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Figure 1: Volumetric map between an object and the unit cube, obtained with our approach. It is visualized with several isosurfaces.
Bijectivity is given by construction, based on a combinatorially constrained volumetric vector field synthesis technique (upper right).

Abstract

This paper presents a method for bijective parametrization of 2D
and 3D objects over canonical domains. While a range of solu-
tions for the two-dimensional case are well-known, our method
guarantees bijectivity of mappings also for a large, combinatorially-
defined class of tetrahedral meshes (shellable meshes). The key
concept in our method is the piecewise-linear (PL) foliation, de-
composing the mesh into one-dimensional submanifolds and reduc-
ing the mapping problem to parametrization of a lower-dimensional
manifold (a foliation section). The maps resulting from these folia-
tions are proved to be bijective and continuous, and shown to have
provably bijective PL approximations. We describe exact, numeri-
cally robust evaluation methods and demonstrate our implementa-
tion’s capabilities on a large variety of meshes.

Keywords: parametrization, bijection, morphing, deformation,
shelling, shape map, volumetric mapping

Concepts: •Computing methodologies→Mesh geometry mod-
els; Volumetric models;

1 Introduction

Parameterization, i.e., the mapping of shapes or their parts to sim-
pler domains, is a fundamental operation in a broad range of appli-
cations involving complex geometry. Most scenarios require that
the parametrization is a one-to-one map between the shape and its
image in the parametric domain, as many downstream algorithms
fundamentally rely on this essential bijectivity assumption.
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The most important bijectivity result in the 2D setting is the Radó-
Kneser-Choquet theorem [Kneser 1926; Choquet 1945] and its dis-
crete variants [Tutte 1963; Floater 2003]. It assures that for a fixed
bijective boundary map the (discrete) harmonic extension to the in-
terior is bijective if the chosen boundary values bound a convex
domain. Countless methods make use of this result. Even if a non-
harmonic parametrization following other objectives is sought, it
still is commonly exploited to robustly obtain a valid initialization.

In 3D, the problem is equally important: some example applica-
tions include morphing of volumes, transfer of interior structures
or volumetric textures, template fitting, structured remeshing, com-
patible meshing via volumetric correspondences, cage-based defor-
mations, and the mapping to regular grids to enable parallelization
of volumetric computations.

However, the problem is qualitatively more difficult in 3D and
higher dimensions: analogues of the Radó-Kneser-Choquet theo-
rem and Tutte’s theorem do not hold (harmonic maps and convex-
combination maps to convex domains in 3D are not necessarily bi-
jective, cf. Figure 2), and no other easily computable map is known
that is guaranteed to exist and be bijective in general. The dis-
cretization of the 3D problem is also significantly more compli-
cated. While in 2D a simple and easily realizable condition (3-
connectedness) ensures that a mesh can be mapped to a convex do-
main piecewise linearly, no such conditions are known in 3D.

In this paper, we propose a method for the computation of bijective
parametrizations, focusing on 2D and 3D domains. Specifically, we
target the problem of parameterizing a simply-connected triangle
mesh over the unit disk or square, or a tetrahedral mesh over the unit
ball or cube, by constructing a bijective map between them. Maps
between arbitrary domains can be derived from this fundamental
operation by composition of these parametrizations and their in-
verses.

Contributions. The core concept of our construction is that of a fo-
liation: the domain is equipped with a structure partitioning it into
disjoint one-dimensional leaves. This makes it possible to reduce
the problem to a lower-dimensional problem of parameterizing a
transversal section of the original domain, and one-dimensional
curve parametrization problems, both of which are easily solved.

The combination of the lower-dimensional parametrizations in a
tensor product manner yields a bijective parametrization, i.e. a func-
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Figure 2: Harmonic and Tutte maps are not bijective in 3D. a)
Tetrahedral mesh of a unit ball. b) The mesh of (a) mapped using
the 3D analog of Tutte’s embedding (with uniform weights). The
boundary was fixed using the identity map on the sphere, i.e. this
is a maximally benign setup. Still, the map is not bijective: several
internal tetrahedra are inverted (highlighted in red). c) Tetrahe-
dral mesh of a more complex shape. d) This mesh Tutte-mapped
and e) discrete harmonically (cotan-Laplacian) mapped to the unit
ball. Several thousand internal tetrahedra are inverted. The non-
injectivity can be so severe that even the powerful recent map im-
provement code based on bounded-distortion projection [Aigerman
and Lipman 2013] is unable to repair it: regardless of its param-
eter setting (K ∈ {20, 50, 100, 200, 500, 1000, 2000}) the issue
only gets worse (f, inverted tetrahedra in yellow).

tion that, given a point in the object domain, returns the unique cor-
responding point in parameter space. The inverse, i.e. a function
that, given a point in parameter space, returns the unique corre-
sponding point in the object, is immediately available as well.

This general principle allows to bijectively parameterize any
simply-connected domain (in any dimension). We treat herein the
2D and 3D cases, with a triangle mesh or tetrahedral mesh dis-
cretization of the domain, and present a practical solution based on
PL foliations, with leaves which are linear per mesh simplex. This
kind of discretization restricts applicability to shellable meshes, and
the efficient algorithm we introduce is guaranteed to succeed if the
mesh is extendably shellable. We discuss these combinatorial prop-
erties and their theoretical implications in detail, and present empir-
ical evidence that this restriction is likely of low practical relevance.

We show that, by appropriate algorithmic and representational
choices, the method can be implemented in a numerically robust
manner, such that bijectivity is not only a theoretical property of
our approach.

Piecewise linear representations or approximations of the above
pointwise defined maps are of interest as well. As the input mesh is
not generally suited for this purpose, we discuss how a bijective PL
representation can be obtained via refinement.

Besides bijectivity, the quality of the parametrization in terms of in-
curred distortion is relevant. We describe complementary strategies
to control quality throughout our construction.

Outline. After reviewing previous work and discussing the basic
concepts related to foliations in Section 3, we present and analyze
an algorithm to construct such foliations in a discrete setting in Sec-
tion 4. The robust computation of bijective maps from these foli-
ations is detailed in Section 5. In Section 6 we discuss how the
degrees of freedom of the method can be exploited to control the
quality of the map within the space of bijections. In Section 7, to-
wards enabling a broader range of quality optimization methods, we
show how the resulting bijective map can be approximated piece-
wise linearly, with a guarantee that the resulting PL map is bijective.

2 Related Work

Harmonic Parametrization. Prescribing a homeomorphism be-
tween the boundary of a simply-connected two-manifold and the
unit circle, one can consider the solution of the corresponding
Dirichlet problem: a harmonic map, known to be a diffeomor-
phism to the unit disk [Choquet 1945]. For certain discretizations of
the Laplacian (with non-negative weights) the resulting piecewise-
linear convex-combination maps on triangle meshes can be shown
to always be injective as well [Floater 1997; Floater 2003]. Even
the most recent parametrization methods still rely on this result in
various ways for bijectivity in 2D [Weber and Zorin 2014; Myles
et al. 2014; Smith and Schaefer 2015; Schneider and Hormann
2015; Aigerman et al. 2015; Aigerman and Lipman 2015].

This nice property does not carry over to the three-dimensional vol-
umetric case, neither in the continuous setting (explicit counterex-
amples provided in [Laugesen 1996; Liu and Liao 1996]) nor in
the discrete, simplicial mesh setting [Colin de Verdière et al. 2003;
Floater and Pham-Trong 2006], cf. Figure 2. While discrete har-
monic maps or fields were used in a few instances to produce bi-
jective maps, [Alexa et al. 2000; Wang et al. 2004; Li et al. 2007;
Lin et al. 2015], they are not guaranteed to be bijective in general.
In fact, bijectivity of harmonic maps in 3D “fails badly” [Laugesen
1996] in the following sense: any boundary homeomorphism can
be turned, by an arbitrarily small perturbation, into one whose har-
monic extension is non-injective – even if both target and source
shapes under consideration are as nice and simple as a ball.

Harmonic Gradient Parametrization. Based on the physical
analogy of an electrostatic potential, a number of authors have con-
structed parametrizations from gradient lines of a harmonic func-
tion. Our method is most closely related to this set of ideas. The
two main approaches of this type involve either one internal critical
point (a point charge, inducing a Green’s function) or constant po-
tentials on subsets of the boundary. For a point charge, injectivity is
easily shown in the 2D setting, but it is long known that generaliza-
tion to 3D fails [Gergen 1930], except for special cases like convex
or star-shaped objects [Gergen 1931; Xia et al. 2010a]. The use
of boundary potentials [Xia et al. 2010b; Nguyen and Jüttler 2010]
does not guarantee bijectivity in 3D either [Stoddart et al. 1964].

A promising related idea is to replace the Green’s function with one
specifically tailored to be free of additional critical points even if the
object is not star-shaped. Huynh and Gingold [2015] outline such
an approach (relying on a regular grid instead of a mesh), which
poses interesting challenges related to boundary conformance and
correct definition and practical tracing of the function’s gradient in
a smooth manner, as required for injectivity.

Constrained Deformation and Optimization. A parameteriza-
tion over a specific domain like the unit ball or cube can potentially
be generated via orientation-preserving, non-degenerate deforma-
tion of the original mesh to the target domain. While deformation
techniques are available [Schüller et al. 2013; Jin et al. 2015], pre-
serving injectivity by constraints or barrier functions [Hormann and
Greiner 2000; Degener et al. 2003; Fu et al. 2015], they cannot
guarantee that the deformation actually reaches the desired state,
matching the target domain. On the other hand, optimization meth-
ods that produce provably injective mappings using convexified
constraints and starting from a non-bijective initial point possi-
bly already satisfying boundary constraints [Aigerman and Lipman
2013; Kovalsky et al. 2014] cannot guarantee that a solution to this
specific problem instance is found. One of the inherent issues is
the fact that the parametrizations induced by such deformations are
linear per simplex of the original mesh, and the tessellation or res-
olution of the mesh might preclude bijectivity on the way to or at
the target configuration [Jin et al. 2014; Weber and Zorin 2014].
Remeshing or refinement can be mandatory, particularly in 3D.

