Character Reconstruction and Animation from Uncalibrated Video

Ellen Dekkers?
1 ETH Zurich

Alexander Hornung?

Martin Habbecke?
2RWTH Aachen University

Markus Gross!  Leif Kobbelt?

Technical Report

Abstract

We present a novel method to reconstruct 3D charac-
ter models from video. The main conceptual contribution
is that the reconstruction can be performed from a sin-
gle uncalibrated video sequence which shows the charac-
ter in articulated motion. We reduce this generalized prob-
lem setting to the easier case of multi-view reconstruction
of a rigid scene by applying pose synchronization of the
character between frames. This is enabled by two central
technical contributions. First, based on a generic charac-
ter shape template, a new mesh-based technique for accu-
rate shape tracking is proposed. This method successfully
handles the complex occlusions issues, which occur when
tracking the motion of an articulated character. Secondly,
we show that image-based 3D reconstruction becomes pos-
sible by deforming the tracked character shapes as-rigid-
as-possible into a common pose using motion capture data.
After pose synchronization, several partial reconstructions
can be merged in order to create a single, consistent 3D
character model. We integrated these components into a
simple interactive framework, which allows for straightfor-
ward generation and animation of 3D models for a variety
of character shapes from uncalibrated monocular video.

1. Introduction

Recent techniques for image-based 3D character recon-
struction have been able to create and animate virtual char-
acter models of very high quality. However, most ap-
proaches require accurately calibrated systems with multi-
ple synchronized cameras, exact silhouette information, or
additional hardware like range sensors. Hence, the corre-
sponding capture setups have become extremely complex
and costly. In various application scenarios, e.g., recon-
structing historical characters from archived film material
or the generation of 3D avatars for home users with a web-
cam, these techniques are impractical or even inapplicable.

We envision 3D character reconstruction as a simple im-
age processing tool, which allows to reconstruct a virtual
model of reasonable quality by simply filming different
views of a person with a hand-held camera. In this very
general setting, classical approaches to image-based recon-
struction fail. One particular reason is that they require mul-

tiple views taken at the same time. In monocular video, even
small character motion between video frames violates this
assumption and renders the reconstruction impossible.

In this paper we show that character reconstruction from
a single, uncalibrated video showing a person in articulated
motion is nevertheless possible. Our main conceptual con-
tribution is the transformation of this problem into a syn-
chronized multi-view setting by pose synchronization of the
character. We describe an interactive framework, which
takes such a video as input and outputs a 3D model.

This framework is based on two central technical contri-
butions. The first is a novel mesh-based tracking approach,
which enables us to accurately track the deformation of the
character’s shape throughout the video despite of the in-
volved complex occlusions. Secondly, we describe an algo-
rithm which synchronizes the tracked shapes into a common
pose using motion capture data in order to compensate for
articulated motion. Combined, these two algorithms allow
for the generation of consistent 3D reconstructions even in
this very general and ill-posed problem setting. As an ap-
plication we present several different animated 3D character
models created from simple, uncalibrated video sequences.

2. Related Work

Research on image-based 3D character reconstruction
and animation has primarily focused on controlled acqui-
sition setups with multiple synchronized video streams.
One class of techniques reconstructs a character model
by computing the visual hull from several silhouettes [25]
which can then be refined for a more faithful reconstruc-
tion [27, 28] or used, e.g. for tracking and pose estima-
tion [21]. These methods require an accurate calibration
and a segmentation of the character from the background.
Alternatively, a pre-defined human body model can be fit-
ted to the silhouette of a human character [9, 18,22]. Based
on the SCAPE model [3] or other articulated character tem-
plates it is even possible to model and animate fine scale
shape changes [5, 33]. However, these methods cannot eas-
ily be adapted to shapes which differ considerably from the
underlying model.

With additional devices like laser-scanners, structured
light, or depth cameras it is possible to first acquire a de-
tailed 3D reconstruction offline which can then be deformed
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Figure 1. Overview of the central components of our method. (a) The generic 3D shape template M. (b) From manually selected joint
positions in a video frame I, the camera projection P; and best matching model pose 7(t) are computed. (c) The template mesh M
is deformed according to 7(¢) and projected into I;. (d) Reference shape S; after alignment of M ™(® to the character’s silhouette. (e)
Tracking of reference shape S; to other video frames. (f) Synchronization of the template mesh and the tracked shapes into a common

pose. (g) Reconstructed and animated 3D character model M*.

using multiple segmented video streams [12]. Other ap-
proaches reconstruct the pose or shape of an articulated ob-
ject solely from range-data [10, 26] or provide real-time re-
construction with motion compensation [34]. In combina-
tion with 3D motion capture systems, it is also possible to
improve the quality of 2D animations from video [14]. All
these methods are able to deliver very high quality recon-
structions at the cost of complex capturing systems. In con-
trast, our work addresses the problem of reconstructing a
3D model from a single uncalibrated video only, potentially
including articulated motion of the character.

