequence of approximately 2 seconds length, as shown in the
diagram. Except for the expression "Vocal O" we observe a
rather small average error of about 10-15 millimeters.

Limitations Due to the resolution of our template meshes,
the presented approach is not intended to generate high qual-
ity 3D models from videos and fails to reproduce details
like e.g. wrinkles. In this paper we focus on the benefit of
our deformation model for tracking and re-targeting of facial
expressions and only incorporate a simplistic AAM model,

c© The Eurographics Association 2015.



Dominik Sibbing & Leif Kobbelt / Data Driven 3D Face TrackingBased on a Facial Deformation Model

which is not trained for large head rotations and does not in-
corporate visibility checks. Due to this the tracking can be-
come unstable if large head rotations are involved, the head
pose is badly estimated or if the AAM tracking fails, such
that features are not traced accurately and begin to dither in
image space.

8. Conclusions

We presented a 3D tracking procedure for facial expressions.
Instead of blending between different facial shapes collected
from various persons, we optimize deformations of the indi-
vidual neutral face such that projected facial feature points
match with the feature points of an AAM. Our formulation
decouples the facial motion from the individual shapes and
allows us to compute a general motion model for facial ex-
pressions from a given database, which in turn can be used
to track new persons not contained in the database. In future
work it would be interesting to incorporate this model into
a stereo system and to track additional details of the facial
activity and geometry.
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Figure 4: Results produced with our system. Each block contains an image of the video sequence (left), the result produced with
our system (middle) and the corresponding 3D stereo reconstruction as a ground truth comparison. The results of our system
are quite similar to the baseline.
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Appendix

Gradient of Eaam(s,r). The gradient of the projected vertex
positions can be computed as

∂q j

∂x
=

 ∂a
∂x ·c−

∂c
∂x ·a

c2
∂b
∂x ·c−

∂c
∂x ·b

c2


where the derivatives w.r.t. the parameter r and s are given by

∂

(a
b
c

)
∂α

= K ·R0 ·
∂Rα

∂α
·Rβ ·Rγ ·p j

∂

(a
b
c

)
∂si

= K ·R0 ·Rα ·Rβ ·Rγ ·

 MDS( j,3 · i)
MDS( j,3 · i+1)
MDS( j,3 · i+2)


Finally the gradient of the first energy term is

∂E
∂x

= λaam ·
|a|

∑
i=1

2‖qi−ai‖ ·
∂q j

∂x

Gradient of Erigid(r, r̃). We exemplarily evaluate the gra-
dient of the energy measuring rigid accelerations w.r.t. ω:

∂Erigid

∂ωωω
=

2λωωω

dt4 (ωωω−2ωωω f−1 +ωωω f−2)

Gradient of Eshape(s, s̃). Similar to separating the snip-
pet coefficients y ∈ Rk·l into a part s̃ (previous frames)
and a part s (actual frame) we similarly divide the matrix

A =

[
As̃
As

]
∈ Rk·l×d and the vector ȳ =

[
ȳs̃
ȳs

]
∈ Rk·l ,

where As ∈ Rl×d and ȳs ∈ Rl . Then

f (y) = (x−µµµi)
T

ΣΣΣ
−1
i (x−µµµi)

= sTEEE is+2 · sTFFF i +bbbi

where

EEE i = As ·ΣΣΣ−1
i ·A

T
s ∈ Rl×l

FFF i = As ·ΣΣΣ−1
i ·λλλi ∈ Rl

bbbi = λλλ
T
i ·ΣΣΣ−1

i ·λλλi ∈ R and

λλλi = AT
s̃ · s̃+AT · ȳ−µµµi ∈ Rd

Then the derivative of the last energy term becomes

Eshape(s, s̃)
∂s

=
1

pGM(x)
·∑

i
πi

e−
1
2 f (y)√

(2π)d |ΣΣΣi|
· (Eis+Fi) .
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