We note that the success of such approaches depends on a number



Figure 3: A foliation of a simply-connected 2-manifold (with
boundary) and a compatible foliation of the unit square. The black
curves show some of the foliations’ leaves. Two transversal sections
of the foliation are shown in red and green.

of factors, including mesh connectivity, mesh geometry, boundary
map, and non-linear optimization strategy. The property of mesh
shellability our algorithm relies on depends purely on connectivity.

Theory of PL Maps. The non-trivial fact that the interior of any 3D
polyhedral domain can actually be mapped piecewise linearly to a
simple domain (e.g., a simplex) was proved by Moise [1952], using
ideas from Alexander [1924]. Moise also shows that a common re-
finement exists for any two tetrahedralizations of the same manifold
(solving the Hauptvermutung for 3D). Later, Pachner [1991] has
shown that any two homeomorphic tetrahedralizations are related
by sequences of elementary connectivity operations called (inverse)
shellings (similar to edge collapses in triangle meshes). Regarding
the amount of mesh refinement needed to be able to define a PL
bijection between tetrahedral meshes, upper bounds have been es-
tablished [King 2004].

Several positive results related to shellings were established by
Mani and Bruggesser [1971] and subsequent papers, in particu-
lar shellability of convex polytopes and, as a consequence, Delau-
nay tetrahedralizations. Surveys of related results can be found in
[Ziegler 1998] and [Adiprasito and Benedetti 2012].

Foliation Constructions. Foliations are closely related to vector
fields without intersecting (merging/splitting) integral curves. For
the 2D case, some constructions for such vector fields on trian-
gle meshes have been described, involving non-linear interpolation
[Zhang et al. 2006]. Using careful approximation techniques [Ray
and Sokolov 2014; Myles et al. 2014], integral curves of such fields,
implying a foliation in 2D, can be traced piecewise linearly.

3 Foliations

3.1 Idea and Background

Informally, a foliation with one-dimensional leaves is a decompo-
sition of a domain M into disjoint curves (Figure 3 left) [Moerdijk
and Mrčun 2003]. The idea our method builds upon is to create
a foliation topologically equivalent to the canonical Cartesian foli-
ation of the unit square (Figure 3 right), i.e. there is a one-to-one
continuous correspondence between leaves having the same topol-
ogy. This allows construction of a bijective map between M and
the square from a lower-dimensional bijective map on the section
of M depicted in red and one-dimensional bijective maps of indi-
vidual leaves (e.g. to the interval [0, 1]). The lower-dimensional
map of the section establishes a one-to-one correspondence be-
tween leaves. As all leaves are disjoint, and paired-up leaves are
mapped to each other bijectively, the overall map is bijective.

Other topological types of foliation can be employed as well: e.g.,
a bijective map between M and the (punctured) unit disk can be
constructed using a foliation topologically equivalent to the disk’s
canonical polar foliation, cf. Figure 4. This can be seen as a gener-
alized form of the point charge field lines mapping [Gergen 1930;
Xia et al. 2010a; Huynh and Gingold 2015].

Figure 4: Mapping using a polar foliation of the punctured disk.

In 3D, sections of the foliation are two-
dimensional, thus a two-dimensional sec-
tion map is required to establish corre-
spondences of leaves (a problem that can
be recursively reduced to one-dimensional
parametrization again). With this section
map, in a manner analogous to the 2D
case, bijective maps to the cube or the ball
can be established. Next, we introduce more precise definitions to
set the stage for the description of our algorithm.

Definitions and Notation

We construct maps from a closed domain M (a triangle or a tetra-
hedral mesh) homeomorphic to an n-ball, n = 2 or 3, to a standard
domain D (the unit square, disk, cube, or ball).

Definition 1. A foliation is a decomposition of a manifold M into
disjoint low-dimensional submanifolds (leaves) of constant dimen-
sion (we only need to consider dimension 1).

For the purpose of this paper, a very specific, simple type of
foliations, which we call trivial, is sufficient: the leaves are 1-
dimensional and each one is homeomorphic to a line segment, i.e.,
there are no closed or infinite leaves. A more general type of foli-
ations may be useful for other types of domains (and parts of our
method are applicable also to non-ball domains as well as in dimen-
sions higher than 3).

A singular foliation may contain singular leaves of lower dimen-
sion. We consider only one type of singular foliations: radial folia-
tions that have one point singularity, the center, that is in the closure
of all leaves. To simplify exposition, we consider instead nonsin-
gular foliations of the domain obtained by removing a small open
neighborhood (a single tetrahedron or a triangle) in which the sin-
gularity is located. Maps constructed using this reduced domain are
easily extended into the removed simplex.

A transversal section S of a foliation with 1-dimensional leaves is
a submanifold of dimension n− 1 that intersects every leaf exactly
once. For instance, in Figures 3 and 4 the red and green curves
are sections of the depicted foliations. Assuming that each leaf is
parametrized by t ∈ [0, 1], the transversal sections that intersect all
leaves at t = 0 or t = 1 is called the source section (red curve) and
the sink section (green curve), respectively.

Maps from Foliations

Given a trivial foliation of the n-manifoldM , any point p ∈M can
now uniquely be identified by a pair (sp, tp) where sp is the point
on the section S intersected by the leaf running through p, and tp is
the parameter of p along this leaf.

Assume we know a bijective continuous map ψ between S and
[0, 1]n−1 or Sn−1, which are sections of the canonical Cartesian
or polar foliations of D (red or green in Figures 3 and 4 right), re-
spectively. Then Ψ(p) = (ψ(sp), tp) is a bijective map from M to
D = [0, 1]n or D = Sn−1 × [0, 1]. This map effectively equips
M with Cartesian or polar coordinates, respectively, providing a
parametrization over the unit square/cube or disk/ball. With an ap-
propriate choice of t (e.g. normalized arclength) Ψ is continuous.



PL Foliations and Direction Fields. If M is a triangulated do-
main of dimension n = 2, 3, consisting of triangles or tetrahedra,

di

dj

a natural class of foliations to consider is that
of piecewise-linear foliations, for which the
leaves inside each simplex are parallel straight
line segments. Such piecewise-linear foliations
can be handled in a numerically robust manner
more easily than other types, and they can be
described by piecewise-constant (PC) vector fields: a constant vec-
tor di assigned to the interior of an n-simplex specifies the direction
of the parallel straight leaf segments in this simplex, i.e. the leaves
are the integral curves (dashed blue) of the vector field d. As the
vector’s magnitude has no effect, unit vector fields (direction fields)
are appropriate.

While any PL foliation implies a PC direction field, the converse
is not true. Only if a unique integral curve exists through every
point in M do these piecewise-linear curves form the leaves of a
foliation (which are disjoint by defini-
tion). While this property of unique in-
tegral curves is well known, e.g., for the
class of uniformly Lipschitz continuous
vector fields, it does not generally hold
for discontinuous fields, like the PC fields
in question: integral curves may merge
and split (as depicted on the right, top),
unlike the leaves of a foliation (bottom).
This difference is crucial, and it is one of
the main obstacles for using PC fields for
parametrization directly. Below, we derive
a combinatorial condition on these fields
that ensures correspondence to a foliation.
We call a piecewise-constant field that has
a unique integral curve passing through
each point foliation-compatible.

3.2 Generation Algorithm

We introduce a basic algorithm to construct such foliation-
compatible direction fields subject to constraints regarding the be-
havior at the domain boundary and the absence of singularities. In
Section 4.4 we analyze and discuss it in detail.

We consider a simplicial mesh M , consisting of k-simplices, 0 ≤
k ≤ n, with n = 2 (triangle mesh) or n = 3 (tetrahedral mesh).
For an n-simplex c and an incident (n−1)-simplex f , the normal
of f pointing outside of c is denoted ncf . We assume that no n-
simplex has multiple boundary (n−1)-simplices.

1: Input: Mesh M , with a simply connected subset of boundary (n−1)-simplices
marked source, and another subset marked sink. The remaining boundary (n−1)-
simplices are marked parallel, and the interior is unmarked. Set ĎM = ∅.

2: while M 6= ∅ do
3: Select a free n-simplex c ∈M with one or more source faces.
4: Choose a direction dc such that for all incident (n−1)-simplices f :
5: • dc · ncf < 0, if f marked source
6: • dc · ncf > 0, if f marked sink or unmarked
7: • dc · ncf = 0, if f marked parallel
8: M=M\c, mark the (n−1)-simplices that are revealed source, ĎM=ĎM∪{c}
9: Output: Foliation-compatible direction field d.

Algorithm 1

An n-simplex is free if removing it from M and adding it to the
complement ĎM leaves both, M and ĎM , manifold. This is not the
case iff a singular vertex or edge (whose immediate neighborhood
does not have ball or half-ball topology) is created in M or ĎM .
One may ask whether such a free simplex is always available. As
we shall see in Section 4.4, a necessary condition for this is that
the mesh is (bi)shellable, a sufficient condition is that it is extend-
ably (bi)shellable. In 2D this is no hurdle, in 3D there are known

counterexample constructions; their practical relevance appears to
be insignificant in our tests, as we show in more detail below.

Practical questions, particularly concerning the choice of c and the
choice of dc, will be made concrete later; for analysis purposes this
abstract form of the algorithm suffices.