Some techniques reconstruct non-rigid surfaces from
monocular input video [17, 30]. However, their specific
constraints and the lack of occlusion handling render these
methods inapplicable for a practical system for articulated
character reconstruction. An alternative is to first estimate
the character pose [15] and use this information to facili-
tate reconstruction. But in order to achieve the accuracy
required for 3D reconstruction, further information such
as a segmentation is still necessary [!]. Existing methods
for camera calibration such as SfM or model-based tech-
niques [16] are not suitable in our setting with a non-static
camera and an independently moving character. Since one
of our primary aims is to make our method applicable to a
variety of character types and input videos, we decided to
employ a semi-automatic camera and pose estimation [19].

Finally, an important component in image-based 3D re-
construction is a robust approach to accurate pixel corre-
spondence estimation [4,7,24]. Optical flow based motion
compensation has been used for output view synchroniza-
tion [35]. However, these methods also do not explicitly
handle the above mentioned occlusion problem. Our novel
mesh-based tracking approach addresses these issues, with-
out requiring calibrated cameras or specific acquisition se-
tups as other methods [29].

It has already been shown that algorithms for diverse
problems in monocular video processing, such as rotoscop-
ing or rigid object reconstruction, can be greatly stabilized
by integrating very simple user interactions [2,32]. We pur-

sued a similar design decision and integrated the compo-
nents of our system into an interactive framework to strike
a balance between automation and flexibility. The benefit of
such approaches has been recently demonstrated by show-
ing that simple user interaction is sufficient to texture com-
plex 3D models from casual images [31]. In a similar spirit
our work aims at reconstructing geometry from casual, un-
calibrated input video.

3. Overview

The goal of our method is to reconstruct a 3D model
from a single input video of a person. This problem setting
is highly ill-posed: Due to articulated motion each frame
of the video might show the person in a slightly different
pose. Moreover, we do not assume any prior video process-
ing such as camera calibration or image segmentation. We
show that, by utilizing a generic 3D character shape tem-
plate and a database of 3D motion data, a single video of a
person can be effectively converted into a temporally syn-
chronized multi-view setup, a process which we refer to as
pose synchronization. The converted video then allows for
an image-based 3D reconstruction of the character shape.

Figure 1 illustrates the central steps of our technique.
The first step is to fit a generic shape template M to some
input frame /; of the video. This shape template is a 3D tri-
angle mesh (see Figure 1 (a)) with an embedded skeleton.
Given a skeleton pose 7, e.g. from a motion database [11],
the template can be deformed accordingly M — M7 using
skeleton-driven animation techniques [23]. In order to fit
this template model to the character in image I; we first es-
timate the approximate character pose 7(¢) and a projection
P, from the 3D motion data to the 2D image space based on
user-selected joint positions (Figure 1 (b)). The deformed
template M (1) is then projected into I; (Figure 1 (c)) and
its silhouette vertices are aligned with the character’s sil-
houette (Figure 1 (d)). The resulting reference shape S,
which consists of all projected front-facing triangles, pro-
vides an initial mapping from the generic shape template



(a) Joints and estimated pose. (b) Alignment. (c) Layers.

Figure 2. Shape template fitting. (a) Joint positions selected by the
user and the computed pose and projection of M. (b) The aligned
reference shape S;. (c) Illustration of the different layers of S; and
the detected occlusions (red regions).

M in 3D to the character in the 2D image I; (Section 4).

For a 3D reconstruction, dense 2D correspondences be-
tween different views of the character are required. This is a
challenging problem due to frequent occlusions and the dy-
namic nature of our input videos. We compute these corre-
spondences by a novel mesh-based approach which is able
to track the reference shape S; through a subsequence of
the video {I, ..., I,..., I} (Figure 1 (e)). Occlusions are
resolved by utilizing the depth information of the different
layers of front-facing triangles in .S (see also Figure 2 (c)).
The result is a shape sequence Sy = {Ss,...,St, ..., S}
where corresponding vertices in S; have consistent posi-
tions on the character (Section 5).

