
EUROGRAPHICS 2016 / J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

Supplemental Material - Adapting FCNs to a Prescribed Scale

Anne Gehre Isaak Lim Leif Kobbelt

Visual Computing Institute, RWTH Aachen University

Abstract
In the supplemental material we add timings and values of the optimization with Gurobi [GO15], for each of the presented
models. Also, we show further comparisons to curvature filtering. Furthermore, we give detailed insights on the implementation
of the feature curve network abstraction by providing pseudo-code for the entire procedure.

1. Timings and Gurobi Optimization Analysis

Table 1 gives exact details on the iterations of the FCN compu-
tations including timings, variables, constraints and energy values
per iteration. The number of iterations required ranges from 1-6.

2. Results

In Figure 1 we show further comparisons to curvature threshold-
ing and filtering. In case of the triangle meshes we threshold ab-
solute maximal curvature values. Also, for the candle we use cur-
vature thresholding as described in [YBS05]. Especially, for the
Skyscraper we can observe that either all features are preserved
or removed since they align along surface elements with a dihe-
dral angle of 90 degrees. Hence, all curvature values have about
the same magnitude. For the Candel model the flame is preserved
until all other features are suppressed, because it has very high cur-
vature values. With the method described in [YBS05], this is not
the case since they incorporate the segment length into their thresh-
old. Nevertheless, we can still not control the feature density. E.g.
by increasing the threshold so that the small scale details are re-
moved, all other features with values below this threshold also dis-
appear (e.g. top of the candel). With our subsampling method, all
features that can be represented in the given resolution (i.e. tar-
get edge length) are preserved. E.g. the flame is suppressed, while
larger features (e.g. top of the candle) are preserved.

For the filtering and thresholding of curvatures for the
quadmeshes we used [BZK09] with a filter-kernel radius of rmin/2.
In the top rows of Figure 1 our method is depicted. Below we apply
curvature thresholding with a threshold, where all important fea-
tures are included. In the resulting quad meshes we can observe
that this can lead to over-constrained parametrizations (e.g. the ele-
phants tail degenerates). Also, the ears of the Elephant and the eyes
of the Camel are regions with high feature density, which can lead
to bad element quality if the respective feature directions do not
align well (as can be observed in the respective models). Then if
we further increase the threshold to avoid this effect, all other fea-

tures with lower curvature (e.g. on the body of the Elephant/Camel)
are suppressed as well, leading to bad alignment of the elements. In
contrast our method avoids regions with high feature density, i.e. all
less significant features that are closer than the minimum scale are
suppressed by stronger features. At the same time weaker feature
curves that are not in conflict with any closer feature are preserved
(as the curves along the body of the Elephant/Camel).

3. Pseudo Code

In the following we give the pseudocode for the entire method.
Parts which were discussed in more detail in the paper (e.g. com-
putation of weights) are given only as an overview here.

Four Step Abstraction Loop The procedure COMPUTEFCN in-
cludes the four-step loop. The sets Ce and Cv contain the edge and
vertex conflicts as pairs of edges/vertices.

1: procedure COMPUTEFCN(FCN = (V,V∗,E,A),rmin, rmax)
2: COMPUTESURFACEPROPERTIES(FCN)
3: do
4: RESAMPLEFCN(FCN,rmin, rmax)
5: Ce,Cv← COMPUTECONFLICTS(FCN)
6: SINGLEEDGEWEIGHTS(FCN)
7:
8: . includes optimization, edge removal, and collapse
9: RESOLVECONFLICTS(FCN, Ce,Cv)

10: while |Cv| 6= 0 or |Ce| 6= 0
11: end procedure

Weights The procedure COMPUTESURFACEPROPERTIES pre-
computes properties of the surface as curvature values. The func-
tion SINGLEEDGEWEIGHTS sets the property weight of each edge
e ∈ E. Exact weighting factors are described in the paper.

1: procedure COMPUTESURFACEPROPERTIES(FCN =
(V,V∗,E,A),M)

2: COMPUTECURVELENGTHS(FCN)
3: COMPUTELOOPS(FCN)

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Supplemental Material - Adapting FCNs to a Prescribed Scale

Mesh rmin Time/Iteration in s Variables/Iteration Constraints/Iteration Energy/Iteration(/104)

Moai 0.2 0.078/0.005/0.002/0.002/0.002 6201/4852/4547/4451/4430 6107/3439/2916/2812/2783 15.84/15.18/14.34/14.33/14.33
0.4 0.098/0.002/0.001/0.001/0.001/0.001 3806/1746/1440/1385/1368/1354 7006/1488/864/815/809/794 8.783/7.975/5.806/4.823/4.742/4.257
0.5 0.361/0.001/0.0005/0.0005 3423/1101/894/882 7790/950/516/492 9.469/5.697/4.981/4.982