Next, we discuss why the resulting field is guaranteed to be
foliation-compatible and to imply a trivial foliation. In Section 5
we explain how to construct an explicit map Ψ : M → D and its
inverse from the foliation-compatible field.

4 Foliation Compatibility Criteria

For a PC direction field to represent a foliation, a local condition
on the field needs to be satisfied. For it to represent a trivial foli-
ation, an additional global condition is needed. Importantly, both
local and global conditions can be formulated purely in terms of
combinatorics of the discrete direction field.

4.1 Local Condition

To simplify exposition, we initially treat generic fields, i.e. the di-
rection d of an n-simplex is not parallel to any of its edges or faces
in the interior.

Incoming and outgoing simplices. As a first step in formulating
our combinatorial requirement, consider an arbitrary point p in M ;
the basic requirement is that there is exactly one integral curve of
the field d passing through this point. Consider a field direction
di on an n-simplex ci which contains point p (in its interior or on
its boundary), and the segment ` of the line passing through p in
direction di, restricted to ci. Removing the point p from ` splits `
into two parts, `− and `+ corresponding to directions −di and di.

Definition 2. (Incoming/outgoing n-simplex) If the half-segment

di p1 p4

p2

p3

`− is non-empty, we call the simplex ci in-
coming for p (it provides an incoming integral
curve for p), and if `+ is non-empty, ci is out-
going for p. In the example on the right, where
`− is red, `+ green: ci is incoming for p1 and
p2, outgoing for p2 and p3, and neither for p4.

Due to the piecewise constant nature of the field, if an n-simplex
c is incoming (outgoing) for a point p in the relative interior of a
k-simplex f , k < n, it is incoming (outgoing) for every point in the
interior of f . Hence, we can say that an n-simplex c is incoming
(outgoing) for a k-simplex f .

As we assume here that the field is generic, for any point in the

di
p

in
out

interior of M there needs to be exactly one in-
coming and one outgoing n-simplex. If p is
contained in the interior of an n-simplex c, then
this requirement is satisfied automatically: c is
incoming and outgoing for p. For a point p in
the relative interior of a k-simplex, k < n, we
need to consider its incident n-simplices:

di

dj

p

in

out

For a point p on an (n−1)-simplex f incident to
n-simplices ci and cj , we must require that ci is
incoming for p (equivalently: f ) and cj outgo-
ing, or vice versa, as each incident n-simplex
can only be either, incoming or outgoing for
f . For a k-simplex, k < n − 1, the situation
is more complex as there are multiple incident
n-simplices. These observations immediately
lead us to the following proposition:

Proposition 1. A generic PC direction field is foliation-compatible
if and only if each interior k-simplex, k < n, has a unique incoming



and a unique outgoing n-simplex; each boundary k-simplex has at
most one incoming and one outgoing n-simplex.

Note that this is not sufficient for the foliation to define a trivial
foliation, as integral lines may still be infinite or closed.

Extended complex. To unify and simplify notation in the follow-
ing (avoiding special cases on the source and sink sections), we
define the complex M∗. It is obtained by adding two n-cells, csource
and csink to the complex M . These cells are virtual, they have
no geometric realization, are not simplicial, and not necessarily of
disk/ball topology. They are connected to M such that they cover
exactly the source and sink section, respectively, i.e. M ’s boundary
simplices in the source and sink region are their lower-dimensional
faces. These virtual cells are defined to implicitly be incoming
(csource) and outgoing (csink) for their faces from now on.

We extend the notion of generic fields to generic boundary-aligned
fields, i.e. the directions in boundary n-simplices are parallel to the
adjacent boundary (n−1)-simplices. Note that in the case of M∗
this affects exactly the simplices which are marked parallel (the rest
ofM ’s boundary is covered by the virtual cells inM∗). As integral
curves cannot start or end at the boundary where the field is parallel,
this leads to the following simpler variant of Proposition 1:

Corollary 1. A generic boundary-aligned PC direction field is
foliation-compatible if and only if each k-simplex, k < n, has a
unique incoming and a unique outgoing n-simplex.

Dual graph. To formulate our combinatorial condition, we need
to consider the dual edge graph G(M∗) of the complex M∗, i.e.,
the graph with vertices corresponding to n-cells of M∗, and edges
connecting n-cells sharing an (n−1)-simplex. Note that the condi-
tion that for each interior (n−1)-simplex f one of the two incident
n-simplices ci and cj is incoming and the other is outgoing, allows
for two choices that can be modeled by assigning an orientation to
the dual edge connecting ci and cj . We use ci → cj to denote that
ci is incoming for f and cj is outgoing. Let O be an assignment of
an orientation to each edge, then we denote by G(M∗, O) (short:
G) the corresponding directed dual edge graph.

Definition 3. (Local bipolarity) G is called locally bipolar if for
each k-simplex f , k < n, its restrictionGf to f ’s star (i.e, to the set
of n-simplices incident at f ), has exactly one local source (vertex
with indegree 0) and one local sink (vertex with outdegree 0).

For an (n−1)-simplex f this holds trivially: the star consists of
two n-simplices and the restriction Gf has a single directed edge
(or, at the boundary, a single vertex, which is source and sink).

source

sink

f

For lower-dimensional simplices (in
2D, vertices, in 3D, vertices and
edges), restrictions ofGmay (as de-
picted on the right for a vertex) or
may not be bipolar.

We can now formulate our local cri-
terion, which we will use to demon-
strate that the output of Algorithm 1
is foliation-compatible. This condi-
tion is necessary and sufficient, i.e.,
foliation compatibility of a PC field is entirely a combinatorial fact.

Let Od be the (partial) orientation implied by a field d: ci → cj
if ci is incoming for, and cj is outgoing for the common (n−1)-
simplex. This implied orientation may be partial: if ci and cj are
both incoming or outgoing, the corresponding edge remains undi-
rected. Partially oriented graphs never are locally bipolar.

Proposition 2. A generic boundary-aligned PC direction field d
on a complex M∗ is foliation-compatible, if and only if the corre-
sponding oriented dual edge graph G(M∗, Od) is locally bipolar
(see Appendix A.1 for a proof).

4.2 Global Condition

While the local condition guarantees that there is a unique leaf pass-
ing through each point, globally the leaves may not have the desired
behavior: a leaf may be closed or infinite, without ever reaching a
source or a sink section, i.e. the implied foliation may be nontrivial.
While foliation compatibility is a purely combinatorial notion, triv-
ial foliation compatibility is not: two fields d and d′ with the same
directed graph (Od = Od′ ) may have different global topology.
However, one can formulate a sufficient combinatorial condition for
trivial foliation-compatibility:

Definition 4. (Global bipolarity) A digraph G is called globally
bipolar if it is acyclic and has exactly one source and one sink.

Note that we are particularly interested in orientations where csource
and csink are the global source and sink node of the graph.

Proposition 3. If G(M∗, Od) is locally and globally bipolar, the
field d is compatible with a trivial foliation.

Indeed, consider a leaf of the foliation and construct a correspond-
ing path q in the directed graph G(M∗, Od) as follows: if the leaf
passes from one n-simplex to another through an n − 1-simplex,
the corresponding dual edge is included in q. If it passes through a
k-simplex f for k < n − 1, it has to pass through the local source
and sink nodes of Gf . As Gf is connected and bipolar, there ex-
ists at least one path of dual edges in Gf from local source to sink,
which we add to q. This dual path q cannot terminate anywhere ex-
cept at a source or a sink (otherwise it could be extended), so it has
to either connect a source with a sink, or be a cycle. As the graph is
acyclic by assumption, all leaves connect source and sink section.

By Propositions 2 and 3, the question of trivial foliation compati-
bility is reduced to combinatorial conditions. In the following we
show that Algorithm 1 respects these conditions.

4.3 Shelling

For the analysis of the Algorithm we will make use of the concept
of shelling. Let m denote the number of n-simplices in M .

Definition 5. (Shelling) An ordering c1, c2, . . . , cm of the n-
simplices is called a shelling or shelling order of an n-manifold,
if every suffix of the order is manifold as well [Dey et al. 1999].

In the literature there is a number of similar definitions; in some
cases this order is defined in reverse sense, such that every prefix is
manifold instead; we call this a reverse shelling.

Definition 6. (Bishelling) An ordering c1, c2, . . . , cm that is a
shelling as well as a reverse shelling we call bi-directional shelling,
or short: bishelling. The notation c1cm-bishelling is used to refer
to an ordering with specific first and last elements c1 and cm.

An ordering of the n-simplices (whether shelling, bishelling, or nei-
ther) implies an orientation for the dual graphG in an obvious man-
ner: the dual edge between ci and cj is oriented ci → cj iff i < j.

Proposition 4. The orientation of the dual graph G implied by a
c1cm-bishelling is both locally and globally bipolar, and c1, cm are
the global source and sink (see Appendix A.2 for a proof).

4.4 Analysis of the Algorithm

Algorithm 1, by greedily selecting free n-simplices one-by-one, ef-
fectively constructs a bishelling order. This is due to the restriction
to free n-simplices, preserving the manifoldness of prefix and suf-
fix in every iteration. More precisely, we conceptually apply the
algorithm toM∗, starting with the virtual cell csource. However,M∗



does not need to be constructed explicitly: the algorithm can actu-
ally be applied to M ; only the determination of freeness needs to
take the existence of the virtual cells into account.

The bishelling constructed by Algorithm 1 (if it succeeds) then
specifically is a csourcecsink-bishelling.