Due to articulated motion of the character between the
images, a direct reconstruction from these correspondences
is not possible. The main idea of our pose synchronization
is to convert the video sequence into a synchronized multi-
view setup by eliminating the pose differences. We achieve
this by computing an as-rigid-as-possible deformed shape
S} for each tracked shape S; € S, according to a com-
mon pose 7 from the motion database (Figure 1 (f)). After
this step, a synchronized shape sequence S; corresponds to
multiple views of a rigid scene (Section 6).

The one-to-one vertex correspondences between the de-
formed shapes ST then allow us to update the 3D shape of
the template model. Each shape sequence S; contributes a
partial update to the template model, i.e., an updated vertex
position for every vertex in the respective reference shape
Si. By combining several partial updates from different
subsequences of the input video, a consistent 3D model of
the filmed character can be created (Figure 1 (g)) and ani-
mated with the available motion capture data (Section 7).

4. Shape Template Fitting

As motivated in Section 2, we employ a semi-automatic
approach based on a simple user interaction. First, the user
selects 2D skeleton joint positions in an image I;. Examples
are shown in Figures 1 (b) and 2 (a). Given these 2D joint
positions and a database of 3D motion capture data [11],
an approximate Euclidean camera projection P, and a best

matching pose 7(t) can be computed by minimizing the re-
projection error [19] (Figure 2 (a)).

The reference shape .S; for this image is created by first
deforming the generic 3D shape template M — M7™(*) ac-
cording to pose 7(t), and then projecting M ™(*) using the
estimated camera model P. The triangles of this projected
shape serve as an initial guess for the triangles of M ac-
tually visible in I;. However, instead of only the visible
parts of the projection M), the reference shape S, stores
all front-facing triangles with an additional camera-space
depth value for each vertex. Hence, S; is effectively a tri-
angle mesh with connected layers at different depths, corre-
sponding to the limbs of the depicted character (see Figure 2
(c)). This layered representation with depth information is
the key property for detecting and resolving occlusions dur-
ing shape tracking and reconstruction.

The projection only provides an approximate fit of the
template M to the character (Figures 1 (c) and 2 (a)). The
remaining mismatch is resolved in two steps. First, the pro-
jected template S; is automatically deformed as-rigidly-as-
possible [20] using the user-selected 2D joint positions as
deformation constraints. Then, the boundary vertices of .Sy
have to be aligned to the character’s silhouette. Existing au-
tomatic techniques are error prone in our problem setting
without segmentation and with occlusions. Similar to re-
lated work [2] we utilize curve-based silhouette editing and
let the user match the shape boundaries. The non-boundary
vertices of S; are repositioned automatically in real-time us-
ing as-rigid-as-possible shape deformation with the bound-
ary vertices as deformation constraints. This is crucial in
order to redistribute the inner triangles within the adapted
shape, while preserving their perspectively distorted aspect
ratio (see Figure 2 (b)). The result of the shape template fit-
ting is the final reference shape S; for image I;. Please see
the accompanying video for a demonstration.

5. Shape Tracking

In order to track the character shape we experimented
with a variety of standard approaches such as feature track-
ing [4], correspondence estimation [24], and optical flow
[7]. These types of approaches revealed a number of fun-
damental restrictions. For instance, tracking rectangular
windows centered, e.g., at the mesh vertices of S, or op-
tical flow has the drawback that it is difficult to handle oc-
clusions and discontinuities at silhouettes of the limbs and
body. Techniques for correspondence estimation generally
do not provide sufficiently dense matches. These issues be-
come even more severe for the limited character size at stan-
dard video resolutions. Moreover, we have to keep track
of the complete limbs of a character even if they are par-
tially occluded. We therefore developed a novel mesh-based
tracking approach, which exploits the depth information in
a layered reference shape S; in order to resolve occlusions
and to keep track of occluded limbs.