Octaflower 0.06 0.0023/0.00038 900/772 785/568 11.97/11.97
0.08 0.0024/0.0002 710/572 646/408 9.144/9.144
0.12 0.0029/0.0002 429/282 447/184 5.589/5.574
0.2 0.0023/0.0001 224/104 267/48 3.1549/3.011

Candel 0.02 0.004/0.001 4025/3936 3218/3072 25.17/25.15
0.04 0.026/0.0006 2037/1358 2194/1028 8.296/8.277
0.09 0.151/0.0007 955/391 1725/311 2.49/2.485

Trumpet 0.06 0.018/0.0007 2431/1992 2395/1416 6.344/6.324
0.09 2.15/0.0008 2112/1056 3192/696 3.788/3.019
0.2 5.71/0.0001 1104/196 6576/116 0.7566/0.5375

Fandisc 0.026 0.028/0.002/0.001 4312/3948/3941 3687/2935/2920 18.92/18.71/18.71
0.045 0.018/0.001/0.0007 2364/1901/1886 2309/1298/1284 11.36/10.8/10.8
0.13 0.057/0.001 874/365 1742/287 2.82/2.02

Skyscraper 0.009 4.21/0.06/0.03/0.02 112802/66614/64246/64231 151032/53837/47926/47900 208.18/206.82/206.67/206.67
0.022 49.6/0.02/0.006 46892/12536/11053 155979/11383/7688 33.56/32.67/32.5/
0.04 59.87/0.01/0.001/0.001 27638/4448/3049/3038 160062/5894/1883/1865 10.51/9.365/9.308/9.308

Isidore 0.02 0.32/0.008/0.003 10458/7634/7413 12690/7211/6800 54.9/54.52/543.8
Horse 0.04 1.13/0.004 5750/2789 9766/2653 22.84/21.81

0.062 0.8/0.004/0.0006/0.0005 4294/1283/1029/1016 9754/1385/833/814 5.229/4.087/4.083/4.083
Iphigenie 0.0135 72.09/0.1/0.006 33050/12915/10980 70947/13883/10045 22.21/20.59/20.03

0.02 67.56/0.02/0.002 20084/5547/4023/ 66908/5733/2562 9.101/7.929/7.555
Camel 0.02 0.077/0.008/0.007/0.007 10901/6784/6423/6369 10901/6784/6423/6369 12.77/12.44/12.35/12.33

0.03 0.06/0.003/0.002/0.002 6388/4045/3883/3843 8828/3598/3265/3205 6.445/6.182/6.151/6.144
0.07 0.03/0.0006 3704/737 10811/521 1.066/0.9093

Chinese Lion 0.02 0.31/0.02/0.005/0.003/0.003/0.003 25610/8702/6812/6511/6479/6469 46315/7478/4143/3733/3681/3665 6.346/6.205/6.153/6.148/6.148
0.03 0.42/0.007/0.001/0.001 23149/4191/2872/2822 61620/4051/1535/1466 3.031/2.546/2.501/2.499
0.04 0.66/0.004/0.001/0.0009 21797/2474/1663/1601 77365/2665/868/755 1.544/1.278/1.266/1.266

Elephant 0.02 0.05/0.003/0.002 5825/4623/4607 6524/4286/4260 7.886/7.908/7.907
0.04 0.05/0.0007 2302/1356 3157/855 3.827/3.68

Rockerarm 0.02 1.46/0.007/0.003/0.002 11286/6408/6243/6232 18431/6757/6336/6320 14.74/13.70/13.58/13.58
0.04 5.62/0.03/0.003/0.001 7436/2492/2252/2232 16440/2740/2175/2138 5.070/4.563/4.521/4.515
0.06 8.46/0.006/0.0009/0.0008 6366/1416/1154/1143 18222/1783/1100/1084 2.555/1.944/1.884/1.884

Table 1: Measurements of the optimization for the depicted examples. Computations were made on an Intel Core i7-4770 CPU.

4: COMPUTEINTEGRALCURVATURE(FCN,M)
5: COMPUTESYMMETRICARCS(FCN, M)
6: end procedure
1: procedure SINGLEEDGEWEIGHTS(FCN = (V,V∗,E,A))
2: e.weigth← I(e) · L(e) · Loop(e) · Sym(e)
3: end procedure

Arc Resampling RESAMPLEFCN describes the resampling pro-
cess of the feature arcs. The samples are taken from the original
curve segments, to which the current approximated arc refers.