Note that the way directions are set in Algorithm 1 matches this
orientation: at the moment n-simplex cj is processed, a face sepa-
rating it from ci is source iff i < j (ci has been removed earlier)
and is unmarked or sink iff i > j (ci is yet to be removed in a later
step, or it is the final csink), so the geometric directions of d match
the combinatorial orientation in G. In other words, the orientation
Od implied by the field d equals the orientation implied by the con-
structed csourcecsink-bishelling. It follows from Proposition 4 that d
is compatible with a trivial foliation, as required for our purpose.

Bishellability

As mentioned before, not every mesh possesses a (bi)shelling order.
The restrictions imposed by this are quite different in the 2D and
3D cases. We review here several known theoretical results, and
present an extension of one, to address the bishellability of meshes,
i.e. the existence of bishellings, in 2D and 3D.

2D case. In the 2D case, the dual graph of a 2-simplicial com-
plex (triangle mesh) is planar. For planar graph orientations, lo-
cal bipolarity follows from global bipolarity [de Fraysseix et al.
1995]. It is known that a global bipolar orientation, and equiva-
lently a bishelling (also known as st-numbering in this case), exists
if the graph is 2-connected [Lempel et al. 1967]. This is a very
mild condition: if an input mesh violates it, subdividing all internal
edges incident to two boundary vertices achieves 2-connectedness
(of G). Afterwards, the mesh is shellable and bishellable.

3D case. In the 3D case, dealing with tetrahedral meshes, the theo-
retical situation is significantly different, although our experiments
indicate that this difference is less significant in practice. In anal-
ogy to the 2D case, we first subdivide internal 1- and 2-simplices
incident to only boundary vertices (ensuring that no tetrahedron has
more than one boundary face), but this is not necessarily sufficient.

We first consider a helpful equivalence that holds in the case of
radial foliations:

Proposition 5. Suppose c1, . . . , cm is a shelling of a simply-
connected n-manifold M . Then c0, c1, . . . , cm is a bishelling of
the extended complex obtained by adding a virtual n-cell c0 that
covers the entire boundary of M (see Appendix A.3 for a proof).

This shows that in the case of a radial foliation the notions of
shelling and bishelling are equivalent for our purpose: if we know
a shelling of M , it is also a bishelling (of M∗, with csource = c0 and
csink chosen as cm). Thus a shelling is compatible with a radial fo-
liation. This is helpful because shellings, in contrast to bishellings,
were already extensively studied in the literature, and a number of
theorems on shellability provide necessary conditions for the exis-
tence of a shelling.

Tetrahedral complexes with no shelling order do exist [Furch 1924;
Rudin 1958]. Moreover, the worst-case complexity of finding a
shelling for a shellable mesh is unknown. At the same time, it is
known that important classes of meshes (e.g. Delaunay tetrahedral-
izations of 3D point sets) are shellable, and a shelling order can be
found efficiently [Mani and Bruggesser 1971]. More generally, it
was established that for any mesh there is an r such that after r
barycentric refinements the mesh becomes shellable [Moise 1952].
For convex objects, r is bounded by 1 [Adiprasito and Benedetti
2012], for non-convex objects so far no polynomial bounds seem
to be known [Adiprasito and Izmestiev 2015], though the examples
known to require r > 1 are intricate constructions based on com-
positions of exponentially many knotted tunnels [Goodrick 1968].

In the case of cube foliations, the notion of bishellability is stronger
than that of shellability. While results on bishellings are less com-
mon, the results on shellings often can be extended. In particular,
the following proposition can be proved:

Proposition 6. There is a refinement of the extended complex M∗
that is csourcecsink-bishellable (see Appendix A.4 for a proof).

Most of these existence results are primarily of conceptual inter-
est but do not constructively yield a bishelling order. In practice,
one can attempt to find an order in a greedy manner in linear O(m)
time. This is what Algorithm 1 does. In 3D, it is thus not guaranteed
to find a (bi)shelling order even if the mesh permits one—unless the
mesh is extendably (bi)shellable [Ziegler 1998], which means that
every partial (bi)shelling can always be extended to a complete one,
i.e. no backtracking or look-ahead planning is necessary, thus any
greedy strategy succeeds. One can further extend the algorithm,
e.g. by repeatedly performing orderings with randomized free sim-
plex selection order until success, but in our tests this proved to be
entirely unnecessary, as the simple greedy variant succeeded in all
but specifically constructed cases. This is detailed in the following.

Experimental Evaluation of Shellability. We applied Algorithm 1
to a set of 767 tetrahedral meshes; the primary sources of surface
meshes were Thingiverse, from which 600 meshes were obtained,
and the AIM@SHAPE repository. The Thingiverse meshes are pri-
marily designed manually, while AIM@SHAPE meshes are mostly
scanned. The tetrahedral meshes were generated using Tetgen, Net-
gen, or CGAL’s Delaunay mesher. A number of tetrahedral meshes
of unknown origin were included. Some examples of Thingiverse
dataset meshes are shown in Figure 5.

Figure 5: Some examples of meshes in our test data set. The
meshes have a variety of protrusions, indentations, thin walls, and
other types of features. Our algorithm robustly handles all of them.

For the case of a ball map the algorithm succeeded in obtaining a
shelling order in all cases. For the case of a cube map foliation,
where it seeks to construct a bishelling order, it succeeded on all
but 15 input meshes, which had thin parts with many edges extend-
ing through the interior from boundary to boundary. However, a
bishelling order was found for these meshes after one barycentric
refinement step. We had to construct a mesh following a specific
counterexample found in the literature, Furch’s ball [Furch 1924],
to obtain a case where, even after two steps of barycentric refine-
ment, the greedy Algorithm 1 could
not find a bishelling order. The
boundary of this object is depicted
on the right, with transparent outer
boundary to reveal the knotted dead-
end tunnel entering the volume from
the bottom.



5 Evaluating Bijective Maps

Once a foliation-compatible field d is constructed, for a given point
p ∈ M we can obtain its foliation coordinates to evaluate the map
Ψ. Let S be the source section ofM and ψ is a bijective continuous
map from S to the corresponding source section of D. Let sp be
the point where the leaf `p, on which p is located, intersects S, and
tp ∈ [0, 1] the parameter of p along `p. Then tp is called the minor
coordinate, and the image ψ(sp) of the section point sp is called
major coordinates. Interpreted as Cartesian or polar coordinates,
they define the map Ψ(p) = (ψ(sp), tp). These coordinates are
determined simultaneously by a relatively straightforward process
of tracing a PC direction field through the mesh. Due to the con-
stant nature per simplex, this amounts to a sequence of d-parallel
projections through simplices.

5.1 Barycentric Field Representation

At each step, Algorithm 1 has to choose a direction di on an n-
simplex ci, pointing into ci through certain incident faces and out
of ci through others. We represent the direction di as an offset vec-
tor in barycentric coordinates, i.e. (u, v, w) with u + v + w = 0
in the 2D case and (u, v, w, x) with u+ v + w + x = 0 in the 3D
case. Since these components can be interpreted as coefficients of
the incident face (inward-pointing) normals, their signs directly de-
termine the signs of the dot products of di with the outward normals
ncf of the (n−1)-simplices. Thus, for a given incoming/outgoing
configuration, we can arbitrarily choose non-zero absolute values
for the components of di = (u, v, w) or (u, v, w, x), because the
fixed signs already restrict the directional space to exactly those
directions that fulfill the incoming/outgoing constraints. By con-
struction, there is always at least one incoming and one outgoing
incident face. This means that there are always components of both
signs, and choices of (u, v, w) and (u, v, w, x) satisfying the con-
straints always exist.

This barycentric representation is not only convenient, it will also
allow us to easily perform the subsequent steps in a numerically
robust manner, as detailed in the following.

5.2 Leaf Tracing

We consider the 3D case; the 2D case (depicted in Figure 6) follows
by reduction. Given a point p, represented in barycentric coordi-
nates (α, β, γ, δ) in tetrahedron ci, where di = (u, v, w, x).

The (supporting line of the) integral curve through p in ci is given
by the line equation `p,ci(λ) = p − λdi = (α − λu, β − λv, γ −
λw, δ−λx) with λ ∈ R. The intersections of ` with the supporting
planes of ci’s triangular faces are easily determined based on the
observation that one barycentric coordinate component vanishes on
these planes. For instance, one of the four intersections is

`
(α
u

)
=

(
0, β − αv

u
, γ − αw

u
, δ − αx

u

)
.

Note that some of the four intersection points can be equal (if `
intersects a vertex or and edge) or lie outside of the tetrahedron (if
` intersects the supporting plane but not the face).

This elementary operation allows us to trace the piecewise linear
integral curve from one simplex to another. As barycentric coor-
dinates are local, a change of coordinates is needed when crossing
to the next n-simplex. As for points on a common k-simplex f
the barycentric coordinates w.r.t. both incident n-simplices involve
only the vertices of f , the transform amounts to simply permuting
the barycentric coordinates according to the change in local vertex
indices from one n-simplex to the other.

`
(
β
v

)
`
(
α
u

)
p = (α, β, γ)ABC

A

B

C

`
(
γ
w

)di

Figure 6: Direction field tracing through a triangle via parallel
projection in barycentric coordinates.

5.3 Major Coordinates

From the point s where a leaf hits the section S, the major co-
ordinates are determined through ψ. For the different cases, ψ is
obtained as follows:

Unit Square/Disk. If M shall be mapped to the square, ψ :
S → [0, 1]. This is a simple piecewise linear curve parametriza-
tion problem, which can, for instance, be performed according to
arc-length, normalized to the unit interval. If M is mapped to the
disk, ψ : S → S1, the unit circle, and a simple normalized arc-
length parametrization of a piecewise linear curve can be used.

Unit Cube. In the case of a map to the cube, ψ : S → [0, 1]2, and
a bijection is easily obtained by the 2D version of our method, or
simply by means of Tutte’s embedding.