Given two successive images I; and I, and a shape S



Figure 3. Example of a tracked shape sequence for a more com-
plex model. The close-ups show the deformation of a selected
triangle fr. During the mesh tracking this deformation is approx-
imated by an affine mapping Ap.

in image I;, our goal is to compute a displacement field

attached to the vertices of S, i.e. a displacement d; for

each vertex v; of S;. The vertices v; of S; then become
/!

v} := v; + d;. Each triangle face fj of S, together with

K2

the respective transformed face f;, of S;11, defines an affine
transformation A, : R?> — R? between the images I; and
I; 41 (see Figure 3). We formulate the matching process as a
global optimization problem that minimizes the sum of tri-
angle errors. The per-triangle error for each pair ( fi, f;,) of
corresponding triangles is computed by summing over the
squared intensity differences of the respective image areas
in I; and I; . The desired displacement field is then the
minimum of the objective function

Bu= 3 3 (5o) - LaAe)) . O

fRE€S; PEQ

where ), C IN? denotes the set of image pixels covered by
triangle fj in image I;. Coherent tracking and robustness
to image noise is ensured by enforcing an additional term

1
Egmooh = Z ; Z w’i;dei - deZ’ 2
iEV(S;) L JEN;

which imposes rigidity on the tracked mesh. V' (.S;) denotes
the set of vertices of the shape S; and IN; denotes the 1-
ring neighbors of vertex i. We chose the standard chordal

weights Wi = HVi — Vj||71, w; = ZjENi Wi j- The
complete objective function then is
E = Eg + >\Esm00th7 (3)

which is minimized using the Levenberg-Marquardt algo-
rithm to determine the vertex displacement field between
pairs of successive images.

In order to reliably match large motions of the character
we apply a multi-resolution matching approach. The shape
meshes for coarse resolution images are generated using a
variant of iterative remeshing [6], adjusted to correctly pre-
serve shape boundaries and with an appropriate target edge
length. In our experiments we found two resolution levels
(i.e. the original images and one coarser resolution) to be
completely sufficient.

The combination of projected shapes S; with per-vertex
depth information and our mesh-based tracking is the key to
resolve the occlusions in the input videos (see Figure 2 (c)
and our accompanying video). During the rasterization of
the triangles f}, this depth information is taken into account

such that each triangle is assigned truly visible pixels only.
If a triangle is completely occluded (because, e.g., it lies on
the character’s torso and is covered by an arm) it is assigned
no pixel at all. For the objective function Eq. (3) this has the
desirable effect that Eg,y, is zero for the respective triangles.
The non-zero regularization term Fgpoom results in a plau-
sible transformation of the occluded parts of the shape S;.
Eventually visible triangles are correctly recognized and in-
cluded in Ey,, since the rasterization is performed for ev-
ery image of a tracked video sequence. Note also that the
smoothness term Eq. (2) does not compromise an accurate
handling of depth discontinuities between layers and auto-
matically preserves the segmentation of the character and
the background.

The choice of A depends on the orders of magnitude of
the energies Fgy, and Egnoom- It showed to be rather in-
sensitive to the actual image data, so that we could keep it
constantly set to A = 2 throughout all of our experiments.

After tracking S; — S;11 the sub-pixel accurate sur-
face matching resulting from this approach effectively cor-
responds to an exact (stereo) correspondence estimation.
The 2D skeleton joint positions are updated by pulling them
along the computed displacement field. This tracking loop
is iterated both forwards and backwards through the video
as long as the reference shape S; is reasonably consis-
tent with the visible surface areas, i.e., until the viewpoint
change with respect to the character in image I; becomes
too large. Termination criteria can be formulated based on
the changed aspect ratio of, e.g., boundary triangles or the
color mismatch during tracking. We additionally provide
the user interactive control when to abort the tracking pro-
cess, since tracking errors are simple for the user to spot and
automatic termination criteria may fail for dynamic video
sequences. A viewpoint variation of approximately 30 de-
grees for a sequence worked well in our experiments.

The result is a sequence S; = {Ss,...,5, ..., 5}
which tracks the character’s shape from an image I; through
adjacent frames in the input video.

6. Pose Synchronization

Articulated character motion within a tracked image se-
quence leads to global shape distortions and hence prevents
a straightforward reconstruction of the character’s 3D shape
(see Figure 4 (a)). However, assuming continuous charac-
ter motion without too large shape changes, a single video
sequence can be converted such that it approximates a tem-
porally synchronized multi-view setup by synchronizing all
the tracked shapes S; € S; (see Figure 4 (b)) according to
a common 3D skeleton pose 7.