1: procedure RESAMPLEFCN(FCN = (V,V∗,E,A),rmin, rmax)
2: for a ∈ A do
3: define set of samples S← s1, . . . ,sn
4: Graph g . build graph
5: for i← 1, . . . ,n do
6: for j← i, . . . ,n do
7: if dist(si,s j) ∈ [rmin,rmax] then
8: e← g.addEdge(si,s j)
9: e.weight← integralEuclidianDist(e,a)

10: end if
11: end for
12: end for

. get geometrically closest arc abstraction
13: Path p←shortestPath(s1,sn,g)
14: if no path exists then
15: . return edge as an intermediate solution
16: return {s1,sn}

17: else
18: return p
19: end if
20: end for
21: end procedure

Conflict Detection COMPUTECONFLICTS generates the edge and
vertex conflict sets as discussed in the paper. Edge conflicts are
computed by first checking whether the edges potentially conflict,
and secondly if a valid triangle configuration exists.

1: procedure COMPUTECONFLICTS(FCN = (V,V∗,E,A),rmin,
rmax)

2: Ce←∅
3: Cv←∅
4: for (e0,e1) ∈ E×E do
5: if e0 6= e1 &dist(e0,e1)< rmin then
6: if ! CHECKTRIANGLECONFIGURATIONS(e0,e1)

then
7: Ce←Ce∪ (e0,e1)
8: end if
9: end if

10: end for
11: for (v0,v1) ∈V∗×V∗ do
12: if dist(v0,v1)< rmin and v0 6= v1 then
13: Cv←Cv∪ (v0,v1)
14: end if
15: end for

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Supplemental Material - Adapting FCNs to a Prescribed Scale
ou

rm
et

ho
d

th
re

sh
ol

d
ab

so
lu

te
m

ax
im

al
cu

rv
at

ur
e

ou
rm

et
ho

d
ab

so
lu

te
m

ax
im

al
cu

rv
at

ur
e

th
re

sh
ol

di
ng

[Y
B

S0
5]

[B
Z

K
09

]/
hi

gh
cu

rv
at

ur
e

th
re

sh
ol

d
[B

Z
K

09
]/

lo
w

cu
rv

at
ur

e
th

re
sh

ol
d

ou
rm

et
ho

d

[B
Z

K
09

]/
hi

gh
cu

rv
at

ur
e

th
re

sh
ol

d
[B

Z
K

09
]/

lo
w

cu
rv

at
ur

e
th

re
sh

ol
d

ou
rm

et
ho

d

Figure 1: Comparisons of our method to curvature thresholding/filtering methods. In case of the triangle meshes we threshold absolute
curvature values. Also, for the candle we use curvature thresholding as described in [YBS05]. For the filtering and thresholding of curvatures
for the quadmeshes we used [BZK09] with a filter-kernel radius of rmin/2. Note that in all cases if we increase curvature thresholds such that
all small-scale details are removed, also less prominent features are removed, which are important to convey the shape or to guarantee good
element alignment.

16: return Ce,Cv
17: end procedure

CHECKTRIANGLECONFIGURATIONS tests possible adjacent and
non-adjacent triangle configurations as discussed in the paper.

1: procedure CHECKTRIANGLECONFIGURATIONS(Edge e0,
Edge e1)

2: if ((adjacent(e0,e1) or e0,e1 connected by short edge) and

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Supplemental Material - Adapting FCNs to a Prescribed Scale

∠(e0,e1) ∈ [αmin,αmax] ∪ [2αmin,2αmax] ∪ [3αmin,3αmax])
then

3: return true
4: else if ||e0|| ∈ [rmin,rmax] and ||e1|| ∈ [rmin,rmax] then
5: return true ⇐⇒ a non-adjacent configuration (cf. pa-

per) applies
6: else
7: return false
8: end if
9: end procedure

Resolve Conflicts: Optimization, Edge Removal, and Short
Edge Collapse The procedure RESOLVECONFLICTS sets up the
optimization model by translating discussed conflicts into con-
straints, as discribed in the paper. The function addVariable(0,1)
indicates that we add binary variables to the optimization model,
the function addConstraint(c) adds the constraint c to the model.
Then it maximizes the objective function, and deletes the edges that
are set to 0 in the optimization, by either collapsing (only for short
edges) or removing them completely. The function call optValue(b)
returns whether the binary optimization variable b was set to 0 (re-
move) or 1 (preserve).