Unit Ball. When mapping M to the ball, ψ : S → S2, the unit
sphere. If S is chosen to be the inner section, obtaining ψ is easy:
S is the boundary of a single tetrahedron, and one can map each
triangular face to one half of a hemisphere. Alternatively, one could
choose the outer boundary as S, but then the numerically robust
construction of a bijective ψ is more involved [Gotsman et al. 2003;
Saba et al. 2005].

5.4 Minor Coordinate

As outlined in Section 3.1, each leaf ` is to be bijectively mapped
to its corresponding leaf in a canonical foliation. This is done by
defining a normalized parametrization ts : `s → [0, 1] for each
leaf `s. Together, Ψ(p) = (ψ(sp), tsp(p)) is a bijective map to the
corresponding canonical leaf.

To this end, the lengths of the projection segments through the
n-simplices need to be computed and summed. These lengths
can be computed, in terms of Section 5.2, as |` (λ0)− ` (λ1)| =
|(λ0 − λ1)di|, i.e. they can be expressed as a fraction of the Eu-
clidean length h of di, namely |λ0 − λ1|h. This leads to an arc-
length parametrization of `.

Note that in the polar cases the virtually removed center cell needs
to be taken into account: the radius of the disk/ball that the center
triangle/tetrahedron is mapped to (cf. Section 5.3) must be added to
the leaf lengths so as to treat the leaves as extending to the cell’s
center point rather than ending/starting at its
boundary. Any positive number can be cho-
sen as radius; we set it to the cell’s inradius.
Furthermore, points p within the center cell
need some special treatment: they need to be
mapped to the boundary of the center cell first
in order to determine the leaf they lie on.

Proposition 7. Let ψ be a continuous bijection. ts(p), for a leaf `
intersecting S in a point s, is defined as a function of the arclength
rp between sp and p, mapping each leaf to [0, 1], i.e. we can write
tsp(rp) = tsp(p). Assume that ts(r) is bijective and continuous
both in r and s. Then Ψ(p) = (ψ(sp), tsp(rp)) is continuous (see
Appendix A.5 for a proof).



5.5 Inverse

Evaluating the inverse Ψ−1(q) is easy as well. Usingψ−1 we locate
the point in S that corresponds to the major coordinate(s) of q. Let
` be the leaf that starts at this point. To evaluate φ−1, we trace the
leaf `, measuring its total length, and then trace it up to the relative
length given by the minor coordinate of q. The point where this
tracing ends is p = Ψ−1(q).

5.6 Numerics

While in Section 3 we dealt with a purely combinatorial algorithm,
the tracing of leaves and the determination of major and minor co-
ordinates involves geometric computations, raising the question of
numerical robustness.

General calculations using real numbers cannot be performed ex-
actly or even just consistently in practice [Yap 1997]. In the field
of rational numbers, however, exact calculation is possible. Several
programming languages have built-in support for this, for others
libraries are available that make working with rationals almost as
easy as working with classical floating point numbers.

Note that, mainly due to our use of barycentric representations, all
functions appearing in this section for leaf tracing and coordinate
computation are rational. Hence, if their arguments p, d, and h are
rational, so are their results. Thus, if the components of p and d
are given in rational barycentric coordinates, and h is set to rational
values, all computations can be carried out exactly using a ratio-
nal number type. Note that a true arclength parametrization of the
leaves requires h = |d|, which is generally irrational. However,
we can set h to a rational approximation of |d|. In fact, any choice
h > 0 leads to a bijective, though non-arclength, parametrization
of the leaves. As h is constant per n-simplex and the fraction of
it computed when tracing (cf. Section 5.4) varies continuously be-
tween leaves, continuity of the map is not affected either.

Rational Polar Coordinates. There is one situation though where
irrational functions are involved: in the disk and ball map cases,
one might want to convert the polar parametrization to a Cartesian
one. Due to the involved trigonometric functions, this relates ra-
tional with irrational numbers. We can, however, use rational sub-
stitutes sin∗, cos∗, effectively defining an alternative relation be-
tween polar and Cartesian coordinates; the only requirement is that
(sin∗θ, cos∗θ), like (sin θ, cos θ), is a homeomorphism between
some interval [a, b) and the cut unit circle. To achieve this, we
define sin∗ and cos∗ as rational functions [−1, 3)→ [−1, 1] as fol-
lows:

Let tsin(t) = 2t
1+t2

and tcos(t) = 1−t2
1+t2

.

sin∗s =

{
tsin(s) if s ≤ 1

−tsin(s− 2) if s > 1

cos∗s =

{
tcos(s) if s ≤ 1

−tcos(s− 2) if s > 1
-1 0 1 2 3

sin∗(x)

sin(π2x)

6 Quality Considerations

The described method generates maps with the property of being
bijective. Complementary to that is the search for maps of high
quality in terms of distortion, e.g. with respect to isometry. In prac-
tice, the combination of both aspects is important.

Our algorithm for the construction of a discrete foliation described
in Section 3 has a number of degrees of freedom: the source and
sink region (red and green in Figures 3 and 4) can be chosen, the

Figure 7: Constrained smoothing of an initial field (left) leads to a
foliation with straighter leaves (blue) (right). The red edges are the
ones whose duals’ orientation has been reversed during smoothing.

shelling order can be varied (line 3 of Algorithm 1), and the direc-
tions di can be chosen subject to constraints (cf. Section 5.1). We
can exploit these degrees of freedom to reduce distortion. While
these options generally allow for a drastic improvement of the
parametrization quality, there are obvious limits. Direct optimiza-
tion with respect to a specific measure is difficult in the context of
shellings and constrained direction fields. Map optimization meth-
ods that operate on a PL representation of the map are more flexible
in this regard, cf. Section 7.

Source and Sink. In the polar cases, the sink (or source) is the
entire boundary. We choose a well-centered inner source (or sink)
by virtually removing the n-simplex with maximum distance to the
boundary. In the case of a square map (cf. Figure 3), we divide
the boundary into four parts of equal length. For a cube map, we
need to choose two simply-connected regions on ∂M as source
and sink. For our experiments, we used an automatic choice: we
use iso-contours of the [0,1]-normalized Fiedler vector (the glob-
ally smoothest non-constant scalar field, in least squares Lapla-
cian sense). The iso- 1

4
and iso- 3

4
contours are natural choices for

the source and sink region boundary. The Fiedler vector is the
eigenvector corresponding to the second-smallest eigenvalue of the
Laplace-Beltrami operator on ∂M (which can very efficiently be
computed [Wu et al. 2014]), and the so obtained source and sink
regions are generally simply-connected if a discrete Laplacian with
positive edge weights is used [Fiedler 1975].

Shelling Order. In line 3 of Algorithm 1, a free n-simplex on the
advancing front is to be chosen. As often most simplices are free,
many choices are possible. In an attempt to keep the front smooth,
we choose to guide it by a harmonic field. This field is computed
as a minimizer of the Dirichlet energy subject to the boundary con-
ditions that it vanishes at the source section and has value 1 at the
sink section. Then, at each iteration, the advancing front algorithm
always selects the free simplex with lowest field value.

Direction Field. Generally, we expect a direction field dwith lower
tangential curvature to lead to a map with lower distortion. Within
the constraints implied by the shelling order, we seek the smoothest
direction field. To this end, we initially set the directions to the
centroid of their bounds (cf. Section 5.1). Then a few constrained
Gauss-Seidel iterations of Laplacian smoothing are applied, main-
taining correct signs of the dot products of the field with face nor-
mals by clamping. For additional improvement, this process is al-
ternated with local shelling order changes: if in one iteration, the
two directions di, dj to both sides of an (n−1)-simplex fij had
to be clamped against fij , the shelling order is adjusted by flip-
ping the orientation of the corresponding dual edge in G (if local
and global bipolarity is preserved). This allows the field to become
even smoother in the following iterations. Figure 7 illustrates the
effect of field smoothing.



a) b) c) d)

Figure 8: PL decomposition: a) original mesh. b) after initial
refinement. c) after 1 level of refinement. d) final conforming result.

7 Piecewise Linear Representation

In Section 5, we defined a bijective map Ψ and saw how it can
be evaluated for an arbitrary given point. For various purposes, a
piecewise linear (PL) approximation ΨN of such maps, which is
completely defined by the map values at the vertices of a simplicial
mesh N (possibly different from M ), is of interest. This repre-
sentation should still be bijective and continuous, i.e. a PL home-
omorphism is sought. Such a representation, for instance, enables
application of various mesh-based map quality optimization meth-
ods which are able to preserve injectivity if the input is an injective
map [Schüller et al. 2013; Hormann and Greiner 2000; Degener
et al. 2003; Fu et al. 2015; Jin et al. 2015; Lipman 2012; Bommes
et al. 2013].

Obtaining an approximation with this property by sampling a point-
wise defined homeomorphism is a hard problem with no general
solution in the multi-dimensional case [Groff 2003]. Our map Ψ
defined in the previous section, however, has a very specific struc-
ture, which we can exploit to devise a simplicial mesh N such that
the map values at its vertices define a PL homeomorphism,

ΨN (p = αv0 + βv1 + γv2) := αΨ(v0) + βΨ(v1) + γΨ(v2),

where α+β+γ = 1 are the barycentric coordinates of p in a trian-
gle with vertices v0, v1, v2 (analogously four components in the 3D
case). Note that M itself is not in general a suitable mesh for this
purpose; refinement can be inevitable. This is not a consequence of
our specific foliation-based approach: it can be impossible to use
certain input meshes for PL representation directly, as discussed in
Section 2.

7.1 PL Structure Extraction

2D case. The refinement N of M is obtained using the following
two-step procedure.