First, camera projections P ; are computed for the shapes
S; € &; using the procedure described in Section 4. Since
the 2D skeleton joints are pulled along with the shapes dur-
ing the mesh tracking, one generally has to do only minor
adjustments to place the joint positions at their approximate
locations. The best matching common pose 7 for all shapes



Figure 4. (a) Triangulation of 2D correspondences v between
views of a non-rigid scene results in wrong reconstructions V. (b)
Our pose synchronization transforms the correspondences into a
rigid setting for a corrected estimate.

S; € S; can be found by evaluating the combined reprojec-
tion error [19]. The actual pose synchronization S; — ST
is then performed by a 2D as-rigid-as-possible deformation
step as in Section 4, with the projected 3D skeleton joints
of the common pose as deformation constraints. This step
is again motivated by the assumption that the overall vis-
ibility of surface triangles remains valid due to continuous
character and camera movement, while perspective changes
have been captured by the shape tracking. Therefore, the 2D
deformation into the common pose is a reasonable approxi-
mation of the corresponding 3D pose change (see Figure 5).
The result is a synchronized shape sequence S; — S/,
which effectively corresponds to the desired multiple syn-
chronized views of a rigid character. This is further illus-
trated in our accompanying video.

In practice we do the synchronization only for the refer-
ence shape S; and the two shapes S and S, at the bound-
aries of the tracked video interval. In general the corre-
sponding views have the largest baseline and hence result
in the most stable 3D reconstruction.

For a full reconstruction of a character, multiple shape
sequences generated from different sections of a video have
to be merged into a single, consistent 3D model. When
combining two shape sequences with overlapping tracking
domains, it is not ensured that a vertex of the template
model M ends up at exactly corresponding surface points
in the two different sequences. The primary effect of this
mismatch is ghosting when merging the texture informa-
tion during rendering. One solution would be a global op-
timization of Eq. (3), which involves all shapes in all shape
sequences. However, such an approach would be compu-
tationally infeasible due to the large number of degrees of
freedom and further difficulties such as dynamic appearance
changes due to illumination.

We found that an effective solution to this problem is the
computation of interpolated 2D vertex positions for each
shape similar to the concept of epipole consistent camera
weighting [8]. Suppose we have two shapes S; and \S; from
two different shape sequences in the same image. Then
some vertices of the template model M are likely to be vis-
ible in both shapes S; and S;. Let v; and v; be two cor-

Figure 5. Pose synchronization. S; and .S are two tracked shapes
of a shape sequence S;. M is the template model. S7, S; and M ™
are the result of the pose synchronization into a common pose 7.
Pose changes are visible around the legs and the arms.

responding 2D positions of a particular vertex. Then the
updated vertex position v* is computed by a weighted con-
tribution v* = >", wivy. The weights w;, are computed
based on the number of tracked frames between S), and
the reference shape of the corresponding shape sequence:
if Sy is the reference shape (i.e., S;) of it’s respective se-
quence then wp = 1 and all other weights are 0. Oth-
erwise we weight the contribution to the position using
@Ok = (Jk —t| +1)~5. The final weight is normalized by
wi = Wx/ >, w;. The exponent /3 controls the influence of
shapes which are distant from the reference image and was
set to 8 = 3 in our experiments. All vertex positions v; are
then replaced by the position v*.

Obviously, the mismatch between different shape se-
quences becomes larger with increasing deviation of the de-
picted character from the 3D template model A/. Hence,
it is of relevance mainly for non-human shapes such as the
Scarecrow example in Figure 3. However, by initializing
the vertex positions in a new shape sequence with tracked
vertex positions from a previously generated sequence, it
is possible to compute partial reconstructions with pixel-
accurate surface points even for such complex models.

7. Reconstruction and Animation

After synchronization, standard multi-view 3D recon-
struction is possible using the vertex correspondences be-
tween the synchronized shapes ST in a shape sequence S
and the respective camera projections P; (see Figure 4).
Each single shape sequence S7 allows for a 3D reconstruc-
tion of the vertices in its reference shape S;. In order to
generate a single, coherent 3D model, which integrates the
information from multiple shape sequences, we compute
shape updates for the generic template model M instead of
computing independent partial reconstructions.