1: procedure RESOLVECONFLICTS(FCN = (V,V∗,E,A),rmin,
Ce,Cv)

2: OptimizationModel m
3: ObjectiveFunction o← 0.0

. Variables that are set during optimization
4: . binary variables for edges
5: for i := 1, .., |E| do
6: bi← m.addVariable(0,1)
7: end for

. binary pseudo-variables for edges
8: for i = 1, .., |E| do
9: pi← m.addVariable(0,1)

10: end for
. binary variables for vertices

11: for i = 1, .., |V∗| do
12: ci← m.addVariable(0,1)
13: end for
14: . binary pseudo-variables for edge-pairs
15:
16: for i = 0, .., |E| do
17: for j = 0, .., |E| do
18: ai j← m.addVariable(0,1)
19: end for
20: end for

. set the objective function
21:
22: for i = 0, .., |E| do . single edge weights
23: o← o+bi · ei.weight
24: end for
25: for (ei,e j) ∈ E×E do . smoothness
26: if (adjacent (ei,e j)) then
27: o← o+λ0ai j ·as(ei,e j)
28: end if
29: end for
30: for (ei,e j) ∈ E×E do . orthogonality
31: if dist(ei,e j)< R then

32: o← o+λ1ai j ·aop(ei,e j)
33: end if
34: end for
35: . set constraints
36:
37: for (ei,e j) ∈Ce do . edge conflicts
38: m.addConstraint(bi +b j ≤ 1)
39: end for
40: Vcon f lict ←∅ . vertex-conflicts
41: for (vi,v j) ∈Cv do
42: m.addConstraint(ci + c j ≤ 1)
43: Vcon f lict ←Vcon f lict ∪ vi
44: Vcon f lict ←Vcon f lict ∪ v j
45: end for

. Constraints to downgrade one of the conflicting
vertices to regular vertices

46: for vi ∈Vcon f lict do
47: if valence(vi)≥ 2 then
48: m.addConstraint(∑e j∈one-ring(vi) p j ≤ 2)
49: else
50: m.addConstraint(∑e j∈one-ring(vi) p j ≤ 0)
51: for e j ∈ one-ring(vi) do
52: m.addConstraint(p j−b j ≤ ci)
53: m.addConstraint(b j− p j ≤ ci)
54: end for
55: end if
56: end for

. supress isolated short edges
57: for es = (vi,v j) ∈ E with ||es||< rmin do
58: C← ∑ek∈N(vi)\es

bk +∑ek∈N(v j)\es
bk ≥ bes

59: m.addConstraint(C)
60: end for

. avoid generating small gaps in feature lines
61: for es = (vi,v j) with ||es||< rmin do
62: if (es,ec) ∈Ce or (ec,es) ∈Ce then
63: for ei(6= es) ∈ N(vi) do
64: for e j(6= es) ∈ N(v j) do
65: m.addConstraint(bc +bi +b j ≤ 2)
66: end for
67: end for
68: end if
69: end for
70: m.maximize(o)

. remove all short edges that were set to 0 during
optimization by collapsing them

71: for i = 1, .., |E| do
72: if m.optValue(ei = (v0,v1)) == 0 then
73: if ||ei||< rmin then
74: collapse(v0,v1)
75: end if
76: end if
77: end for

. check if the conflicts of each edge ei are removed due
to collapses and remove ei otherwise

78: for i = 1, . . . , |E| do
79: if m.optValue(ei) == 0 then
80: for (ei,e) ∈Ce do

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Supplemental Material - Adapting FCNs to a Prescribed Scale

81: if !CHECKTRIANGLECONFIGURATIONS(ei,e)
then

82: FCN.deleteEdge(ei)
83: break
84: end if
85: end for
86: end if
87: end for
88: end procedure

References
[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer quad-

rangulation. In ACM SIGGRAPH 2009 Papers (New York, NY, USA,
2009), SIGGRAPH ’09, ACM, pp. 77:1–77:10. doi:10.1145/
1576246.1531383. 1, 3

[GO15] GUROBI OPTIMIZATION I.: Gurobi optimizer reference manual,
2015. URL: http://www.gurobi.com. 1

[YBS05] YOSHIZAWA S., BELYAEV A., SEIDEL H.-P.: Fast and robust
detection of crest lines on meshes. In Proceedings of the 2005 ACM Sym-
posium on Solid and Physical Modeling (New York, NY, USA, 2005),
SPM ’05, ACM, pp. 227–232. doi:10.1145/1060244.1060270.
1, 3

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1145/1576246.1531383
http://dx.doi.org/10.1145/1576246.1531383
http://www.gurobi.com
http://dx.doi.org/10.1145/1060244.1060270