Initial Refinement: In each triangle ci, add an additional edge par-
allel to di and incident to the one of the three vertices for which it
actually lies in ci. Afterwards, the mesh is non-conforming: ver-
tices have been added on edges of triangles, and these vertices are,
in general, not incorporated in the opposite triangles.

Iterative Refinement: As long as there is a triangle ci with a non-
incorporated vertex v on one of its edges: add an edge across ci
parallel to di, starting at v and ending at the opposite edge of ci.
Figure 8 illustrates the steps of this process. Note that the inserted
edges form exactly those leaves which run through vertices of M .
This implies that the process terminates.

The resulting mesh consists of triangles and quadrilateral faces.
We split the quadrilateral faces into triangles by inserting diago-
nal edges. The resulting triangle mesh is called N and has the fol-
lowing important property: the two leaves through any two points
within the same face of N run through the same sequence of trian-
gles. These sequences of faces in N can be imagined as discrete,
thick leaves (running between the dashed lines in Figure 8 right).

3D case. As in the 2D case, we can refine the input mesh M to a
meshN such that the leaves through any two points within the same
cell of N run through the same sequence of tetrahedra. In the 2D
case, this was achieved by splitting M by the integral curves which
run through vertices. In 3D, we achieve this by splitting M by the
integral surfaces which run through edges, i.e. the edges’ extrusions
parallel to d. This process splits each tetrahedron into a number of
(truncated) polygonal prisms. We can then subdivide each such
prism into tetrahedra: triangulate its base, inducing a subdivision
of the polygonal prism into (truncated) triangular prisms, i.e. tetra-
hedra, pyramids, and prisms. Each pyramid can then be subdivided
into two tetrahedra, and each prism into three tetrahedra.

Proposition 8. ΨN is a PL homeomorphism (cf. Appendix A.6).

This specific mesh N is not of immediate practical use, as it typi-
cally is very verbose (cf. Figure 9). As can be seen from the statis-
tics in Figure 10, N can be orders of magnitude larger than M in
the 2D case. In the 3D case, the situation is similar: for a mesh M
with 5K tetrahedra, N typically has around 5M tetrahedra. Nev-
ertheless, knowledge of the existence of N is of great practical in-
terest. It enables us to devise algorithms that selectively refine M
to M ′ only where the corresponding PL homeomorphism is under-
sampled, thus non-injective. The primary issue in this context is
establishing termination of the refinement. By performing the se-
lective refinement in a manner such that it progresses towards N ,
convergence to a PL homeomorphism is guaranteed trivially.

In Appendix B, we demonstrate a selective refinement strategy for
the 2D case that follows exactly this principle and discuss additional
options for obtaining practical alternatives to N .

mesh M fully refined N
fully refined N

of simplified foliation
decimation of N

preserving M ’s tets

1.7K 1.1M 130K 28K

Figure 9: Tetrahedral mesh under various forms of PL refinement
(cf. Section 7.1 and Appendix B). The bottom row shows cut views.

8 Results

The foliation, parametrization, and PL approximation algorithms
were implemented in C++ using GMP [Granlund et al. 2015] for
rational arithmetics.

Robustness. As we have mentioned in Section 4.4, we have tested
the method on a large set of tetrahedral meshes, to validate the con-
jecture that a vast majority of meshes encountered in practice are
shellable. At least for two types of objects (user-constructed con-
tent from Thingiverse and scanned content from AIM@SHAPE),
meshed using standard methods, these assumptions appear to be
confirmed.

Quantitative comparisons to other methods are difficult as most
use variations of harmonic maps which we found to produce non-
bijective results in most cases, and code availability is limited.
The most reliable techniques [Aigerman and Lipman 2013; Ko-
valsky et al. 2014] require specifying a distortion bound. We



non-optimized:

Disk

Square

|F | type full ref. sel. ref. trefine topt 300×
Elephant 1796 disk 36440 567 1.2s 0.2s

square 76898 664 0.5s 1.1s
Monster 5821 disk 204077 1987 6.8s 0.4s

square 328304 1808 2.2s 2.5s
Cat 2169 disk 45590 597 1.8s 6.2s

square 69077 523 0.5s 0.5s
Head 11342 disk 777748 148 3.3s 0.4s

Figure 10: Visualization of 2D bijections to the unit disk or unit
square. They were turned into PL maps using selective refinement,
cf. Section B.2, and optimized using a simple variant of [Hormann
and Greiner 2000] using exact rational arithmetic. The table re-
ports the number of input triangles (|F |), the number of triangle
splits due to full refinement to N (full ref.) and selective refinement
to M ′ (sel. ref.), the selective refinement runtime (trefine), and the
runtime of a constrained PL map optimization iteration (topt).

have tested 10 models with the code for [Aigerman and Lip-
man 2013] available online, with fixed bijective boundary maps
to the sphere, and a range of values of the distortion bound K ∈
{20, 50, 100, 200, 500, 1000, 2000}. In Figure 12, we include
three models (rightmost column) for
which that method has failed to pro-
duce a bijection for every value of K.
In Figures 10 and 12, we show visual-
izations of bijective maps generated us-
ing our implementation for a number of
2D and 3D shapes. Statistics are pro-
vided in Figure 10 and Table 1. Note
that the method does not depend on
M ’s embedding. In particular, the 2D
variant can be applied to 2-manifolds
embedded in R3, as depicted here.

In Figure 11 some examples of foliation leaves in complex shapes
are shown.

Run Time. Our implementation of Algorithm 1 for finding a trivial
foliation-compatible direction field processes approximately 30K
tets/s. Constrained field smoothing processes ∼25K tets/s in each
iteration, and we generally find 10 iterations to be sufficient. The
tracing of a leaf then proceeds through a sequence of around 250K
tets/s. The map can thus typically be evaluated for a given point in
under 1ms in meshes consisting of up to a million tetrahedra.

These timings have been measured on a 2014 Intel Core i7 Laptop.
We expect that our prototype implementation can be accelerated
significantly by several optimizations. For instance, we employed
general data structures for arbitrary polytopal complexes of mixed
dimension rather than a specialized simplicial mesh type. We also
treated the various topological types of foliations all with the same
generic code and used rational arithmetic without any kind of adap-
tive filtering or optimized predicates.

Figure 11: Visualization of some foliation leaves in a foliation with
cube map (top) and ball map (bottom) topology.

Map Quality. The primary goal of our construction is to guaran-
tee bijectivity for a maximally broad range of meshes, rather than
to outperform existing approaches in terms of speed or map distor-
tion. For instance, clearly, in case of success, a discrete harmonic
mapping is hard to beat in terms of computation speed, and other
methods, e.g. [Aigerman and Lipman 2013; Kovalsky et al. 2014]
are hard to beat in terms of map distortion.

As described in Section 6, the map quality is taken into account in-
directly (smoothness of the shelling front, smoothness of the field).
The resulting map is thus less smooth than those typically obtained
by other, e.g. harmonic map, approaches. This can be seen in the
wrinkles and bumps in the iso-surfaces. A way to address this is via
a piecewise linear representation of the map, which can be used as
a starting point for a variety of algorithms, constrained to maintain
bijectivity, as demonstrated for the 2D case in Figure 10.

9 Limitations and Future Work

By design, the method handles only simply-connected domains.
We note that only such domains are shellable, and the combina-
torial theory will have to be changed in order to extend it to higher
genus without having to partition the domain into simple parts.

While there is a guarantee that for any non-shellable tetrahedral
mesh shellable refinements exist, there is no known practical algo-
rithm that is guaranteed to find one efficiently in general.

The quality of the map is constrained by the combinatorics of the
shelling, and may be far from optimal especially on very coarse
meshes of complex shape, e.g. in Figure 11 top.

|T | tshell tfield 10× ttrace
Bunny 17K 0.5s 0.7s 0.42ms
Hippo 12K 0.4s 0.6s 0.26ms
Hand 10K 0.3s 0.5s 0.36ms
Crystal 97K 3.6s 4.3s 0.37ms
Dumbbell 11K 0.3s 0.5s 0.25ms
Cat 35K 1.2s 1.4s 0.42ms
Fandisk 42K 1.6s 2.0s 0.38ms
Fandisk 103K 3.1s 4.7s 0.85ms
Fandisk 724K 31.2s 32.4s 0.91ms
Lever (Fig. 1) 92K 2.5s 4.0s 0.77ms

Table 1: Statistics for the 3D volumetric models in Figure 12: the
number of tetrahedra, the time tshell taken by Algorithm 1, the time
tfield taken by an iteration of constrained direction field smoothing,
and the time ttrace needed to evaluate the map Ψ for a given point
(or any set of multiple points with constant major coordinates).
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Figure 12: Isosurface visualization of bijective parametrizations over the unit ball or unit cube obtained with the method introduced in
Sections 3, 5, 6 (Ψ is shown, PL approximation or mesh-based optimization have not been used).

Future Work. The major remaining challenge on the theory side is
to identify a way to ensure that a mesh has a shelling order, either
by integrating this into the tessellation process, by (adaptive) refine-
ment, or by partitioning the mesh into simpler parts and mapping
the parts individually.

Using different foliation topologies it should be possible to handle
maps to more general domains like the sphere, torus, or annulus.
Extension to higher genus, perhaps via branched Riemannian balls
[Zeng et al. 2007], is certainly of interest as well.