Hence, for a synchronized shape sequence S/, the 3D
template is deformed into the same common pose M —
M (see Figure 5). Then, the 3D positions of its vertices
are refined by triangulation [ 16] of the viewing rays through
corresponding 2D vertices of the shapes in &7 . This is done
for each shape sequence separately. The final output model
M™ is generated by deforming all partial reconstructions
back into the base pose (Figure | (a)) and averaging the
positions of all reconstructed vertices. The overall recon-
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Figure 6. (a) Refinement of the template without pose synchro-
nization of the shapes in Figure 5 results in global distortions. (b)
With the synchronization, the template can be properly updated.
(c) Full reconstruction from 5 shape sequences. (d) Reconstruction
of the Scarecrow model from Figure 3 using 3 shape sequences.

struction is summarized in this algorithm:

foreach reference image I do

compute S; and P by fitting template M to I;;
track S; to generate shape sequence

St = {Ss,...,St,...,ST};

foreach shape sequence S; do

compute camera projections P and P,;
synchronize S; — S, j € {s,t,r} and M — M/ ;
update 3D vertices of M{ using P, ST, j € {s,t,7};
foreach partial reconstruction M; do

deform M/ to a common base pose M/

use M to update the final output model M™;

Please see also the accompanying video for further illus-
tration of the synchronization and reconstruction step.

The effect of the pose synchronization on the reconstruc-
tion is demonstrated in Figure 6: Without synchronization
the ray intersection computes wrong depth estimates for the
mesh vertices due to the pose differences between the 2D
shapes. This causes severe distortions such as the person’s
left knee bending backwards (Figure 6 (a)). Moreover, the
vertices are not properly repositioned with respect to the
coordinate system of the template model. This prohibits a
proper merging of the different partial reconstructions into
a single coherent model. The pose synchronization resolves
these problems (Figure 6 (b)) and the vertices of the tem-
plate can be updated to match the person’s shape.

As mentioned in the introduction, one of the main appli-
cations we had in mind when developing this method was
the possibility to create animated character models from ca-
sual, uncalibrated video input recorded with a single cam-
era. A particular feature of our approach is that the recon-
structed model M* is immediately available for animation,
e.g., with different motion capture data, since the original
vertex-to-bone weights remain valid. This means that no
additional complex rigging has to be performed after re-
construction in order to create an animated 3D model. Al-
though drastic deviations of the reconstructed model from
the original template could invalidate the weights, even for
the quite complex Scarecrow model (Figure 6 (d)) the orig-
inal vertex weights are still fine. This is due to the fact that

Figure 7. Two frames of an input video and a frame of an anima-
tion with new jumping motion overlayed on a different video.

the actual association of vertices to the limbs and torso does
not change globally. During rendering we can additionally
exploit view-dependent surface textures from the shapes S
in the input images I; in order to provide a slightly more
dynamic appearance of folds and shadows on the character.

8. Results

We created several animated character models from un-
calibrated video or images. The first two examples are
based on video recorded with a hand-held camera. In the
example in Figure 7 the person was instructed to simply turn
around on the spot, which involved a considerable amount
of articulated character motion and an unstable background.
In situations where the displacement between frames is too
large for the mesh-based tracking to converge, our interac-
tive system allows the user to supply a simple but effective
hint by translating the affected skeleton joint to its approxi-
mate position in the video. But even for this quite challeng-
ing input the tracking worked mostly automatically. Fig-
ure 6 (a) clearly shows that a reconstruction without con-
sidering pose changes results in considerable global defor-
mations and artifacts. Our pose synchronization prior to
reconstruction resolves these issues (see Figure 6 (b)).

The full body reconstruction shown in Figures 1 (g), 6 (c)
and 7 was created from five shape sequences: three over-
lapping sequences of the front, and two sequences of the
back, each of which covered approximately a viewing an-
gle of 30 degrees (see also our supplemental video). The
time required for creating such a 3D character model de-
pends mostly on the number of tracked video frames, since
our current implementation is not optimized for speed. For
this model each shape sequence consisted of about 40 video
frames and took about 30 to 40 minutes to track. The
tracking step is the current bottleneck, since all other steps
such as the camera and pose estimation and the as-rigid-
as-possible shape deformation are a matter of milliseconds
to a few seconds. A GPU implementation would allow for
real-time tracking and speed up the process considerably.

Similarly, the example in Figure 8 was generated from
three shape sequences of the frontal part. Although this
does not allow for 360 degree views like for the full body
model, it is still possible to animate this model with novel
motions involving restricted rotations of the limbs and torso.



Figure 8. A frame of the input video and novel output pictures
from an animation with walking motion.