Of particular practical value is the investigation of efficient selective
refinement algorithms for the 3D case, akin to the one presented for
the 2D case, that generate parsimonious PL approximations of the
bijection Ψ. The question of minimal refinement is certainly of in-
terest as well. Furthermore, after establishing bijections Ψ1 and Ψ2

fromM1 andM2 to a common domain, a bijection fromM1 toM2

is immediately available as Ψ−1
2 Ψ1. A PL representation thereof

can be obtained by means of intersection of PL representations of
Ψ1 and Ψ2 [Alexa et al. 2000; Weber and Zorin 2014], but an ap-
proach that performs refinement in an integrated manner rather than
this two-stage process could be more efficient.

We focused on showing how a bijection can be constructed. For
various applications, more control is required. In particular, con-
straints that fix the value of certain points are commonly of interest.
For points on the boundary of the domain, such constraints can be
handled via a prescribed source section boundary map. The devel-
opment of a general solution also for internal points, perhaps based
on a domain decomposition strategy, is clearly an interesting path
for future work.

To the best of our knowledge, no method has been described in
the literature that is able to construct 3D vector or direction fields
strictly adhering to a given topology (in particular: a prescribed set
of singularities). Close to this goal is, e.g., the work by Theisel et al.
[2004], which can enforce critical points but not prevent additional
ones. Our method for constructing trivial foliation-compatible di-
rection fields achieves this for certain special cases. It is worthwhile
exploring whether this can be extended to a more general setting.
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A Appendix

A.1 Proof of Proposition 2

Proof. We proceed by showing the following equivalence:

c is a local source (sink) in Gf ⇔ c is incoming (outgoing) for f .

First, observe that an n-simplex c is incoming for an incident k-
simplex f , k < n− 1, if and only if it is incoming for all simplices
of dimension k+1, incident at c and f . By induction, it is incoming
for all simplices of dimension m, k < m < n, shared by c and f .

Consider Gf , the dual graph G restricted to the star of a k-simplex
f . If an n-simplex is a source relative to Gf , it is incoming for all
its (n−1)-simplices which are also incident at f , and inductively
for f itself. We conclude that a local source simplex in Gf is an
incoming simplex for f . Analogously, any local sink simplex is an
outgoing simplex for f . Conversely, if an n-simplex is incoming
for f , it is incoming for the (n−1)-simplices shared by it and f .
It is thus a local source in Gf . Analogously, any outgoing simplex
for f is a local sink in Gf . Therefore, considering Corollary 1,
the conditions for foliation compatibility and local bipolarity are
equivalent.

A.2 Proof of Proposition 4

Proof. For every k-simplex f , k < n, there is a local source inGf ,
because the n-simplex ci ∈ Gf with the lowest i is a local source.
Assume there are multiple sources in Gf . Let ci and cj , j > i, be
the first two. Consider the prefix Pj = c1, . . . , cj . In the star of f in
Pj the simplex cj forms a separate connected component (if there
was an adjacent n-simplex cl, cj would not be a source due to l < j
and cl → cj). As ci also is in the star of f in Pj , f is singular in Pj ,
thus Pj not manifold, contradicting that in a bishelling Pj actually
is manifold. By symmetry of bishellings, the same arguments apply
for local sinks. We conclude that G is locally bipolar.

As the implied graph orientation follows the linear bishelling order,
G is acyclic. The first simplex c1 clearly is a global source (there
is no predecessor in the order), cm is a global sink. Assume there
is another global source ci ∈ G, i > 1. Consider the prefix Pi =
c1, . . . , ci. Simplex ci is isolated in Pi (if it had a face-adjacent
n-simplex cl, l < i, it would not be a global source). Thus Pi has
multiple components. As Pm has only one component, there must
be aPj , j ≥ i, where these multiple components merge, necessarily
first coming into contact in a singular vertex or edge, i.e. Pj is not
manifold, contradicting that in a bishelling Pj actually is manifold.
By symmetry of bishellings, the same arguments apply for global
sinks. We conclude that G is also globally bipolar.

A.3 Proof of Proposition 5

Proof. If c1, . . . , cm is a shelling, c0, . . . , cm clearly is a shelling.
We need to show that it is a reverse shelling as well, i.e. that the
prefix Ui = c0, . . . , ci is manifold for each i < m. Assume the op-
posite, i.e. there is an i such that Ui is not manifold. Then there is a
singular vertex or edge on the boundary of Ui. As this boundary is
internal to the extended complex, the suffix Vi+1 = ci+1, . . . , cm
(the complement of Ui) has the same boundary with the same sin-
gular vertices or edges (because their immediate neighborhoods are
complementary to those in Ui). This contradicts Vi being manifold
for each i, which follows from c0, . . . , cm being a shelling,

A.4 Proof of Proposition 6

Proof. We consider the 3D case. Due to Proposition 5 we can fo-
cus on the cube map case. We outline a proof that proceeds almost
precisely along the lines of the proof in [Moise 1952] for shella-
bility. As M is PL-homeomorphic to a 3-ball, there is a PL map
on a subdivision of M which maps it to a cube piecewise linearly
with source and sink areas mapping to two opposite faces F and
F ′ of the cube: any 3D finite simply-connected simplicial complex
M is PL-homeomorphic to a tetrahedron, and therefore to a cube,
and any map of the cubes’ surface to itself can be extended to a
PL-homeomorphism of the cube to itself. We can easily define a
subdivision of a cube (and its image under a PL map of the cube to
the tetrahedron), that has a bishelling order with sources in F and
sinks in F ′: e.g., for a cube add a vertex in the center, and split
the cube into six pyramids, each pyramid into two tetrahedra. The
required bishelling order starts with two tetrahedra at F , then adds
tetrahedra in pyramids with bases in cube faces sharing an edge
with F , followed by tetrahedra in the pyramid with base in F ′.

From this elementary bishelling, we can obtain a bishelling of any
k-th barycentric subdivision of the cube, in particular, of the one
that coincides combinatorially with a subdivision of M .

As a barycentric subdivision can be performed by stellar refinement
of one k-simplex at a time, k ≤ 3, we only need to show that the
original order can be extended to the order on a mesh with a single
simplex stellated. In the refined mesh, if two tetrahedra c1 and c2
belong to different tetrahedra of the original mesh, then they are



ordered in the same sequence as parent tetrahedra. It remains to
order them in a single refined tetrahedron.

The bishelling order on the original mesh defines sink and source
region on the surface of each tetrahedron, each forming a disk K
and K′ respectively, consisting of one to three faces. As a result
of a single stellar refinement, the tetrahedron is split into 4, 3 or
2 tetrahedra Si. Our goal is to define a sequence of Si, such that
marking sink and source faces for tetrahedra following this order
results, at every step, in satisfying the condition that Si∩∪j<iSj ∪
K is a topological disk, and Si ∩ ∪j>iSj ∪ K′ is a topological
disk. Using the idea from [Moise 1952], we can reduce the number
of cases one needs to consider using collapses.

We also only need to consider the cases of number of faces in the
source and sink disk equal to (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), as
all other cases are obtained by symmetry. Observe that for a 1-4
split, one can always take as first tetrahedron in the bishelling or-
der a tetrahedron with a base on a face f of K; the remaining 3
tetrahedra form a mesh that can be deformed by a PL homeomor-
phism into a 1-3 split configuration, moving a vertex in the center
of the tetrahedron to the center of f . Thus the problem of finding
a shelling sequence for a 1-4 refined tetrahedron is reduced to 1-3
refinement in all cases. Unless there is only one source and one sink
face, further reduction is possible, by a collapse to a 1-2 split con-
figuration. Thus, we need to consider 1-2 splits for four different
source-sink face number pairs, (1, 2), (1, 3), (2, 1), (2, 2), which
may have different locations with respect to the split edge, and 1-3
splits with respect to (1,1). This forms 13 cases for which the ex-
istence of ordering of the two or three tetrahedra Si satisfying the
required condition can be checked directly.

Thus, the elementary bishelling order can be extended to a
bishelling order on the refined mesh at a single stellar refinement
step, and continued in this way to an r-refinement of the tetrahe-
dron, isomorphic to a refinement of M . After adding virtual cells
csource and csink, covering the refined source and sink regions of the
refined M , this order extends to a csourcecsink-bishelling.

A.5 Proof of Proposition 7

Proof. A different way to state that a PC direction field is foliation-
compatible is that the corresponding differential equation has
unique solutions for all initial points in the domain M . As a con-
sequence, foliation-compatible PC direction fields satisfy the con-
ditions of [Filippov 1988, Corollary 1, Ch. 2, §8], which states that
in this case the solutions of the ODE ṗ = d(p), p(0) = p0 (under-
stood as continuous solutions satisfying the equation at all points
where d is defined), continuously depend on the initial parameter,
i.e., for any ε > 0, there is δ, such that if |p0 − p′| < δ, then
|p(r)−p′(r)| < ε everywhere in the domain; in other words, in this
case the standard continuous dependence on parameters applies, too
(note the additional requirement of solution uniqueness, which does
not hold for all PC fields, but for foliation-compatible PC fields).

As our fields have unit length, the solution of the ODE is arclength
parameterized. Consider a neighborhood of a point p ofM consist-
ing of points q of M such that s(q) ∈ Uε(s(p)), the neighborhood
of radius ε of s(p) in S, and with r(p)− ε < r(q) < r(p)− ε. We
pick it to be small enough, so that for any r, |r − r(p)| < ε, and
fiber passing through Uε(p), it has a point with arclength r(p).

These observations ensure that the map G : Bε(s(p)) × [r(p) −
ε, r(p) + ε] → M defined by (p0, r) → p(r), is continuous; com-
posing it on the left with H : (s, r) → (s, t−1(r)), which is also
continuous (as t is a continuous map between compact sets), yields
a continuous map on each setBε(s(p))×[t−1(r(p)−ε), t−1(r(p)+
ε)]. This map is globally defined and continuous on S × [0, 1], as
for each leaf, t(p) maps the leaf to [0, 1]. Composing this map
with (s, r) → (ψ−1(s), t), which is also continuous, we finally

obtain the inverse of Ψ, which also has to be continuous by com-
pactness.

A.6 Proof of Proposition 8

Proof. We consider the 3D case. N has a specific structure, which
can be thought of as discrete foliation, with thick leaves formed
by chains of tetrahedra (analogous to the 2D situation with chains
of triangles, depicted in Figure 8 right). We call these tetrahedra
chains stacks.

To see this, first notice that, by construction, each tetrahedron has
exactly one edge which is aligned with a leaf of the field. It cannot
have multiple, because the field is constant in each tetrahedron of
M , thus in each of N , and it cannot have none because it would
have been split by one of its edges’ integral surface.

Consider a triangle f0 = (v1, v2, v3) in Sr , the refined source re-
gion, and the three leaves running from vi ∈ Sr to the sink sec-
tion. We show that there is a sequence of tetrahedra in N , ci with
i = 0 . . . k, with all vertices on the three leaves, that are pairwise
face-adjacent, i.e. there is a sequence of faces fi, i = 0, . . . k + 1,
starting with f0, such that fi+1 is shared by ci and ci+1. This se-
quence forms a stack.

There is a single tetrahedron c0 which has f0 as a face. As c0 has
one edge on a leaf, its vertex v4 not contained in the face f0 is on
one of the three leaves through the vertices of f0. W.l.o.g. assume
that it is the leaf passing through vertex v1. Define f1 to be the face
of c0 with vertices v2, v3, v4. Remove c0 from the mesh. Now we
have exactly the same configuration we had with f0 with respect to
f1, and can construct f2 in the same way. As we always proceed
forward along the three leaves, this process terminates when we
reach a sink face. As stacks starting from adjacent faces of Sr
share their leaves, these stacks necessarily form a partition of N ,
i.e. each tetrahedron of N belongs to one stack.

Now consider the case of a cube map, withD = [0, 1]3. The images
of leaves are parallel straight line
segments. The figure on the right
shows a stack of tetrahedra in pa-
rameter space, i.e. part of Ψ(N),
spanned by three parallel straight
edge chains (leaves) running from
source (red) to sink (green). We need to show that all tetrahedra of
this Ψ(N)-stack are oriented consistently.

In a stack, let vi1, vi2, vi3 be the 3 vertices of fi that are on the
three leaves `1, `2, `3 of the stack. This ordering of vertices defines
an orientation on the planes of all fi’s, i.e. a choice of normals
(v2−v1)×(v3−v1). We choose the numbering so that the positive
side of fi is the one towards the interior of ci. Then, because all
tetrahedra have positive volume in N by construction, the fourth
vertex of ci is always on the positive side of fi. In other words,
det(v2 − v1, v3 − v1, v4 − v1) > 0 for all tetrahedra in the stack.

Let wi = Ψ(vi), for i = 1, 2, 3, denote the vertex images, and
si the point where the leaf through vi intersects the source S. We
define w0

i = Ψ(si). Because the leaf images are straight, we can
write wi = w0

i + tie, where ti ∈ R, and e ∈ R3 is the constant leaf
direction vector in parameter space. For the fourth vertex, which
shares its leaf with the first, we have w4 = w0

1 + t4e. By direct
computation we observe that det(w2 −w1, w3 −w1, w4 −w1) =
(t4 − t1) det(w0

2 − w0
1, w

0
3 − w0

1, e). Hence, as t4 > t1, a tetra-
hedron in Ψ(N) inherits its orientation from the orientation of its
stack’s base triangle in Ψ(S).

This immediately implies that all tetrahedra in the same stack have
the same orientation. Note that Ψ(S) = (ψ(S), 0). Hence, assum-
ing that ψ is a PL homeomorphism on the source section, i.e., that it



maps the triangulation Sr bijectively (which, e.g., for a Tutte map
ψ always is the case), also across stacks tetrahedra have the same
orientation. The fact that all tetrahedra in Ψ(N) have the same
orientation together with a non-selfintersecting domain boundary
implies bijectivity of Ψ [Aigerman and Lipman 2013].

To extend the analysis to the ball case, one needs to consider non-
parallel leaves. We assume that the directions of the three leaves
of a stack are all contained in a hemisphere. In this case, the stack
images are triangular pyramid frustums, which can be mapped to
prisms by linear transformations, such that the same arguments can
be used to show that the map is a bijection. If the leaves passing
through an individual face of Sr span more than a hemisphere, an
additional split of the stack on top of it is necessary.

B Approximation of PL Maps

The mesh N resulting from the full refinement procedure can be
very large. For reasons of parsimony and efficiency, it is interesting
to consider ways of creating a coarser PL homeomorphism ΨM′

approximating Ψ. There are several options to this end, as detailed
in the following.

B.1 Homeomorphism Decimation

We can use operators for triangle and tetrahedral mesh decimation,
such as edge-collapses, to decimate N to a simpler mesh M ′. In
a typical mesh decimation approach, one collapses an edge only if
doing so does not result in inverted elements. As we are dealing
with not just a mesh but a PL homeomorphism, we must check that
both, the elements of N and their images under Ψ, remain posi-
tively oriented. In other words, we are effectively dealing with two
isomorphic meshes, N and Ψ(N), that are decimated in sync while
avoiding inversions. Figure 9 shows an example, where the decima-
tion of N was restricted such that the mesh remains a refinement of
M , i.e. the underlying structure of M is preserved.

B.2 Selective Refinement

A disadvantage of the decimation approach is the high complex-
ity of the intermediate mesh N . As a more practical alternative,
we can approach the problem from the opposite direction: instead
of decimating the fully refined mesh N , refine the original mesh
M only as far as necessary. We thus consider ΨM , a potentially
undersampled, non-bijective map, and refine M where it is under-
sampled until it becomes bijective, thus a homeomorphism ΨM′ .
Here, the key difficulty is ensuring convergence of the refinement
process. Exploiting our knowledge that N is a suitable mesh for
a homeomorphism, however, we can design a selective refinement
algorithm that progresses towards N , thereby guaranteeing termi-
nation. We demonstrate this for the 2D case in the following.

We call the triangles of M master-triangles and the parts of them
resulting from refinement sub-triangles. A triangle whose image
is inverted or degenerate is called violating. The incremental re-
finement procedure is fairly simple: as long as there is a violating
(master- or sub-)triangle, project the vertex for which the triangle
is incoming or outgoing to the opposite edge, insert a new vertex
there, and re-triangulate the two adjacent master-triangles into sub-
triangles to incorporate this new vertex. An illustration is shown in
Figure 13.

To see the correctness of this algorithm, first note that a triangle ci
(or one of its sub-triangles) with di parallel to one of its edges is
never violating. This follows from the two incident vertices having
the same major coordinate in this case, as detailed in Appendix
A.6. The insertion of the parallel-projected vertex causes the two
resulting sub-triangles of ci to have an edge parallel to di. For
this, we only need to make sure that vertices on opposite edges of a

a) b) c) d) e)
Figure 13: Selective refinement. a) if a triangle is violating, i.e.
its image is degenerate or inverted (red), a vertex is projected and
inserted. b) afterwards, the two sub-triangles are non-violating
(green). c) if a non-violating triangle is refined (d) because the
refinement of a neighboring triangle caused a new vertex, its sub-
triangles can become violating. e) projecting a vertex and inserting
it again remedies the violation.

triangle which are parallel projections of each other are connected
by an edge in the sub-triangulation of the triangle.

Proposition 9. The 2D selective refinement algorithm terminates.

Proof. In each step, a new vertex is inserted that is one of the ver-
tices of the fully refined mesh N . As N is finite, only finitely many
steps can be performed.

B.3 Foliation Simplification

Both approaches described, decimation and selective refinement, in
some way rely on the PL structure given by N . This raises the
question of whether we can exploit the degrees of freedom in the
construction of the foliation to make N simpler in the first place.

N is obtained from M by splitting along every vertex’s integral
curve (every edge’s integral surface). If we could design the folia-
tion such that multiple vertices (edges) share, i.e. lie on, the same
integral curve (surface), this would simplify N by reducing the
overall number of splitting curves (surfaces). We can do this in
the following way: if we set the field di, dj parallel to an edge fij
between triangles ci and cj , the two vertices incident to fij lie on
a common integral curve. Likewise, if we set di, dj parallel to a 2-
simplex fij between tetrahedra ci and cj , the three edges incident
to fij lie on a common integral surface. Note that in these cases,

di

dj

in out

deviating from Section 4, both n-simplices are
incoming (and outgoing) for points on the com-
mon (n−1)-simplex fij . However, they both
provide the same integral curve, i.e. this does
not violate foliation-compatibility. Effectively,
the two n-simplices can be treated as virtually
merged because they have a common direction di = dj .

In terms of the oriented dual edge graph G, this corresponds to
collapsing the dual edge ci → cj , virtually merging the two n-
simplices. Of course we cannot do this everywhere, the oriented
graph needs to remain locally and globally bipolar. We thus propose
a greedy dual edge removal strategy. The oriented dual edge graph
is taken as input, and dual edges are collapsed one by one, ordered
by the deviation their virtual collapse induces on the field (due to
adjusting d to be paral-
lel), unless their collapse
violates bipolarity (which
is easily tested locally).
The inset shows an exam-
ple result field; note that
most direction vectors are
now aligned with mesh
edges. The effect of foliation simplification on N is demonstrated
in Figure 9.

Note that the rational approximation of h ≈ |d| (cf. Section 5.6)
needs to be consistent (i.e. equal) in n-simplices adjacent to an
(n−1)-simplex to which the field is parallel in order to preserve
continuity of the final map.