Figure 9. Output animation of the reconstructed Scarecrow model
with jumping and waving motion.

In order to demonstrate the flexibility of our system for
different character shapes, we applied our method to an in-
put video of a Scarecrow toy, which differs significantly
from our generic shape template. Nevertheless, the tracking
worked fully automatically for shape sequences consisting
of 80 video frames (see Figure 3) and our reconstruction
from three such sequences is a faithful reproduction of the
tracked surface parts (see Figure 6 (d)). Please note that
simple shape approximations like cylindrical elements per
limb or purely silhouette-based approaches like visual hulls
would not be able to reproduce surface details like the con-
cavities at the head or the trousers. Such errors caused by
simpler representations would lead to severe texture regis-
tration and blending artifacts during rendering. Frames of
a jumping and waving animation created with the resulting
3D model are shown in Figure 9.

We also created a reconstruction and animation of a
hand-drawn figure in order to illustrate the possible range
of applications for our system. The animation in Figure 10
was generated from three hand-drawn images of the figure
from slightly different views and reconstructed from a sin-
gle shape sequence. Obviously, an accurate correspondence
estimation is problematic due to the hand-drawn and hence
inconsistent shape and texture between the images. There-
fore, tracking was performed at a coarser resolution in order
to filter the fine-scale texture inconsistencies. The recon-
structed model is quite flat, but still allows to generate 3D
animations and rendering effects.

Please see the supplemental video for the full animations
and additional material. All animations in the video were
generated from a publicly available motion database [11].
Please note that some motion artifacts like foot skating stem
from this data. Our resulting models are not restricted to

Figure 10. One of three input images and frames of a walking and
jumping animation with the reconstructed 3D model.

this particular dataset but can be animated with any method
suitable for skeleton-driven animation [23].

Limitations. A limitation that we would like to address
in future work is that the performance of our system for dif-
ferent input shapes and motions is rather difficult to quan-
tify. As shown in our results, it works reasonably well for
pose changes occurring for, e.g., a person turning on the
spot, or for challenging shapes like the Scarecrow. How-
ever, a reconstruction of a running person is likely to fail due
to the considerable pose changes and occlusions between
video frames. Even with a high-speed camera, it would be
difficult to cover a sufficiently large baseline to extract 3D
shape information. Extending this work for general perfor-
mance capture would be an interesting area of future work.

Another challenge is the reconstruction of surface de-
tails. As shown in Figure 6 (d), our method captures more
geometry detail than would be possible using simpler ap-
proaches such as visual hulls. But it fails to reconstruct
the nose of the full body model properly (Figure 6 (c)).
A detailed comparison of the reconstruction quality with
existing high quality techniques for controlled studio se-
tups (e.g., [12]) seems difficult since our problem setting
involves unsegmented, monocular video and independent
motion of the background and the character, where those
previous works are not applicable. For higher video reso-
lutions, one could integrate dynamic tesselation and refine-
ment techniques of the template model to reconstruct char-
acter models with a more detailed surface. With future im-
provements in the fields of pose detection and segmentation
of video we also believe that some manual steps such as the
initial shape fitting process could be automated.

Since we extract texture from video, the texture quality
of methods based on single, higher resolution images such
as [31] is generally better. However, this method cannot
reconstruct the geometry of a character and hence requires
closely matching 3D models. Our texture quality could be
improved using, e.g. Floating Textures [13]. Finally, the
consideration of shape changes which cannot be explained
by articulated motion represents an interesting direction for
future work.

9. Conclusion

We presented a novel, semi-automatic approach to re-
construct and animate 3D character models from uncali-
brated, monocular video. This very general setting violates



fundamental requirements of existing work on image-based
character reconstruction. Our two main technical contri-
butions are a novel model-based tracking approach and an
algorithm for pose synchronization to compensate for artic-
ulated character motion. We demonstrated that it is possible
to produce reasonable reconstruction and animation results
for a range of different character types.

Due to the ill-posed problem setting there obviously is
a certain trade-off between flexibility regarding the system
requirements and the visual quality of the reconstructions.
However, we did not intend to compete with the very high
quality possible with more complex and constrained capture
systems. We believe that our system nicely complements
existing work and provides a first basis for making 3D char-
acter reconstruction from general video a simple image pro-
cessing task. This opens up entirely new opportunities and
applications such as, for example, the reconstruction of his-
torical characters from film archives or the creation of real-
istic 3D avatars for home users.
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